Shading

CSE 457, Autumn 2003
Graphics

http://www.cs.washington.edu/education/courses/457/03au/

3-Nov-2003 cse457-10-shading © 2003 University of Washington

Readings and References

Readings
» Sections 6.2-6.3, 3D Computer Graphics, Watt

Other References
* OpenGL red book, chapter 5.
» Chapter 7, 3D Computer Graphics, Watt

3-Nov-2003 cse457-10-shading © 2003 University of Washington

Introduction

 So far, we’ve talked exclusively about geometry.
» What is the shape of an object?
» How do I place it in a virtual 3D space?
» How do I know which pixels it covers?
» How do I know which of the pixels | should actually draw?
» Once we’ve answered all those, we have to ask one more
important question:
» To what value do | set each pixel?
» Answering this question is the job of the shading model.
» Of course, people also call it a lighting model, a light
reflection model, a local illumination model, a reflectance
model, etc., etc.

3-Nov-2003 cse457-10-shading © 2003 University of Washington

An abundance of photons

 Properly determining the right color is really hard.

» Look around the room. Each light source has different
characteristics. Trillions of photons are pouring out every
second.

* These photons can:
» interact with the atmosphere, or with things in the atmosphere
» strike a surface and
e be absorbed
e be reflected
« cause fluorescence or phosphorescence.
» interact in a wavelength-dependent manner
» generally bounce around and around

3-Nov-2003 cse457-10-shading © 2003 University of Washington

Our problem

We’re going to build up to an approximation of reality called the

Phong illumination model.

» understand reality — approximate it — better understand reality in order to
understand the differences — refine the approximation — ...

The Phong illumination model has the following characteristics:

» not a model of the actual physics of light transport and reflection

» gives a first-order approximation to physical light reflection

» very fast

» widely used

In addition, we will assume local illumination, i.e., light goes:
light source -> surface -> viewer.

No interreflections, no shadows.

3-Nov-2003 cse457-10-shading © 2003 University of Washington 5

Setup...

* Given:
» apoint P on a surface visible through pixel p
» The normal N at P
» The lighting direction, L, and intensity, I, ,at P
» The viewing direction, V, at P
» The shading coefficients at P

» Compute the color, I, of pixel p.

* Assume that the direction vectors are normalized:

INJ=[]=v]=1

3-Nov-2003 cse457-10-shading © 2003 University of Washington

Iteration zero

» The simplest thing you can do is...
» Assign each polygon a single color:
=k,
» where
» | is the resulting intensity

» Kg is the emissivity or intrinsic shade associated with the object
» this is the color regardless of available light, but it is not a light itself

» This has some special-purpose uses, but not really good for
drawing a scene.

* [Note: kg is omitted in Watt.]

3-Nov-2003 cse457-10-shading © 2003 University of Washington 7

Iteration one

» Let’s make the color at least dependent on the overall quantity
of light available in the scene:

I=k, +k,

» Kk, is the ambient reflection coefficient.

« really the reflectance of ambient light

« “ambient” light is assumed to be equal in all directions
» I, is the ambient intensity.

* Inthe real world, what is “ambient” light?

3-Nov-2003 cse457-10-shading © 2003 University of Washington

Wavelength dependence?

* Really, k,, k,, and I, are functions over all wavelengths, A, of
light ... but we are crazed approximators ...

* Ideally, we would do the calculation on these functions. For
example, our equation so far could be written as:

1(A)=k.(A)+k,(A)1,(2)

then we would find good RGB values to represent the spectrum I(A).

« Traditionally, though, k. k, and |, are represented as RGB
triples, and the computation is performed on each color

channel separately:

IR = ka,R Ia,R
ls =Kag lag

IB = ka,B Ia,B

3-Nov-2003 cse457-10-shading © 2003 University of Washington 9

Diffuse reflection

» Let’s examine the ambient shading model:
» objects have different colors
» we can control the overall light intensity
« what happens when we turn off the lights?
« what happens as the light intensity increases?
« what happens if we change the color of the lights?
 So far, objects are uniformly lit.
» not the way things really appear
» in reality, light sources are directional

« Diffuse, or Lambertian reflection will allow reflected
intensity to vary with the direction of the light.

