	Reading
	Hear & Baker, <i>Computer graphics (2nd edition)</i> , Chapter 2: Video Display Devices, p. 36-48, Prentice Hall
Display Devices	 Optional I.E. Sutherland. Sketchpad: a man-machine graphics communication system. <i>Proceedings of the Spring Join Computer Conference</i>, p. 329-346, 1963. T.H. Myer & I.E. Sutherland. On the design of display processors. <i>Communications of the ACM</i> 11(6): 410-414, 1968.
Light Gathering	The human retina
Cone Light Synaptic Inner Outer Photopigment ending segment Segment Rod	nasal temporal Image: Construction of the state of the

Perceptual light intensity

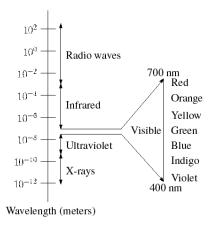
- We perceive light intensity as we do sound: on a *relative* or *logarithmic* scale.
- **Example:** The perceived difference between 0.20 and 0.22 is the same as between 0.80 and _____.
- Ideally, to display n+1 equally-spaced intensity levels

 $\frac{l_1}{l_0} = \frac{l_2}{l_1} = \dots = \frac{l_n}{l_{n-1}}$

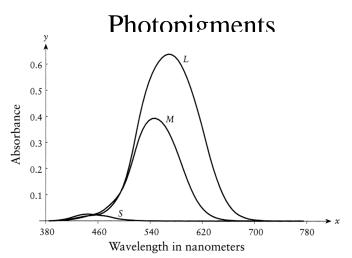
Lightness contrast

- •A related phenomenon is known as:
 - lightness contrast
 - simultaneous contrast
 - color contrast (for colors)

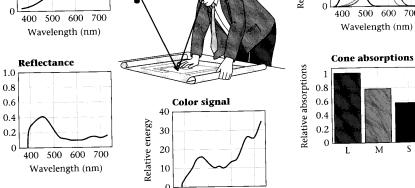
•This phenomenon helps us maintain a consistent mental image of the world, under dramatic changes in illumination.


Noise

Noise can be thought of as randomness added to the signal.The eye is relatively insensitive to noise.


Light as Waves

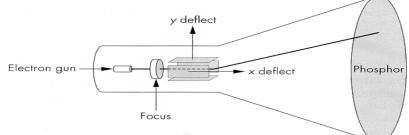
We can think of light as waves, instead of rays.Wave theory allows a nice arrangement of electromagnetic radiation (EMR) according to wavelength:


7

5

- Photopigments are the chemicals in the rods and cones that react to light. ٠ Can respond to a single photon!
- Cones come in three varieties: S, M, and L.

400 500 600 700



600

Μ

700

Cathode ray tubes (CRTs)

•Consists of:

- electron gun _
- electron focusing lens _
- deflection plates/coils
- electron beam
- anode with phosphor coating

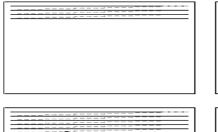
CRTs, cont.

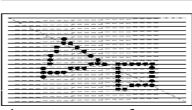
Wavelength (nm)

•Electrons "boil off" the heated cathode and shoot towards the anode. Electrons striking the phosphors create light through:

- fluorescence (fraction of usec)
- phosphorescence (10 to 60 usec) _
- •Different phosphors have different:
 - color

Relative energy

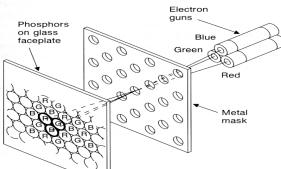

Relative energy


- persistence (as long as a few seconds)

•The image must be **refreshed** to avoid **flicker**:

- typically need at least 60 Hz (why 60 Hz?) _
- exact frequency depends on: _
 - persistence
 - image intensity
 - ambient lighting
 - wavelength
 - observer

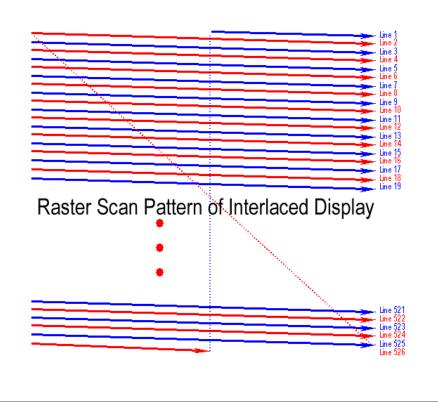
Raster displays

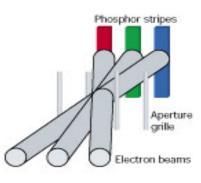


Electron beam traces over screen in raster scan order.

