
                        Computer Graphics Instructor: Zoran Popovic
                                 CSE 457 Spring 2005

Homework #2

Hidden Surfaces, Shading, Ray Tracing, 

Texture Mapping, Parametric Curves

Prepared by: Danny Wei & Diane Hu

Assigned:  Monday, May 9th

Due:  Friday, May 20th at the beginning of class

Directions: Please provide short written answers to the questions in the space provided.  If you require 
extra space, you may staple additional pages to the back of your assignment.  Feel free to discuss the 
problems with classmates, but please answer the questions on your own.

Name:_________________________________________________



Problem 1: Short Answer (10 points)

(a) (2 points) Antialiasing by adaptive supersampling samples rays at the corner of every pixel 
and subdivides the region recursively if the difference between neighboring sample colors is 
too great. When will this method fail?

(b) (2 points) Why is it easy for Gouraud interpolation to miss specular highlights? What can 
you do to make it more sensitive to specular highlights?

(c) (2 points) Can every third order Bezier curve be broken into two other third-order Bezier 
curves? If so, why?

(d) (2 points) Is it possible to have a C2 continuous spline that is not also C1 continuous? Given 
an example or explain why it is not possible.

(e) (2 points) Does a curve that is C1 continuous imply that the curve is also G1 continuous (See 
Foley definition in text)? If so, why? If not, give an example of a curve that would be C1 
continuous and G0 continuous.



Problem 2.  Halfway Vector Specular Shading (10 points)

Blinn and Newell have suggested that if V and L are each assumed to be constants the computation 
of V·R in the Phong shading model can be simplified by associating with each light source a 
fictitious light source that will generate specular reflections.  This second light source is located in a 
direction H halfway between V and L.  The specular component is then computed from (N·H)ns, 
instead of from (V·R)ns.

(a) (2 points) On the diagram below, assume that V and L are the new constant viewing direction 
and lighting direction vectors.  Draw the new direction H on the diagram. 

        

(b)  (4 points) Under what circumstances or by making what approximations might L and V be 
assumed constant (or, at least, roughly so) for every point in the scene as seen through every 
pixel on the image plane?

(c) (4 points) Let’s make the constant L, V assumption and use the halfway vector for shading.  
What is an advantage of this approach?  For general lighting and viewing conditions, what is a 
disadvantage of this approach?



Problem 3. Environment Mapping (17 points)

One method of environment mapping (reflection mapping) involves using a "gazing ball" to capture 
an image of the surroundings. The idea is to place a chrome sphere in an actual environment, take a 
photograph of the sphere, and use the resulting image as an environment map. Let’s examine this in 
two dimensions, using a "gazing circle" to capture the environment around a point. 

Below is a diagram of the setup. In order to keep the intersection and angle calculations simple, we 
will assume that each view ray V that is cast through the projection plane to the gazing circle is 
parallel to the z-axis, meaning that the viewer is located at infinity on the z-axis. The circle is of 
radius 1, centered at the origin.

(a) (5 points) If the x-coordinate of the view ray is xv, what are the (x,z) coordinates of the point at 
which the ray intersects the circle? What is the unit normal vector at this point?

(b) (3 points) What is the angle between the view ray V and the normal N as a function of xv?



Problem 3. Environment Mapping (Continued)

(c) (5 points) Note that the angle φ between the view ray V and the reflection direction R is equal to 
2, where  is the angle between V and the normal N.  Plot φ versus xv. In what regions do small 
changes in the intersection point result in large changes in the reflection direction?

(d) (4 points) We can now treat the photograph of the chrome circle as an environment map. If we 
were to ray-trace a new, shiny object and index into the environment map according to each 
reflection direction, would we expect to get the same rendering as if we had placed the object 
into the original environment we photographed?  Why or why not?



