
1

Ray Tracing

2

Reading

Required:

Watt, sections 1.3-1.4, 12.1-12.5.1 (handout)

Further reading:

T. Whitted. An improved illumination model for
shaded display. Communications of the ACM 23(6),
343-349, 1980.

A. Glassner. An Introduction to Ray Tracing.
Academic Press, 1989.

K. Turkowski, “Properties of Surface Normal
Transformations,” Graphics Gems, 1990, pp. 539-
547.

3

Geometric optics

Modern theories of light treat it as both a wave and a
particle.

We will take a combined and somewhat simpler view
of light – the view of geometric optics.

Here are the rules of geometric optics:

Light is a flow of photons with wavelengths.
We'll call these flows “light rays.”

Light rays travel in straight lines in free space.

Light rays do not interfere with each other as
they cross.

Light rays obey the laws of reflection and
refraction.

Light rays travel form the light sources to the
eye, but the physics is invariant under path
reversal (reciprocity).

4

Eye vs. light ray tracing

Where does light begin?

At the light: light ray tracing (a.k.a., forward ray
tracing or photon tracing)

At the eye: eye ray tracing (a.k.a., backward ray
tracing)

We will generally follow rays from the eye into the
scene.

5

Precursors to ray tracing

Local illumination

Cast one eye ray, then shade according to light

Appel (1968)

Cast one eye ray + one ray to light

6

Whitted ray-tracing algorithm

In 1980, Turner Whitted introduced ray tracing to the
graphics community.

Combines eye ray tracing + rays to light
Recursively traces rays

Algorithm:

1. For each pixel, trace a primary ray in direction V to the
first visible surface.

2. For each intersection, trace secondary rays:

Shadow rays in directions Li to light sources
Reflected ray in direction R.
Refracted ray or transmitted ray in direction T.

7

Whitted algorithm (cont'd)

Let's look at this in stages:

8

Shading

A ray is defined by an origin P and a unit direction d
and is parameterized by t:

P + td

Let I(P, d) be the intensity seen along that ray. Then:

I(P, d) = Idirect + Ireflected + Itransmitted

where

Idirect is computed from the Phong model

Ireflected = kr I (Q, R)

Itransmitted = ktI (Q, T)

Typically, we set kr = ks and kt = 1 – ks .

9

Reflection and transmission

Law of reflection:

θi = θr

Snell's law of refraction:

ηi sinθI = ηt sin θt

where ηi , ηt are indices of refraction.

In all cases, R and T are co-planar with d and N.

10

Total Internal Reflection

The equation for the angle of refraction can be
computed from Snell's law:

What happens when ηi > ηt?

When θt is exactly 90°, we say that θI has achieved the
“critical angle” θc .

For θI > θc , no rays are transmitted, and only reflection
occurs, a phenomenon known as “total internal
reflection” or TIR.

11

Watt handout

Watt uses different symbols. Here is the translation
between them:

Also, Watt had some important errors that I have
already corrected in the handout.

But, if you’re consulting the original text, be sure to
refer to the errata posted on the syllabus for
corrections.

φ θ
θ θ
µ η
µ η

= −
=
=
=
=

i

r

1 i

r2

I d

12

Ray-tracing pseudocode

We build a ray traced image by casting rays through
each of the pixels.

function traceImage (scene):

for each pixel (i,j) in image

S = pixelToWorld(i,j)

P = COP

d = (S - P)/|| S – P||

I(i,j) = traceRay(scene, P, d)

end for

end function

13

Ray-tracing pseudocode, cont’d

function traceRay(scene, P, d):

(t, N, mtrl) ← scene.intersect (P, d)

Q ray (P, d) evaluated at t

I = shade()

R = reflectDirection()

I ← I + mtrl.kr ∗ traceRay(scene, Q, R)

if ray is entering object then

n_i = index_of_air

n_t = mtrl.index

else

n_i = mtrl.index

n_t = index_of_air

if (notTIR ()) then

T = refractDirection ()

I ← I + mtrl.kt ∗ traceRay(scene, Q, T)

end if

return I

end function

14

Terminating recursion

Q: How do you bottom out of recursive ray tracing?