- Each left-to-right trace is called a scan line.
- Each spot on the screen is a **pixel**.
- When the beam is turned off to sweep back, that is a **retrace**, or a **blanking interval.**

13


Color CRT monitors


Most color monitors employ shadow mask technology:

- uses triads of red, green, and blue phosphors at each pixel
- uses three electron guns, one per color
- shadow mask used to make each kind of phosphor only "visible" from one gun

These are also known as **RGB monitors**.

Color CRT monitors, cont'd

A competing technology is called Trinitron (by Sony):

- uses vertical stripes of red, green, and blue phosphors at each pixel
- uses three electron guns, one per color
- uses an **aperture grille** to make each kind of phosphor only "visible" from one gun

CRT Drawbacks

Liquid Crystal Displays

X4

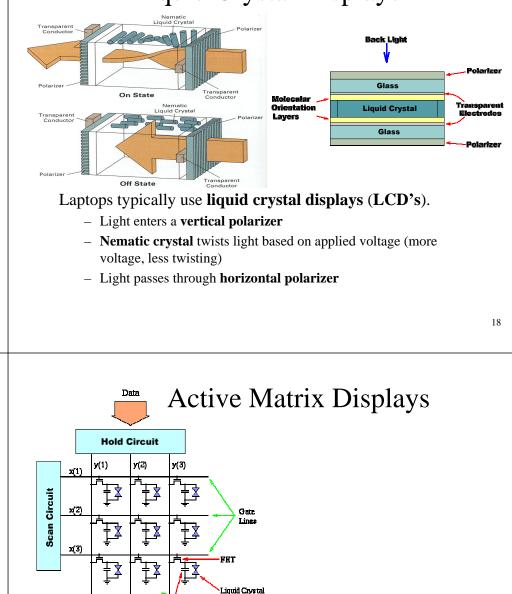
X2

X3

the voltages. Problem: slow to switch, overflows.

- Moire patterns result when shadow-mask and dot-pitch frequencies are mismatched
- Convergence (varying angles of approach distance of e-beam across CRT face)
- Limit on practical size (< 1 meter) ٠
- Spurious X-ray radiation ٠
- Occupies a large volume ٠

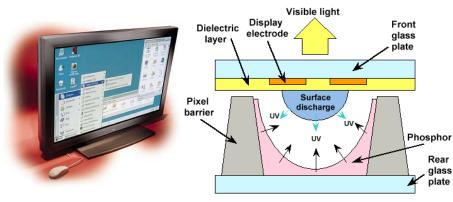
Y1


Y2

Y3

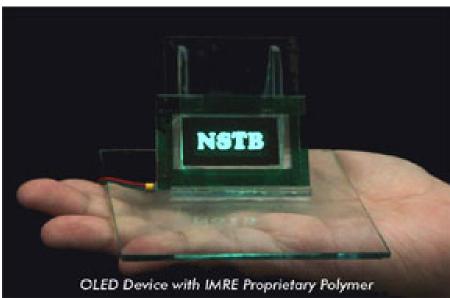
Yn

Liquid Crystal Displays

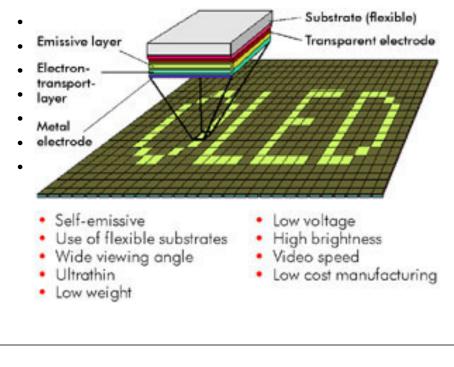

•Active matrix displays have a transistor at each cell. They use a faster switching crystal and transistors that hold charge Passive matrix displays use a matrix of electrodes to control and prevent overflow.