Problem 4.  Z-buffer (13 points)

The Z-buffer algorithm can be improved by using an image space “Z-pyramid.”  The basic idea 
of the Z-pyramid is to use the original Z-buffer as the finest level in the pyramid, and then 
combine four Z-values at each level into one Z-value at the next coarser level by choosing the 
farthest (largest) Z from the observer.  Every entry in the pyramid therefore represents the 
farthest (largest) Z for a square area of the Z-buffer.  A Z-pyramid for a single 2x2 image is 
shown below:

                     

(a) (3 points) At the coarsest level of the pyramid there is just a single Z value.  What does that 
Z value represent?

Suppose we wish to test the visibility of a polygon P.  Let Zp be the nearest (smallest) Z value of 
polygon P.  Let R be the smallest region in the Z-pyramid that completely covers polygon P, and 
let Zr be the Z value that is associated with region R in the Z-pyramid.

              



Problem 4. Z-buffer (Continued)

(b) (3 points) What can we conclude if Zr < Zp?

(c) (3 points) What can we conclude if Zp < Zr?

If the visibility test is inconclusive, then the algorithm applies the same test recursively: it goes 
to the next finer level of the pyramid, where the region R is divided into four quadrants, and 
attempts to prove that polygon P is hidden in each of the quadrants R of that P intersects.  Since 
it is expensive to compute the closest Z value of P within each quadrant, the algorithm just uses 
the same Zp (the nearest Z of the entire polygon) in making the comparison in every quadrant.  
If at the bottom of the pyramid the test is still inconclusive, the algorithm resorts to ordinary Z-
buffered scan conversion to resolve visibility.

(d) (4 points) Suppose that, instead of using the above algorithm, we decided to go to the 
expense of computing the closest Z value of P within each quadrant.  Would it then be 
possible to always make a definitive conclusion about the visibility P of within each pixel, 
without resorting to scan conversion?  Why or why not?



Problem 5.  Bezier Properties (15 points)

A nice property of Bezier curves is that the 
curve itself will always remain within the 
convex hull of its control points.  The convex 
hull of a set of points is defined as the smallest 
convex polygon containing all those points.  
Intuitively, you might imagine the convex hull 
of a set of points in two dimensional space to be 
the polygon defined by wrapping a rubber band 
around those points.  In three dimensional 
space, imaging using a rubber sheet instead.

An intuitively true property about convex hulls is as follows.  Suppose we are given n points; call 
these nppp ,...,, 21 .  Now suppose we are given n real numbers, nwww ,,, 21  .  If 10  iw

for all ni 1  and 1...21  nwww , then nnwww pppq  ...2211  lies within the 

convex hull of the points nppp ,...,, 21 .  In other words, taking a weighted average of a set of 

points necessarily gives a point within the convex hull of those points.

(a) (3 points)  A point on a cubic Bezier curve can be defined by the function
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where 4321 ,,, pppp  are the control points of the curve and 10  t .  Write out the Bezier basis 

functions )(),(),(),( 4321 tftftftf  such that

44332211 )()()()()( ppppQ tftftftft  .



Problem 5. Bezier Properties (Continued)

(b) (4 points) Show that 0)(,0)(,0)(,0)( 4321  tftftftf  for all t, such that 10  t .

(c) (3  Points) Show that 1)()()()( 4321  tftftftf  for all t, such that 10  t .

(d) (2 points) Using the property about convex hulls stated previously, argue that any Bezier 
curve must lie within the convex hull of its control points.  (Make sure you use the convex 
hull property exactly as it is stated)

(e) (3 points) Give an example of a situation in which the convex hull property of Bezier curves 
might be useful. 



Problem 6.  Bezier Properties (10 points)

Prove that when you have a straight Bézier curve where the distance between neighboring Bezier 
control points equals one, the velocity of the line (i.e. the first derivative of Q(t)) is constant. 
 (Hint: Look at the Hermite equation and the relation between Bezier and Hermite curves)

The equation for a general Bézier curve is:
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The equation for a general Hermite curve is:
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