
10-Nov-2003 cse457-11-raytracing © 2003 University of Washington 1

Ray Tracing

CSE 457, Autumn 2003
Graphics

http://www.cs.washington.edu/education/courses/457/03au/

10-Nov-2003 cse457-11-raytracing © 2003 University of Washington 2

Readings and References

Readings
• Sections 1.3-1.4, 12.1-12.5.1, 3D Computer Graphics, Watt
• Watt Errata (link on syllabus page and Trace extensions page)

Other References
• A. Glassner. An Introduction to Ray Tracing. 1989.
• T. Whitted. An improved illumination model for shaded display.

Communications of the ACM 23(6), 343-349, 1980.
» http://portal.acm.org/citation.cfm?id=358882&dl=ACM&coll=GUIDE

• K. Turkowski, “Properties of Surface Normal Transformations,”
Graphics Gems, 1990, pp. 539-547.

10-Nov-2003 cse457-11-raytracing © 2003 University of Washington 3

Geometric optics

• Modern theories of light treat it as both a wave and a particle.
• We will take a combined and somewhat simpler view of light

» the view of geometric optics.

• Here are the rules of geometric optics:
» Light is a flow of photons with wavelengths. We'll call these flows

“light rays.”
» Light rays travel in straight lines in free space.
» Light rays do not interfere with each other as they cross.
» Light rays obey the laws of reflection and refraction.
» Light rays travel form the light sources to the eye, but the physics is

invariant under path reversal (reciprocity).

10-Nov-2003 cse457-11-raytracing © 2003 University of Washington 4

Eye vs. light ray tracing
Where does a light ray begin its journey of interest?

At the light: light ray tracing
(a.k.a., forward ray tracing
or photon tracing)

At the eye: eye ray tracing
(a.k.a., backward ray tracing)

We will generally follow rays
from the eye into the scene.

10-Nov-2003 cse457-11-raytracing © 2003 University of Washington 5

Precursors to ray tracing

Cast one eye ray + one ray to light

Appel (1968)

Cast one eye ray, then
shade according to light

Local illumination

10-Nov-2003 cse457-11-raytracing © 2003 University of Washington 6

Whitted ray-tracing algorithm
In 1980, Turner Whitted introduced ray tracing to the
graphics community.

» Combines eye ray tracing + rays to light
» Recursively traces rays

Algorithm:
For each pixel, trace a primary ray in direction V to the first
visible surface.
For each intersection, trace secondary rays:

» Shadow rays in directions Li to light sources
» Reflected ray in direction R.
» Refracted ray or transmitted ray in direction T.

V

T
T

R

R

L

L

T

R
L

T

10-Nov-2003 cse457-11-raytracing © 2003 University of Washington 7

All the Rays

Primary rays Shadow rays

Reflection rays Refracted rays

L

L

L

L

R

R

R

L
L

L

V

V

V

V
V

T
T

R

R

L

L

T

R

P.P.

V

V

L

T

10-Nov-2003 cse457-11-raytracing © 2003 University of Washington 8

Shading
• A ray is defined by an origin p and a unit direction d and is

parameterized by t: P + td
• Let I(P, d) be the intensity seen along that ray. Then:

I(P, d) = Idirect + Ireflected + Itransmitted
where
» Idirect is computed from the Phong model using L
» Ireflected = kr I (Q, R)
» Itransmitted = ktI (Q, T)

L

R
T

d

Q

P

10-Nov-2003 cse457-11-raytracing © 2003 University of Washington 9

Reflection and transmission

• Law of reflection:
» θi = θr

• Snell's law of refraction:
» ηi sinθi = ηt sin θt

» where ηi , ηt are indices of refraction.

-d

Q

10-Nov-2003 cse457-11-raytracing © 2003 University of Washington 10

Total Internal Reflection
The equation for the angle of refraction can be computed from
Snell's law:

What happens when ηi > ηt?

When θt is exactly 90°, we say that θi has
achieved the “critical angle” θc .

For θI > θc , no rays are transmitted, and only reflection occurs, a phenomenon
known as “total internal reflection” or TIR.