Drain

•Color filters are used to get color display.


Canacito

Plasma Displays



- Large format displays (pixels ~1mm compared to 0.2mm for CRT)
- Large viewing angle
- Basically fluorescent tubes

Organic LED displays

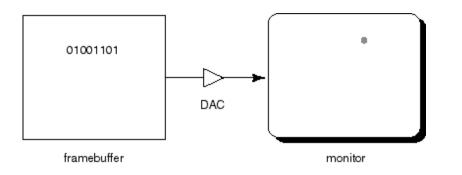
Organic LED Displays

Resolution

- The display's **resolution** is determined by:
 - number of scan lines
 - number of pixels per scan line

Film

- number of bits per pixel


Examples:	Bitmapped display	960 x 1152 x 1b	1/8 MB
	NTSC TV	640 x 480 x 16b	1/2 MB
	Color workstation	1280 x 1024 x 24b	4 MB
	Laser-printed page		
	300 dpi	8.5 x 11 x 300 ² x 1b	1 MB
	1200 dpi	8.5 x 11 x 1200 ² x 1b	17 MB

4500 x 3000 x 30b

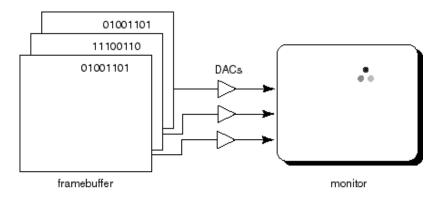
21

50 MB

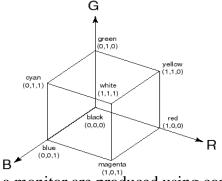
Framebuffers

Intensity of the raster scan beam is modulated according to the contents of a **framebuffer**.

Each element of the framebuffer is associated with a single **pixel** on the screen.


25

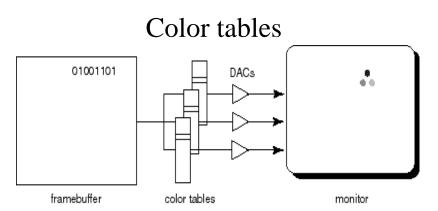
Specifying colors


•The number of color choices depends on the amount of framebuffer storage allocated per pixel.

•16 bpp systems often allocate 5 bits to red, 6 to green, and 5 to blue. Why does green get the extra bit?

RGB framebuffer

The term **true-color** is sometimes used to refer to systems which the framebuffer directly stores the values of each channel.

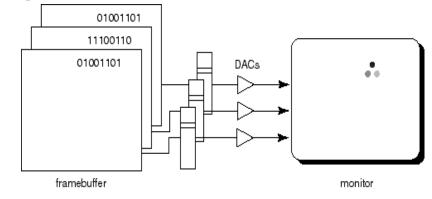


Additive color mixing

All colors on a monitor are produced using combinations of red, green, and blue.

A monitor that allows 256 voltage settings for each of R, G, and B is known as a full-color system.

The description of each color in framebuffer memory is known as a **channel**.


•Color tables allow more color versatility when you only have a few bits per pixel. You get to select a small **palette** of from a large number of available colors.

•Each framebuffer element is now an index into the color table, where the actual values of each channel are stored.

- Color table entries can be changed in software.

Color tables on 24-bit systems

Even full-color systems often use color tables. In this case, there is a separate color table for each 8 bit channel.

•Most SGI workstations are like this.

•Q: Why would you want this capability?

Double-buffering

- **Q:** What happens when you write to the framebuffer while it is being displayed on the monitor?
- **Double-buffering** provides a solution.

Summary

- Here's what you should take home from this lecture:
 - The basic components of black-and-white and color CRTs
 - Computing screen resolution & framebuffer size
 - How different display technologies work
 - The correspondence between elements of framebuffer memory and pixels on-screen
 - How color tables work
 - How double-buffering works

31

29