
3-Nov-2003 cse457-10-shading © 2003 University of Washington 1

Shading

CSE 457, Autumn 2003
Graphics

http://www.cs.washington.edu/education/courses/457/03au/

3-Nov-2003 cse457-10-shading © 2003 University of Washington 2

Readings and References

Readings
• Sections 6.2-6.3, 3D Computer Graphics, Watt

Other References
• OpenGL red book, chapter 5.
• Chapter 7, 3D Computer Graphics, Watt

3-Nov-2003 cse457-10-shading © 2003 University of Washington 3

Introduction
• So far, we’ve talked exclusively about geometry.

» What is the shape of an object?
» How do I place it in a virtual 3D space?
» How do I know which pixels it covers?
» How do I know which of the pixels I should actually draw?

• Once we’ve answered all those, we have to ask one more
important question:
» To what value do I set each pixel?

• Answering this question is the job of the shading model.
• Of course, people also call it a lighting model, a light

reflection model, a local illumination model, a reflectance
model, etc., etc.

3-Nov-2003 cse457-10-shading © 2003 University of Washington 4

An abundance of photons

• Properly determining the right color is really hard.
• Look around the room. Each light source has different

characteristics. Trillions of photons are pouring out every
second.

• These photons can:
» interact with the atmosphere, or with things in the atmosphere
» strike a surface and

• be absorbed
• be reflected
• cause fluorescence or phosphorescence.

» interact in a wavelength-dependent manner
» generally bounce around and around

3-Nov-2003 cse457-10-shading © 2003 University of Washington 5

Our problem

• We’re going to build up to an approximation of reality called the
Phong illumination model.
» understand reality → approximate it → better understand reality in order to

understand the differences → refine the approximation → ...

• The Phong illumination model has the following characteristics:
» not a model of the actual physics of light transport and reflection
» gives a first-order approximation to physical light reflection
» very fast
» widely used

• In addition, we will assume local illumination, i.e., light goes:
light source -> surface -> viewer.

• No interreflections, no shadows.
3-Nov-2003 cse457-10-shading © 2003 University of Washington 6

Setup…

• Given:
» a point P on a surface visible through pixel p
» The normal N at P
» The lighting direction, L, and intensity, I

�8
,at P

» The viewing direction, V, at P
» The shading coefficients at P

• Compute the color, I, of pixel p.
• Assume that the direction vectors are normalized:

VL

P

N

1=== VLN

3-Nov-2003 cse457-10-shading © 2003 University of Washington 7

Iteration zero

• The simplest thing you can do is…
• Assign each polygon a single color:

• where
» I is the resulting intensity
» ke is the emissivity or intrinsic shade associated with the object
» this is the color regardless of available light, but it is not a light itself

• This has some special-purpose uses, but not really good for
drawing a scene.

• [Note: ke is omitted in Watt.]

eI = k

3-Nov-2003 cse457-10-shading © 2003 University of Washington 8

Iteration one

• Let’s make the color at least dependent on the overall quantity
of light available in the scene:

» ka is the ambient reflection coefficient.
• really the reflectance of ambient light
• “ambient” light is assumed to be equal in all directions

» Ia is the ambient intensity.

• In the real world, what is “ambient” light?

e a aI k k I= +

3-Nov-2003 cse457-10-shading © 2003 University of Washington 9

Wavelength dependence?

• Really, ke, ka, and Ia are functions over all wavelengths, λ, of
light ... but we are crazed approximators ...

• Ideally, we would do the calculation on these functions. For
example, our equation so far could be written as:

then we would find good RGB values to represent the spectrum I(λ).

• Traditionally, though, ke, ka and Ia are represented as RGB
triples, and the computation is performed on each color
channel separately: R a,R a,R

G a,G a,G

B a,B a,B

I = k I
I = k I
I = k I

() () () ()λλλλ aae IkkI +=

3-Nov-2003 cse457-10-shading © 2003 University of Washington 10

Diffuse reflection
• Let’s examine the ambient shading model:

» objects have different colors
» we can control the overall light intensity

• what happens when we turn off the lights?
• what happens as the light intensity increases?
• what happens if we change the color of the lights?

