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Ray Tracing

CSE 457, Autumn 2003
Graphics

http://www.cs.washington.edu/education/courses/457/03au/
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Readings and References

Readings
• Sections 1.3-1.4, 12.1-12.5.1, 3D Computer Graphics, Watt
• Watt Errata (link on syllabus page and Trace extensions page)

Other References
• A. Glassner.  An Introduction to Ray Tracing. 1989. 
• T. Whitted. An improved illumination model for shaded display. 

Communications of the ACM 23(6), 343-349, 1980.
» http://portal.acm.org/citation.cfm?id=358882&dl=ACM&coll=GUIDE

• K. Turkowski, “Properties of Surface Normal Transformations,” 
Graphics Gems, 1990, pp. 539-547. 
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Geometric optics

• Modern theories of light treat it as both a wave and a particle.
• We will take a combined and somewhat simpler view of light

» the view of geometric optics.

• Here are the rules of geometric optics:
» Light is a flow of photons with wavelengths.  We'll call these flows 

“light rays.”
» Light rays travel in straight lines in free space.
» Light rays do not interfere with each other as they cross.
» Light rays obey the laws of reflection and refraction.
» Light rays travel form the light sources to the eye, but the physics is 

invariant under path reversal (reciprocity).
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Eye vs. light ray tracing
Where does a light ray begin its journey of interest?

At the light: light ray tracing 
(a.k.a., forward ray tracing 
or photon tracing)

At the eye: eye ray tracing 
(a.k.a., backward ray tracing)

We will generally follow rays 
from the eye into the scene.
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Precursors to ray tracing

Cast one eye ray + one ray to light

Appel (1968)

Cast one eye ray, then 
shade according to light

Local illumination
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Whitted ray-tracing algorithm
In 1980, Turner Whitted introduced ray tracing to the 
graphics community.

» Combines eye ray tracing + rays to light
» Recursively traces rays

Algorithm:
For each pixel, trace a primary ray in direction V to the first 
visible surface.
For each intersection, trace secondary rays:

» Shadow rays in directions Li to light sources
» Reflected ray in direction R.
» Refracted ray or transmitted ray in direction T.
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All the Rays
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Shading
• A ray is defined by an origin p and a unit direction d and is 

parameterized by t: P + td
• Let  I(P, d) be the intensity seen along that ray.  Then:

I(P, d) = Idirect + Ireflected + Itransmitted
where
» Idirect is computed from the Phong model using L
» Ireflected = kr I (Q, R) 
» Itransmitted = ktI (Q, T) 
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Reflection and transmission

• Law of reflection:
» θi =  θr

• Snell's law of refraction:
» ηi sinθi  = ηt sin θt

» where ηi , ηt are indices of refraction.

-d

Q
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Total Internal Reflection
The equation for the angle of refraction can be computed from 
Snell's law:

What happens when ηi > ηt?

When θt is exactly 90°, we say that θi has 
achieved the “critical angle” θc .

For θI > θc , no rays are transmitted, and only reflection occurs, a phenomenon 
known as “total internal reflection” or TIR.

θt

θi

Refraction

material index
Vacuum 1
Air 1.0003
Water 1.33
Ethyl Alcohol 1.36
Fused Quartz 1.4585
Whale Oil 1.46
Crown Glass 1.52
Salt 1.54
Asphalt 1.635
Heavy Flint Glass 1.65
Diamond 2.42
Lead 2.6

Values come from the CRC 
Handbook of Chemistry and Physics
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Error in Watt!
• In order to compute the refracted direction, it is useful to compute 

the cosine of the angle of refraction in terms of the incident angle 
and the ratio of the indices of refraction.  

• On page 24 of Watt, he develops a formula for computing this 
cosine.  Notationally, he uses µ instead of η for the index of 
refraction in the text, but uses η in Figure 1.16, and the angle of 
incidence is φand the angle of refraction is θ.

• Unfortunately, he makes an error in computing cosθ.
• The last equation on page 24 should read:

• See the errata for corrections that you can write into your books.

2 2cos 1 (1 cos )θ µ φ= − −
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Ray-tracing pseudocode

We build a ray traced image by casting rays through each of the 
pixels.

function traceImage (scene):
for each pixel (i,j) in image

S = pixelToWorld(i,j)
P = COP
d = (S - P)/|| S – P||
I(i,j) = traceRay(scene, P, d)

end for
end function
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Ray-tracing pseudocode, traceRay
function traceRay(scene, P, d):

(t, N, mtrl)  ← scene.intersect (P, d)
Q � ray (P, d) evaluated at t
I = shade( )
R = reflectDirection(               )
I ← I + mtrl.kr ∗ traceRay(scene, Q, R)
if ray is entering object then

n_i = index_of_air
n_t = mtrl.index

else
n_i = mtrl.index
n_t = index_of_air

if (notTIR ( )) then
T = refractDirection (                                      )
I ← I + mtrl.kt ∗ traceRay(scene, Q, T)

end if
return I

end function
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Terminating recursion
• Q: How do you bottom out of recursive ray tracing?