3-Nov-2003 cse457-10-shading © 2003 University of Washington 10

Diffuse reflectors

« Diffuse reflection occurs from dull, matte surfaces, like latex
paint, or chalk.

» These diffuse or Lambertian reflectors reradiate light equally
in all directions.

* Picture a rough surface with lots of tiny microfacets.

3-Nov-2003 cse457-10-shading © 2003 University of Washington 11

Diffuse reflectors

...or picture a surface with little pigment particles embedded
beneath the surface (neglect reflection at the surface for the
moment):

The microfacets and pigments
distribute light rays in all
directions. NN <\]
. D\K o a5
Embedded pigments are
(574 Y

responsible for the coloration of
diffusely reflected light in
plastics and paints.

Note: these figures are intuitive, but not strictly (physically) correct and we are
not trying to build a physics model of what is happening on surfaces like these.

3-Nov-2003 cse457-10-shading © 2003 University of Washington 12

Diffuse reflectors, cont.

» The reflected intensity from a diffuse surface does not depend
on the direction of the viewer. The amount of available light,
though, does depend on the direction of the light source:

I
O L
N
~ N
0
e] A, = -
A A %
A, = Acos8
AP
—> =cosf
A
N [L =cos8
so N [L gives a scaling value for diffuse reflected light intensity
3-Nov-2003 cse457-10-shading © 2003 University of Washington 13

Iteration two

» The incoming energy is proportional to , giving the
diffuse reflection equations:

Izke+ka|a+kdll()
:ke+ka|a+kdll()

* where:
» kg is the diffuse reflection coefficient
» 1, is the diffuse intensity of the light source
» N is the normal to the surface (unit vector)
» L is the direction to the light source (unit vector)
» (x), means max {0,x}

[Note: Watt uses I instead of |, .]

3-Nov-2003 cse457-10-shading © 2003 University of Washington 14

Specular reflection

» Specular reflection accounts for the highlight that you see on
some objects.

* Itis particularly important for smooth, shiny surfaces, such as:
» metal
» polished stone
» plastics
» apples
» skin
* Properties:
» Specular reflection depends on the viewing direction V.
» For non-metals, the color is determined solely by the color of the light.
» For metals, the color may be altered (e.g., brass)

Specular reflection “derivation”

3-Nov-2003 cse457-10-shading © 2003 University of Washington 15

 For a perfect mirror reflector, light is reflected about N, so
={|[if V=R
0 otherwise
 For a near-perfect reflector, you might expect the highlight to
fall off quickly with increasing angle .
» Also known as:

» *“rough specular” reflection, “directional diffuse” reflection,
“glossy” reflection

3-Nov-2003 cse457-10-shading © 2003 University of Washington 16

Derivation, cont.

cos’’s @

||
[
n/s=1ge

o @

» One way to get this effect is to take (R-V), raised to a power
N,.
» Asn, gets larger,
» the dropoff becomes {more,less} gradual
» gives a {larger,smaller} highlight
» simulates a {more,less} mirror-like surface

3-Nov-2003 cse457-10-shading © 2003 University of Washington 17

Iteration three

* The next update to the Phong shading model is then:
I = ke +ka|a +kd|I(N |:I]‘)+ +ksll(v ER):]-S

» where:
» Kk is the specular reflection coefficient
» g is the specular exponent or shininess
» R is the reflection of the light about the normal (unit vector)
» 'V is viewing direction (unit vector)

» [Note: Watt uses n instead of n,.]

3-Nov-2003 cse457-10-shading © 2003 University of Washington 18

Intensity drop-off with distance

» OpenGL supports different kinds of lights: point, directional,
and spot.

* For point light sources, the laws of physics state that the
intensity of a point light source drops off inversely with the
square of the distance.

» We can incorporate this effect by multiplying I, by 1/d2.

» Sometimes, this distance-squared dropoff is considered too
“harsh.” A common alternative is:

1
faten D= v cd?

 with user-supplied constants for a, b, and c.
» [Note: not discussed in Watt.]