• So far, objects are uniformly lit.
» not the way things really appear
» in reality, light sources are directional

• Diffuse, or Lambertian reflection will allow reflected
intensity to vary with the direction of the light.

3-Nov-2003 cse457-10-shading © 2003 University of Washington 11

Diffuse reflectors
• Diffuse reflection occurs from dull, matte surfaces, like latex

paint, or chalk.
• These diffuse or Lambertian reflectors reradiate light equally

in all directions.
• Picture a rough surface with lots of tiny microfacets.

3-Nov-2003 cse457-10-shading © 2003 University of Washington 12

Diffuse reflectors

…or picture a surface with little pigment particles embedded
beneath the surface (neglect reflection at the surface for the
moment):

The microfacets and pigments
distribute light rays in all
directions.

Embedded pigments are
responsible for the coloration of
diffusely reflected light in
plastics and paints.

Note: these figures are intuitive, but not strictly (physically) correct and we are
not trying to build a physics model of what is happening on surfaces like these.

3-Nov-2003 cse457-10-shading © 2003 University of Washington 13

Diffuse reflectors, cont.

• The reflected intensity from a diffuse surface does not depend
on the direction of the viewer. The amount of available light,
though, does depend on the direction of the light source:

intensitylight reflected diffusefor valuescaling a gives so
cos

cos

cos

LN
LN

A
A

AA

p

p

⋅
=⋅

=

=

θ

θ

θ

N

A
Ap

L

A

3-Nov-2003 cse457-10-shading © 2003 University of Washington 14

Iteration two
• The incoming energy is proportional to , giving the

diffuse reflection equations:

• where:
» kd is the diffuse reflection coefficient
» I

�
 is the diffuse intensity of the light source

» N is the normal to the surface (unit vector)
» L is the direction to the light source (unit vector)
» (x)+ means max {0,x}

[Note: Watt uses Ii instead of I
� .]

()
()ldaae

ldaae

IkIkk
IkIkkI

++=
++=

3-Nov-2003 cse457-10-shading © 2003 University of Washington 15

Specular reflection
• Specular reflection accounts for the highlight that you see on

some objects.
• It is particularly important for smooth, shiny surfaces, such as:

» metal
» polished stone
» plastics
» apples
» skin

• Properties:
» Specular reflection depends on the viewing direction V.
» For non-metals, the color is determined solely by the color of the light.
» For metals, the color may be altered (e.g., brass)

3-Nov-2003 cse457-10-shading © 2003 University of Washington 16

Specular reflection “derivation”

• For a perfect mirror reflector, light is reflected about N, so

• For a near-perfect reflector, you might expect the highlight to
fall off quickly with increasing angle φ.

• Also known as:
» “rough specular” reflection, “directional diffuse” reflection,

“glossy” reflection

if
0 otherwise
I

I
=

= 


V R
�

L
N

R

V

3-Nov-2003 cse457-10-shading © 2003 University of Washington 17

Derivation, cont.

• One way to get this effect is to take (R·V), raised to a power
ns.

• As ns gets larger,
» the dropoff becomes {more,less} gradual
» gives a {larger,smaller} highlight
» simulates a {more,less} mirror-like surface

 0 . 2

 0 . 4

 0 . 6

 0 . 8

 1 . 0

3 0

2 1 0

2 4 0

9 0

3 0 0

1 5 0

3 3 0

1 8 0 0

N

V
L R

6 01 2 0

100 80 60 40 20 0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cosns φ

φ

ns = = 1

ns s = = 128128

3-Nov-2003 cse457-10-shading © 2003 University of Washington 18

Iteration three

• The next update to the Phong shading model is then:

• where:
» ks is the specular reflection coefficient
» ns is the specular exponent or shininess
» R is the reflection of the light about the normal (unit vector)
» V is viewing direction (unit vector)

• [Note: Watt uses n instead of ns.]

