Motion Capture

大美生大大生生美大

Motion Capture in Movies

Motion Capture in Games

Magnetic Capture Systems

TetheredSensitive to metalLow frequency (60Hz)

Mechanical Capture Systems

- Any environment
- Measures joint angles
- Restricts the motion

Optical motion capture

Place markers on the actor

5

7

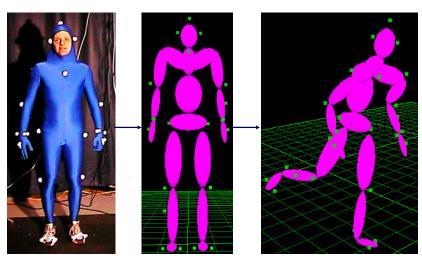
Cameras can determine marker positions

Optical Capture Systems

- 8 or more cameras
- Restricted volume
- High Frequency (240Hz)
- Occlusions

How Does It Work?

8 cameras + 120 Hz + Special tape = Raw Point Data


Optical motion capture process

- 1. Find the skeleton dimensions and exact marker positions on the body
- 2. Perform a motion trial
- 3. Compute marker positions from camera images
- 4. Identify and uniquely label markers
- 5. Calculate joint angles from maker paths

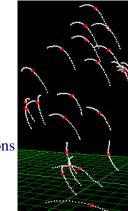
Optical motion capture process

- 1. Find the skeleton dimensions and exact marker positions on the body
- 2. Perform a motion trial
- 3. Compute marker positions from camera images
- 4. Identify and uniquely label markers
- 5. Calculate joint angles from maker paths

Problem Statement

9

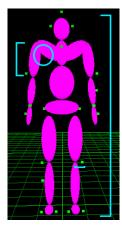
Automatic Calibration



- Fully automatic
- Any skeleton
- Accurate

Actor's kinematics structure. and rough

Input


Calibration Data

Initial path data that exercises all of the subject's DOFs

14

13

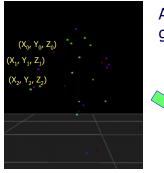
Independent Variables

DOFs

Bone lengths

Handle offsets

Global scale

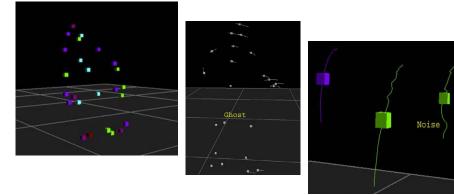

Optical motion capture process

- Find the skeleton dimensions 1. and exact marker positions on the body
- Perform a motion trial 2.
- Compute marker positions from camera images 3.
- **Identify and uniquely label markers** 4.
- 5. Calculate joint angles from maker paths

Optical motion capture process

- 1. Find the skeleton dimensions and exact marker positions on the body
- 2. Perform a motion trial
- **3.** Compute marker paths from camera images
- 4. Identify and uniquely label markers
- 5. Calculate joint angles from maker paths

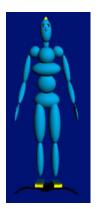
Marker Identification



At each frame, motion capture gives us a set of points

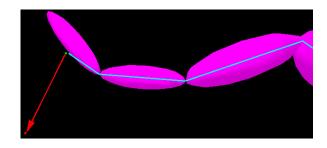
We would like something more intuitive

Marker Identification Problems


Making sense of raw data...

Optical motion capture process

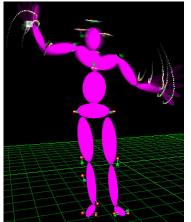
- 1. Find the skeleton dimensions and exact marker positions on the body
- 2. Perform a motion trial
- 3. Compute marker positions from camera images
- 4. Identify and uniquely label markers
- 5. Calculate joint angles from maker paths


17

IK Problem Definition

- 1. Create a handle on body
 - position or orientation
- 2. Pull on the handle
- 3. IK figures out how joint angles should change

Inverse Kinematics



Inputs:

An articulated skeleton with handles. Desired positions for handles.

Outputs: Joint angles that move handles to desired positions.

Inverse Kinematics (con't)

We are solving IK on a complex model (~50 DOFs and 30 handles).

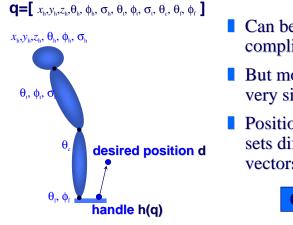
Motion capture data often contains missing markers.

Many different formulations for IK problem, would like to use one that is best for motion capture data.

More Formally

Let:

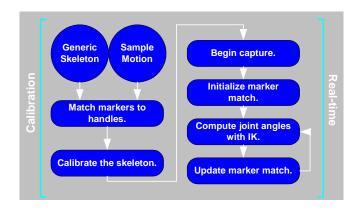
- q actor state vector (joint bundle)
- C(q) constraint functions that pull handles


Then:

solve for q such that C(q) = 0

23

21


What's a Constraint?

- Can be rich, complicated
- But most common is very simple:
- Position constraint just sets difference of two vectors to zero:

C(q) = h(q) - d = 0

Real-time Motion Capture

26

Motion capture as UI

- Map a "whiteboard space" anywhere
- Use acting for animation interface

Motion Transformation

- Start with a mocap sequence
- Edit it to fit the needs of the animation
- Try to be as close to the original motion as possible