Iteration four

3-Nov-2003 cse457-10-shading © 2003 University of Washington 19

« Since light is additive, we can handle multiple lights by taking
the sum over every light.

» Our equation is now a version of the Phong illumination model:
I =k, +k, I, + > f (dj)lu'[kd (N DL;)+ +ks(V [RJ)T]
i
Which quantities are spatial vectors?
Which are RGB triples?

Which are scalars?

3-Nov-2003 cse457-10-shading © 2003 University of Washington 20

Choosing the parameters

» Experiment with different parameter settings. To get you

started, here are a few suggestions:
» Try ngin the range [0,128]
» Tryk, +ky+ks<1
» Use asmall k, (~0.1)

Materials in OpenGL

» The OpenGL code to specify the surface shading properties is

fairly straightforward.

GLfl oat ke[]
GLfloat ka[]
GLfloat kd[]
GLfl oat ks[]
GLfl oat ns[]

{01
{ 0.1,
{ 0.3,
{02
{ 50.

gl Mat eri al f v(GL_FRONT,

For example:

0.15, 0.05, 1.0 };
0.15, 0.1, 1.0 };
0.3, 0.2, 1.0 };
0.2, 0.2, 1.0 };
01}

GL_EM SSI ON, ke);

n k k gl Material fv(G._FRONT, GL_AMBIENT, ka);
s d s gl Material fv(GL_FRONT, GL_DI FFUSE, kd):
Polished metal |1 Small, color of | Large, color of gl Materi al fv(GL_FRONT, GL_SPECULAR, ks);
olisned metal | large metal metal gl Material fv(GL_FRONT, GL_SHI NI NESS, ns);
Plasti di Medium, color Medi hit o _
astic medium of plastic edium, white The @_FRONT parameter tells OpenGL that we are specifying the materials for the
_ front of the surface.
Planet 0 varying 0 Only the alpha value of the diffuse color is used for blending. It’s usually set to 1.
3-Nov-2003 cse457-10-shading © 2003 University of Washington 21 3-Nov-2003 cse457-10-shading © 2003 University of Washington 22
— nS
I = ke +ka|a +Z f (dj)[kallaj +kd IIdj(N DL]) +kSI|SJ()+]
i

Shading in OpenGL

» The OpenGL lighting model allows you to associate different
lighting intensities according to material properties they will
influence.

» Thus, our original shading equation:
| =k, +k,| +Zf @ kN,) +k. b R)]

e becomes:

I +kdl,dj(N 0,) +ks'|s16/ DRJ')ZS]

=k, +k,1,+ > f(d, k!
i

3-Nov-2003 cse457-10-shading © 2003 University of Washington 23

In OpenGL this equation is specified something like:

Gfloat la[] ={ 0.2,
G.float |a0[{
G.float |dO[{
G.float Is0[{

I =A 1
{ 1.
{ 0.
{ 0.

o
RO
Sor-

G.fl oat posO
G.float a[]
G.float b[]
G.float c[]

I\JU’IO

5

gl Li ght Model fv(G__LI
gl Li ght f v(GL_LI GHTO,
gl Li ght f v(GL_LI GHTO,
gl Li ght f v(GL_LI GHTO,
gl Li ght f v(GL_LI GHTO,
gl Li ght f v(GL_LI GHTO,
gl Li ght f v(GL_LI GHTO,
gl Li ght f v(GL_LI GHTO,

0.2, 0.2, 10}

PRO:
Loer-
PR O
ocor-
i
ocoo
———

0. 1.0, 1.0, 00}
b
b
b

GHT_MODEL_ANBI ENT, la);
GL_AMBI ENT, 1a0);

GL_DI FFUSE, 1d0);
GL_SPECULAR, 150);

GL_PCSI TION, pos0);
GL_CONSTANT_ATTENUATI ON, a);
GL_LI NEAR_ATTENUATI ON, b);
GL_QUADRATI C_ATTENUATI ON, c);

You can have as many as GL_MAX_LIGHTS lights in a scene. This number is

system-dependent.