• Possibilities:
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Shading pseudocode
Next, we need to calculate the color returned by the 
shade function.

function shade(mtrl, scene, Q, N, d):
I ← mtrl.ke + mtrl. ka * scene->Ia
for each light source λ do:

atten = λ -> distanceAttenuation( ) *
λ -> shadowAttenuation( )

I ← I + atten*(diffuse term + spec term)
end for
return I

end function
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Shadow attenuation
Computing a shadow can be as simple as checking to see if a ray 
makes it to the light source.  For a point light source:

function PointLight::shadowAttenuation(scene, P)
d = (this.position - P).normalize()
(t, N, mtrl) ← scene.intersect(P, d)
Q ← ray(t)

if Q is before the light source then:
atten = 0

else
atten = 1

end if
return atten

end function

Q: What if there are transparent objects along path to the light source?
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Intersecting rays with spheres
Given:

» The coordinates of a point along a ray passing through 
P in the direction d are:

» A unit sphere S centered at the origin defined by the 
equation:

Find: The t at which the ray intersects S.
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Intersecting rays with spheres
Solution by substitution:

where

Q: What are the solutions of the quadratic equation in t and what do 
they mean?

Q: What is the normal to the sphere at a point (x,y,z) on the sphere?
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P d

Q

Ray-plane intersection

• We can write the equation of a plane as:

• The coefficients a, b, and c form a vector that is normal to 
the plane, n = [a b c]T.  Thus, we can re-write the plane 
equation as:

• We can solve for the intersection parameter (and thus the 
point):

0ax by cz d+ + + =
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Ray-triangle intersection
• To intersect with a triangle, we first solve for 

the equation of its supporting plane.
• How might we compute the (un-normalized) 

normal?

• Given this normal, how would we compute d?

• Using these coefficients, we can solve for Q.  Now, we need to 
decide if Q is inside or outside of the triangle.
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3D inside-outside test
• One way to do this “inside-outside test,” is to see if Q lies 

on the left side of each edge as we move counterclockwise 
around the triangle.

• How might we use cross products to do this?

A

B

C

Q
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2D inside-outside test
Without loss of generality, we can perform this same test after 
projecting down a dimension:

If Q’ is inside of A’B’C’, then Q is inside of 
ABC.

Why is this projection desirable?  

Which axis should you “project away”?

How do you easily select that axis?
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Barycentric coordinates
• It is often useful to represent Q as an affine combination

of A, B, and C:

• where:

• We call α, β, and γ, the barycentric coordinates of Q with 
respect to A, B, and C.

A

B

C

Q

Q A B Cα β γ= + +

1α β γ+ + =
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Barycentric coordinates
• Given a point Q that is inside of triangle ABC, we can solve for 

Q’s barycentric coordinates in a simple way:

• How can cross products help here?

• In the end, these calculations can be performed in the 2D 
projection as well!
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Interpolating vertex properties
• The barycentric coordinates can also be used to interpolate 

vertex properties such as:
» material properties
» texture coordinates
» normals

• For example:

• Interpolating normals, known as Phong interpolation, gives 
triangle meshes a smooth shading appearance.

α β γ= + +( ) ( ) ( ) ( )d d d dk Q k A k B k C
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Epsilons
• Due to finite precision arithmetic, we do not always get the 

exact intersection at a surface.
• Q: What kinds of problems might this cause?

• Q: How might we resolve this?
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Intersecting with xformed geometry
• In many cases, objects such as spheres, cylinders, 

and boxes will be placed using transformations.   
What if the object being intersected were 
transformed by a matrix M?

• Apply M-1 to the ray first and intersect in object 
(local) coordinates
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Intersecting with xformed geometry
• The intersected normal is in object (local) 

coordinates.  How do we transform it to world 
coordinates? 
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Summary
• What to take home from this lecture:

» The meanings of all the boldfaced terms.
» Enough to implement basic recursive ray tracing.
» How reflection and transmission directions are 

computed.
» How ray--object intersection tests are performed on 

spheres, planes, and triangles
» How barycentric coordinates within triangles are 

computed
» How ray epsilons are used.
» How intersections with transformed geometry are done


