Affine transformations

Reading

Required:

+ Angel 4.6-4.10
Further reading:

+ Angel, the rest of Chapter 4

+ Foley, et al, Chapter 5.1-5.5.

+ David F. Rogers and J. Alan Adams,
Mathematical Elements for Computer
Graphics, 2™ Ed., McGraw-Hill, New York,
1990, Chapter 2.

Geometric transformations

Geometric transformations will map points in one
space to points in another: (x'y',z') = f(x,y,z).

These transformations can be very simple, such
as scaling each coordinate, or complex, such as
non-linear twists and bends.

We'll focus on transformations that can be
represented easily with matrix operations.

We'll start in 2D...

Representation

We can represent a point, p = (x,y), in the plane

+ as a column vector {X}

y

+ as arow vector

[x]

Representation, cont.

We can represent a 2-D transformation M by a

matrix
[a b}
M=
c d

If p is a column vector, M goes on the left:

Wi

If p is a row vector, mT goes on the right:
pl — pMT

x vl oy o]

We will use column vectors.

Two-dimensional
transformations

Here's all you get with a 2 x 2 transformation

T e

x'=ax+by
y'=cx+dy

So:

We will develop some intimacy with the
elements a, b, ¢, d...

Identity

Suppose we choose a=d=1, b=c=0:

+ Gives the identity matrix:

o]

+ Doesn't move the points at all

Scaling

Suppose we set b=c=0, but let a and d take on
any positive value:

+ Gives a scaling matrix:

a o0
0 d
+ Provides differential (non-uniform) scaling

in x and y: X'= ax

y'=dy

53

12 0
5 2

Suppose we keep b=c=0, but let either a or d go

negative.

Examples:

o

o

Now let's leave a=d=1 and experiment b. .

The matrix
1 b
o)
gives:
X'=Xx+by
y'=y
y y
1 1

11
01

Effect on unit square

Let's see how a general 2 x 2 transformation M

affects the unit square:

ﬁ 3:['° qr sl=[p' q r

c djjo 011

>

v Su]

ab_0110_Oaa+bb
10 ¢ c+d d

Effect on unit square, cont.

Observe:

¢ Origin invariant under M

¢ M can be determined just by knowing how
the corners (1,0) and (0,1) are mapped

+ aand d give x- and y-scaling
+ b and c give x- and y-shearing

Rotation

From our observations of the effect on the unit
square, it should be easy to write down a matrix

for “rotation about the origin:

Y y

Lo
L

Thus,

M=R6)=

Limitations of the 2 x 2 matrix

A 2 x 2 linear transformation matrix allows

+ Scaling
+ Rotation
+ Reflection
¢ Shearing

Q: What important operation does that leave out?

Homogeneous coordinates

We can loft the problem up into 3-space, adding a

third component to every point:

Adding the third “w” component puts us in
homogenous coordinates.

Then, transform with a 3 x 3 matrix:

1 1

.. . gives translation!

Affine transformations

The addition of translation to linear
transformations gives us affine transformations.

In matrix form, 2D affine transformations always
look like this:

a b t,
M=|c d t, :{OAO :}
00

2D affine transformations always have a bottom
row of [0 0 1].

An “affine point” is a “linear point” with an added
w-coordinate which is always 1:

X

p.
paff=|: :n}= y
1

Applying an affine transformation gives another
affine point:

Ap +t
Mpaff:{ ph? }

Rotation about arbitrary points

Until now, we have only considered rotation about
the origin.

With homogeneous coordinates, you can specify

a rotation, 6, about any point q = [q, qy 1]" with a
matrix:

1. Translate q to origin
2. Rotate
3. Translate back

Note: Transformation order is important!!

Basic 3-D transformations:
scaling

Some of the 3-D affine transformations are just
like the 2-D ones.

In this case, the bottom row is always [0 0 0 1].

For example, scaling:

x| s, 0 0 Ofx

y'| 10 s, 0 0|y

Z| |0 0 s 0}z

1 0O 0 0 11

!
> T

Translation in 3D

X 10 0 ¢ |x
y'| 1010 t, |y
Z| 10 01tz
1 0 00 1)1

y

A ;

e . 9

Rotation in 3D

Rotation now has more possibilities in 3D:

1 0 0
0 cosf® -sing
0 sind cosf
0 O 0
cosé
R/(6)= (.)
—siné
| O
[cos® —siné

D

sing
0

cosé
0

o O ~ O

L
§]

snd cosd Use right hand rule

RiO= "o
0 0

‘ooo\oool_\ooo

o -~ O O

How many degrees of freedom are there in an
arbitrary rotation?

How else might you specify a rotation?

Shearing in 3D

Shearing is also more complicated. Here is one
example:

Properties of affine
transformations

Here are some useful properties of affine
transformations:

x' 1 b 0 0l x + Lines map to lines
y' 010 0|y . Pgrallgl lines remalr? par.aIIeI . .
1= + Midpoints map to midpoints (in fact, ratios
z 0010z are always preserved)
1 0 0 0 11
pl
y Y q'
SK r
t
7 ay,
z 2 ratio:M:f: "plq|"
larl ¢ Ja'r]
We call this a shear with respect to the x-z plane.
Affine transformations in
Summary

OpenGL

OpenGL maintains a “modelview” matrix that holds
the current transformation M.

The modelview matrix is applied to points (usually
vertices of polygons) before drawing.

It is modified by commands including:
¢ glLoadIdentity () M«
— set M to identity

* glTranslatef(t,, t,, t,) M <« MT

— translate by (t,, t,, t,)

¢ glRotatef (6, x, vy, 2z) M <~ MR
— rotate by angle o about axis (x, y, z)

¢ glscalef(s,, s,, s,) M <« MS
— scale by (s,, s,, S,)

xr Oy

Note that OpenGL adds transformations by
postmultiplication of the modelview matrix.

What to take away from this lecture:

+ All the names in boldface.

+ How points and transformations are
represented.

+ What all the elements ofa 2 x 2
transformation matrix do and how these
generalize to 3 x 3 transformations.

+ What homogeneous coordinates are and
how they work for affine transformations.

+ How to concatenate transformations.

+ The mathematical properties of affine
transformations.