θt

θi

Refraction

material index
Vacuum 1
Air 1.0003
Water 1.33
Ethyl Alcohol 1.36
Fused Quartz 1.4585
Whale Oil 1.46
Crown Glass 1.52
Salt 1.54
Asphalt 1.635
Heavy Flint Glass 1.65
Diamond 2.42
Lead 2.6

Values come from the CRC
Handbook of Chemistry and Physics

10-Nov-2003 cse457-11-raytracing © 2003 University of Washington 12

Error in Watt!
• In order to compute the refracted direction, it is useful to compute

the cosine of the angle of refraction in terms of the incident angle
and the ratio of the indices of refraction.

• On page 24 of Watt, he develops a formula for computing this
cosine. Notationally, he uses µ instead of η for the index of
refraction in the text, but uses η in Figure 1.16, and the angle of
incidence is φand the angle of refraction is θ.

• Unfortunately, he makes an error in computing cosθ.
• The last equation on page 24 should read:

• See the errata for corrections that you can write into your books.

2 2cos 1 (1 cos)θ µ φ= − −

10-Nov-2003 cse457-11-raytracing © 2003 University of Washington 13

Ray-tracing pseudocode

We build a ray traced image by casting rays through each of the
pixels.

function traceImage (scene):
for each pixel (i,j) in image

S = pixelToWorld(i,j)
P = COP
d = (S - P)/|| S – P||
I(i,j) = traceRay(scene, P, d)

end for
end function

10-Nov-2003 cse457-11-raytracing © 2003 University of Washington 14

Ray-tracing pseudocode, traceRay
function traceRay(scene, P, d):

(t, N, mtrl) ← scene.intersect (P, d)
Q � ray (P, d) evaluated at t
I = shade()
R = reflectDirection()
I ← I + mtrl.kr ∗ traceRay(scene, Q, R)
if ray is entering object then

n_i = index_of_air
n_t = mtrl.index

else
n_i = mtrl.index
n_t = index_of_air

if (notTIR ()) then
T = refractDirection ()
I ← I + mtrl.kt ∗ traceRay(scene, Q, T)

end if
return I

end function

10-Nov-2003 cse457-11-raytracing © 2003 University of Washington 15

Terminating recursion
• Q: How do you bottom out of recursive ray tracing?

• Possibilities:

10-Nov-2003 cse457-11-raytracing © 2003 University of Washington 16

Shading pseudocode
Next, we need to calculate the color returned by the
shade function.

function shade(mtrl, scene, Q, N, d):
I ← mtrl.ke + mtrl. ka * scene->Ia
for each light source λ do:

atten = λ -> distanceAttenuation() *
λ -> shadowAttenuation()

I ← I + atten*(diffuse term + spec term)
end for
return I

end function

10-Nov-2003 cse457-11-raytracing © 2003 University of Washington 17

Shadow attenuation
Computing a shadow can be as simple as checking to see if a ray
makes it to the light source. For a point light source:

function PointLight::shadowAttenuation(scene, P)
d = (this.position - P).normalize()
(t, N, mtrl) ← scene.intersect(P, d)
Q ← ray(t)

if Q is before the light source then:
atten = 0

else
atten = 1

end if
return atten

end function

Q: What if there are transparent objects along path to the light source?
10-Nov-2003 cse457-11-raytracing © 2003 University of Washington 18

Intersecting rays with spheres
Given:

» The coordinates of a point along a ray passing through
P in the direction d are:

» A unit sphere S centered at the origin defined by the
equation:

Find: The t at which the ray intersects S.

= +
= +
= +

x x

y y

z z

x P td
y P td
z P td

d
P

x

y

z

Q

10-Nov-2003 cse457-11-raytracing © 2003 University of Washington 19

Intersecting rays with spheres
Solution by substitution:

where

Q: What are the solutions of the quadratic equation in t and what do
they mean?

Q: What is the normal to the sphere at a point (x,y,z) on the sphere?