Possibilities:

15

Shading pseudocode

Next, we need to calculate the color returned by the
shade function.

function shade(mtrl, scene, Q, N, d):

I ← mtrl.ke + mtrl. ka * scene->Ia
for each light source do:

atten = -> distanceAttenuation() *

-> shadowAttenuation()

I ← I + atten*(diffuse term + spec term)

end for

return I

end function

16

Shadow attenuation

Computing a shadow can be as simple as checking to
see if a ray makes it to the light source.

For a point light source:

function PointLight::shadowAttenuation(scene, P)

d = (this.position - P).normalize()

(t, N, mtrl) ← scene.intersect(P, d)

Compute tlight
if (t < tlight) then:

atten = 0

else

atten = 1

end if

return atten

end function

17

Shadow attenuation (cont’d)

Q: What if there are transparent objects along a path to
the light source?

18

Photon mapping

Combine light ray tracing (photon tracing) and eye ray
tracing:

…to get photon mapping.

Renderings by Henrik Wann
Jensen:
http://graphics.ucsd.edu/~henrik/
images/caustics.html

19

Intersecting rays with spheres

Given:

The coordinates of a point along a ray passing
through P in the direction d are:

A unit sphere S centered at the origin defined by
the equation:

Find: The t at which the ray intersects S.

= +
= +

= +

x x

y y

z z

x P td

y P td

z P td

20

Intersecting rays with spheres

Solution by substitution:

where

Q: What are the solutions of the quadratic equation in
t and what do they mean?

Q: What is the normal to the sphere at a point (x,y,z)
on the sphere?

2 2 2

2 2 2

2

1 0

() () () 1 0

0

x x y y z z

x y z

P td P td P td

at bt c

+ + − =

+ + + + + − =

+ + =

= + +
= + +

= + + −

2 2 2

2 2 2

2()

1

x y z

x x y y z z

x y z

a d d d

b P d P d P d

c P P P

21

Ray-plane intersection

We can write the equation of a plane as:

The coefficients a, b, and c form a vector that is
normal to the plane, n = [a b c]T. Thus, we can re-
write the plane equation as:

We can solve for the intersection parameter (and thus
the point):

0ax by cz d+ + + =

22

Ray-triangle intersection

To intersect with a triangle, we first solve for the
equation of its supporting plane.

How might we compute the (un-normalized) normal?

Given this normal, how would we compute d?

Using these coefficients, we can solve for Q. Now, we
need to decide if Q is inside or outside of the triangle.

23

3D inside-outside test

One way to do this “inside-outside test,” is to see if Q
lies on the left side of each edge as we move
counterclockwise around the triangle.

How might we use cross products to do this?

24

2D inside-outside test

Without loss of generality, we can perform this same
test after projecting down a dimension:

If Q’ is inside of A’B’C’, then Q is inside of ABC.

Why is this projection desirable?

Which axis should you “project away”?

25

Barycentric coordinates

As we’ll see in a moment, it is often useful to
represent Q as an affine combination of A, B, and C:

where:

We call α, β, and γ, the barycentric coordinates of Q
with respect to A, B, and C.

Q A B Cα β γ= + +

1α β γ+ + =

26

Barycentric coordinates

Given a point Q that is inside of triangle ABC, we can
solve for Q’s barycentric coordinates in a simple way:

How can cross products help here?

In the end, these calculations can be performed in the
2D projection as well!

α β γ= = =Area() Area() Area()

Area() Area() Area()

QBC AQC ABQ

ABC ABC ABC

27

Interpolating vertex properties

The barycentric coordinates can also be used to
interpolate vertex properties such as:

material properties

texture coordinates

normals

For example:

Interpolating normals, known as Phong interpolation,
gives triangle meshes a smooth shading appearance.
(Note: don’t forget to normalize interpolated
normals.)

α β γ= + +() () () ()d d d dk Q k A k B k C

28

Epsilons

Due to finite precision arithmetic, we do not always
get the exact intersection at a surface.

Q: What kinds of problems might this cause?

Q: How might we resolve this?

29

Summary

What to take home from this lecture:

The meanings of all the boldfaced terms.

Enough to implement basic recursive ray
tracing.

How reflection and transmission directions are
computed.

How ray--object intersection tests are
performed on spheres, planes, and triangles

How barycentric coordinates within triangles
are computed

How ray epsilons are used.