3-Nov-2003

cse457-10-shading © 2003 University of Washington 24

lighting.exe

BRDF

* The Phong illumination model is really a function that maps
light from incoming (light) directions «,, to outgoing (viewing)

directions @, f(w,, @)
in? ~0u

 This function is called the Bi-directional Reflectance
Distribution Function (BRDF).
 Here’s a plot with a, held constant:
" fo (@)

Wi z

» BRDF’s can be quite sophisticated...

3-Nov-2003 cse457-10-shading © 2003 University of Washington 26

Cook-Torrance-Sparrow model

One of the more common “sophisticated” BRDF’s is the Cook-
Torrance-Sparrow model. It treats the surface as a set of
mirrored facets with random orientations and decides whether or
not light reflects from a given direction directly to the viewer.

The amount of light reflected from
a facet is determined by the
Fresnel coefficient, which depends
in general on wavelength.

Cook and Torrance, 1982

3-Nov-2003 cse457-10-shading © 2003 University of Washington 27

I8 g o P T rm e msk

Py HA AT Compudi of Prodg Brd TS - SRV & SeTalREED Terdea foe' kT
8 e 2l incidence. By J. B [BUNT 7| cosriary of e Liniversiey of Lsh |

1 Prong rode Fomamn Spmri ey

Fig. 1644 Tomgarson of Fhong snd Tomenos-Sgences fumastiar mocel o kg
o8 MF saghs of incideace. [By J. OEmn [BLIN7Ta] cosrisey ol e Unkereiny of Lingh |

From Foley, van Dam

Anisotropic reflection

Weird BRDF: the moon

Westin, Arvo, Torrance 1992 Poulin and Fournier 1990

3-Nov-2003 cse457-10-shading © 2003 University of Washington 29

3-Nov-2003 cse457-10-shading © 2003 University of Washington 30

Gouraud vs. Phong interpolation

Faceted shading

» Now we know how to compute the color at a point on a
surface using the Phong lighting model.
» Does graphics hardware do this calculation at every point?
Typically not...
» Smooth surfaces are often approximated by polygonal facets,
because:
» Graphics hardware generally wants polygons (esp. triangles).
» Sometimes it easier to write ray-surface intersection algorithms for
polygonal models.
* How do we compute the shading for such a surface?

3-Nov-2003 cse457-10-shading © 2003 University of Washington 31

* Assume each face has a constant normal:

» For a distant viewer and a distant light source, how will the
color of each triangle vary?

* Result: faceted, not smooth, appearance.

3-Nov-2003 cse457-10-shading © 2003 University of Washington 32

Gouraud interpolation

Gouraud interpolation, cont'd

To get a smoother result that is easily performed in hardware, we
can do Gouraud interpolation.

Here’s how it works:

N,

N,,.:f ’
N,
Shad
!
Ibq
Iy

1.

» Compute normals at the vertices.

» Shade only at the vertices.

* Interpolate the resulting vertex
colors to shade the polygon.

Interpolate

1,

I
\
!

» Gouraud interpolation has significant limitations.

» If the polygonal approximation is too coarse, we can miss specular
highlights. N

L N

We will encounter Mach banding (derivative discontinuity enhanced by
human eye).

+ Alas, this is usually what graphics hardware supports.
+ Maybe someday soon we’ll get...

3-Nov-2003 cse457-10-shading © 2003 University of Washington 33 3-Nov-2003 cse457-10-shading © 2003 University of Washington 34
i i i
Phong interpolation e — -
Ha=p s
» To get an even smoother result with fewer artifacts,
we can perform Phong interpolation. P
« Here’s how it works: A S
4/ N, Tl L
l I' b |
» Compute normals at the Interpolate e
vertices. i N
* Interpolate normals and % P
normalize. | il
 Shade using interpolated Shfde
normals at each point. Q

3-Nov-2003 cse457-10-shading © 2003 University of Washington 35

Summary

» The most important thing to take away from this
lecture is the final equation for the Phong model.
» What is the physical meaning of each variable?
» How are the terms computed?
» What effect does each term contribute to the image?
» What does varying the parameters do?

* You should also understand the differences between
faceted, Gouraud, and Phong interpolated shading.

3-Nov-2003 cse457-10-shading © 2003 University of Washington 37

