
1

Distribution Ray Tracing

2

Reading

Required:

Watt, sections 10.6 ,14.8. (see handouts)

Further reading:

Watt, sections 10.4-10.5

A. Glassner. An Introduction to Ray Tracing.
Academic Press, 1989. [In the lab.]

Robert L. Cook, Thomas Porter, Loren Carpenter.
“Distributed Ray Tracing.” Computer Graphics
(Proceedings of SIGGRAPH 84). 18 (3). pp. 137-145.
1984.

James T. Kajiya. “The Rendering Equation.”
Computer Graphics (Proceedings of SIGGRAPH 86).
20 (4). pp. 143-150. 1986.

3

Pixel anti-aliasing

No anti-aliasing

Pixel anti-aliasing

4

BRDF, revisited

The reflection model on the previous slide assumes
that inter-reflection behaves in a mirror-like fashion.

Recall that we could view light reflection in terms of
the general Bi-directional Reflectance Distribution
Function (BRDF):

Which we could visualize for a given ωin:

(,)outinrf ω ω

(,)outinrf ω ω
ωin

5

Surface reflection equation

To compute the reflection from a real surface, we would
actually need to solve the surface reflection equation:

For a directional light with intensity L1 coming from
direction direction, ω1, we can view the remaining
directions as contributing zero, giving:

We can plot the reflected light as a function of viewing
angle for multiple light source contributions:

ω ω ω ω ω= ∫() () (,)
H

out outin in inrI I f d

ω ω ω= 11() (,)out outrI L f

6

Simulating gloss and translucency

The mirror-like form of reflection, when used to
approximate glossy surfaces, introduces a kind of
aliasing, because we are undersampling reflection
(and refraction).

For example:

Distributing rays over reflection directions gives:

7

Reflection anti-aliasing

Reflection anti-aliasing

8

Full anti-aliasing

Full anti-aliasing…lots of nested integrals!

Computing these integrals is prohibitively
expensive, especially after following the rays
recursively.

We’ll look at ways to approximate high-
dimensional integrals…

9

Summing over ray paths

We can think of this problem in terms of
enumerated rays:

The intensity at a pixel is the sum over the primary
rays:

For a given primary ray, its intensity depends on
secondary rays:

Substituting back in:

1
()

n

pixel i
i

I I r
n

= ∑

= →∑() () ()i ij r ij i
j

I r I r f r r

= →∑∑1
() ()pixel ij r ij i

i j

I I r f r r
n

10

Summing over ray paths

We can incorporate tertiary rays next:

Each triple i,j,k corresponds to a ray path:

So, we can see that ray tracing is a way to
approximate a complex, nested light transport
integral with a summation over ray paths (of
arbitrary length!).

Problem: too expensive to sum over all paths.

Solution: choose a small number of “good” paths.

= → →∑∑∑1
() () ()pixel ijk r ijk ij r ij i

i j k

I I r f r r f r r
n

→ →ijk ij ir r r

11

Whitted integration

An anti-aliased Whitted ray tracer chooses very specific
paths, i.e., paths starting on a regular sub-pixel grid
with only perfect reflections (and refractions) that
terminate at the light source.

One problem with this approach is that it doesn’t
account for non-mirror reflection at surfaces.

12

Monte Carlo path tracing

Instead, we could choose paths starting from random
sub-pixel locations with completely random decisions
about reflection (and refraction). This approach is
called Monte Carlo path tracing [Kajiya86].

The advantage of this approach is that the answer is
known to be unbiased and will converge to the right
answer.

13

Importance sampling

The disadvantage of the completely random
generation of rays is the fact that it samples
unimportant paths and neglects important ones.

This means that you need a lot of rays to converge to a
good answer.

The solution is to re-inject Whitted-like ideas: spawn
rays to the light, and spawn rays that favor the
specular direction.

14

Stratified sampling

One problem is that samples may still clump together
and give uneven results, i.e., require more samples to
get a good answer. How can we make sure they
spread out well?

Answer: stratified sampling.

E.g., for sub-pixel samples (here 16 rays/pixel):

The stratified pattern on the right is also sometimes
called a jittered sampling pattern.

One interesting side effect of these stochastic
sampling patterns is that they actually injects noise
into the solution (slightly grainier images). This noise
tends to be less objectionable than aliasing artifacts.

Random Stratified

15

Distribution ray tracing

These ideas can be combined to give a particular
method called distribution ray tracing [Cook84]:

uses non-uniform (jittered) samples.

replaces aliasing artifacts with noise.

provides additional effects by distributing rays
to sample:

• Reflections and refractions

• Light source area

• Camera lens area

• Time

[Originally called “distributed ray tracing,” but we will
call it distribution ray tracing so as not to confuse
with parallel computing.]

16

DRT pseudocode

TraceImage() looks basically the same, except now
each pixel records the average color of jittered sub-
pixel rays.

function traceImage (scene):

for each pixel (i, j) in image do

I(i, j) ← 0

for each sub-pixel id in (i,j) do

s ← pixelToWorld(jitter(i, j, id))

p ← COP

d ←(s - p).normalize()

I(i, j) ← I(i, j) + traceRay(scene, p, d, id)

end for

I(i, j) I(i, j)/numSubPixels

end for

end function

A typical choice is numSubPixels = 5*5.

17

DRT pseudocode (cont’d)

Now consider traceRay(), modified to handle (only)
opaque glossy surfaces:

function traceRay(scene, p, d, id):

(q, N, material) ← intersect (scene, p, d)

I ← shade(…)

R ← jitteredReflectDirection(material, N, -d, id)

I ← I + material.kr ∗ traceRay(scene, q, R, id)

return I

end function

18

Pre-sampling glossy reflections

19

Distributing rays over light source area gives:

Soft shadows

20

The pinhole camera, revisited

Recall the pinhole camera:

Q: How can we simulate a pinhole camera more
accurately?

21

Pinhole cameras in the real world require small apertures
to keep the image in focus.

Lenses focus a bundle of rays to one point => can have
larger aperture.

For a “thin” lens, we can approximately calculate where an
object point will be in focus using the the Gaussian lens
formula:

where f is the focal length of the lens.

Lenses

1 1 1

i od d f
+ =

22

An image is formed of the whole object by collecting
bundles of rays from every point on the object:

Lenses (cont’d)

odid

f

23

Depth of field

Lenses do have some limitations.

The most noticeable is the fact that points that are not in
the object plane will appear out of focus.

The depth of field is a measure of how far from the object
plane points can be before appearing “too blurry.”

24

Simulating depth of field

Distributing rays over a finite aperture gives:

25

In general, you can trace rays through a scene and
keep track of their id’s to handle all of these effects:

Chaining the ray id’s

26

DRT to simulate _________________

Distributing rays over time gives:

27

Summary

What to take home from this lecture:

1. The limitations of Whitted ray tracing.

2. How distribution ray tracing works and what
effects it can simulate.