2 2 2

2 2 2

2

1 0
() () () 1 0

0
x x y y z z

x y z
P td P td P td

at bt c

+ + − =

+ + + + + − =

+ + == + +

= + +

= + + −

2 2 2

2 2 2

2()

1

x y z

x x y y z z

x y z

a d d d
b Pd Pd Pd

c P P P

10-Nov-2003 cse457-11-raytracing © 2003 University of Washington 20

P d

Q

Ray-plane intersection

• We can write the equation of a plane as:

• The coefficients a, b, and c form a vector that is normal to
the plane, n = [a b c]T. Thus, we can re-write the plane
equation as:

• We can solve for the intersection parameter (and thus the
point):

0ax by cz d+ + + =

10-Nov-2003 cse457-11-raytracing © 2003 University of Washington 21

d
A

B

C

P
Q

Ray-triangle intersection
• To intersect with a triangle, we first solve for

the equation of its supporting plane.
• How might we compute the (un-normalized)

normal?

• Given this normal, how would we compute d?

• Using these coefficients, we can solve for Q. Now, we need to
decide if Q is inside or outside of the triangle.

10-Nov-2003 cse457-11-raytracing © 2003 University of Washington 22

3D inside-outside test
• One way to do this “inside-outside test,” is to see if Q lies

on the left side of each edge as we move counterclockwise
around the triangle.

• How might we use cross products to do this?

A

B

C

Q

10-Nov-2003 cse457-11-raytracing © 2003 University of Washington 23

A

B

C

A'

B'

C'

Q

Q'

2D inside-outside test
Without loss of generality, we can perform this same test after
projecting down a dimension:

If Q’ is inside of A’B’C’, then Q is inside of
ABC.

Why is this projection desirable?

Which axis should you “project away”?

How do you easily select that axis?

10-Nov-2003 cse457-11-raytracing © 2003 University of Washington 24

Barycentric coordinates
• It is often useful to represent Q as an affine combination

of A, B, and C:

• where:

• We call α, β, and γ, the barycentric coordinates of Q with
respect to A, B, and C.

A

B

C

Q

Q A B Cα β γ= + +

1α β γ+ + =

10-Nov-2003 cse457-11-raytracing © 2003 University of Washington 25

Barycentric coordinates
• Given a point Q that is inside of triangle ABC, we can solve for

Q’s barycentric coordinates in a simple way:

• How can cross products help here?

• In the end, these calculations can be performed in the 2D
projection as well!

A

B

C

Q

)(
)(,

)(
)(,

)(
)(

ABCArea
ABQArea

ABCArea
AQCArea

ABCArea
QBCArea === γβα

10-Nov-2003 cse457-11-raytracing © 2003 University of Washington 26

Interpolating vertex properties
• The barycentric coordinates can also be used to interpolate

vertex properties such as:
» material properties
» texture coordinates
» normals

• For example:

• Interpolating normals, known as Phong interpolation, gives
triangle meshes a smooth shading appearance.

α β γ= + +() () () ()d d d dk Q k A k B k C

10-Nov-2003 cse457-11-raytracing © 2003 University of Washington 27

Epsilons
• Due to finite precision arithmetic, we do not always get the

exact intersection at a surface.
• Q: What kinds of problems might this cause?

• Q: How might we resolve this?

10-Nov-2003 cse457-11-raytracing © 2003 University of Washington 28

Intersecting with xformed geometry
• In many cases, objects such as spheres, cylinders,

and boxes will be placed using transformations.
What if the object being intersected were
transformed by a matrix M?

• Apply M-1 to the ray first and intersect in object
(local) coordinates

10-Nov-2003 cse457-11-raytracing © 2003 University of Washington 29

Intersecting with xformed geometry
• The intersected normal is in object (local)

coordinates. How do we transform it to world
coordinates?

10-Nov-2003 cse457-11-raytracing © 2003 University of Washington 30

Summary
• What to take home from this lecture:

» The meanings of all the boldfaced terms.
» Enough to implement basic recursive ray tracing.
» How reflection and transmission directions are

computed.
» How ray--object intersection tests are performed on

spheres, planes, and triangles
» How barycentric coordinates within triangles are

computed
» How ray epsilons are used.
» How intersections with transformed geometry are done