() () sn
lsldaae RVIkLNIkIkkI ++ ⋅+⋅++=

3-Nov-2003 cse457-10-shading © 2003 University of Washington 19

Intensity drop-off with distance
• OpenGL supports different kinds of lights: point, directional,

and spot.
• For point light sources, the laws of physics state that the

intensity of a point light source drops off inversely with the
square of the distance.

• We can incorporate this effect by multiplying Il by 1/d2.
• Sometimes, this distance-squared dropoff is considered too

“harsh.” A common alternative is:

• with user-supplied constants for a, b, and c.
• [Note: not discussed in Watt.]

2atten
1f (d)=

a+ bd + cd

3-Nov-2003 cse457-10-shading © 2003 University of Washington 20

Iteration four

• Since light is additive, we can handle multiple lights by taking
the sum over every light.

• Our equation is now a version of the Phong illumination model:

() () ()[]∑ ++
⋅+⋅++=

j

n
jsjdljjaae

sRVkLNkIdfIkkI

Which quantities are spatial vectors?

Which are RGB triples?

Which are scalars?

3-Nov-2003 cse457-10-shading © 2003 University of Washington 21

Choosing the parameters

• Experiment with different parameter settings. To get you
started, here are a few suggestions:
» Try ns in the range [0,128]
» Try ka + kd + ks < 1
» Use a small ka (~0.1)

0varying0Planet

Medium, whiteMedium, color
of plasticmediumPlastic

Large, color of
metal

Small, color of
metallargePolished metal

kskdns

3-Nov-2003 cse457-10-shading © 2003 University of Washington 22

Materials in OpenGL
• The OpenGL code to specify the surface shading properties is

fairly straightforward. For example:
GLfloat ke[] = { 0.1, 0.15, 0.05, 1.0 };
GLfloat ka[] = { 0.1, 0.15, 0.1, 1.0 };
GLfloat kd[] = { 0.3, 0.3, 0.2, 1.0 };
GLfloat ks[] = { 0.2, 0.2, 0.2, 1.0 };
GLfloat ns[] = { 50.0 };
glMaterialfv(GL_FRONT, GL_EMISSION, ke);
glMaterialfv(GL_FRONT, GL_AMBIENT, ka);
glMaterialfv(GL_FRONT, GL_DIFFUSE, kd);
glMaterialfv(GL_FRONT, GL_SPECULAR, ks);
glMaterialfv(GL_FRONT, GL_SHININESS, ns);

The GL_FRONT parameter tells OpenGL that we are specifying the materials for the
front of the surface.
Only the alpha value of the diffuse color is used for blending. It’s usually set to 1.

3-Nov-2003 cse457-10-shading © 2003 University of Washington 23

Shading in OpenGL
• The OpenGL lighting model allows you to associate different

lighting intensities according to material properties they will
influence.

• Thus, our original shading equation:

• becomes:

() () ()[]∑ ++
⋅+⋅++=

j

n
jsjdljjaae

sRVkLNkIdfIkkI

() () ()[]∑ ++
⋅+⋅+++=

j

n
jlsjsjldjdlajajaae

sRVIkLNIkIkdfIkkI

3-Nov-2003 cse457-10-shading © 2003 University of Washington 24

• In OpenGL this equation is specified something like:
GLfloat Ia[] = { 0.2, 0.2, 0.2, 1.0 };
GLfloat Ia0[] = { 0.1, 0.1, 0.1, 1.0 };
GLfloat Id0[] = { 1.0, 1.0, 1.0, 1.0 };
GLfloat Is0[] = { 1.0, 1.0, 1.0, 1.0 };
GLfloat pos0[] = { 1.0, 1.0, 1.0, 0.0 };
GLfloat a[] = { 1.0 };
GLfloat b[] = { 0.5 };
GLfloat c[] = { 0.25 };

glLightModelfv(GL_LIGHT_MODEL_AMBIENT, Ia);
glLightfv(GL_LIGHT0, GL_AMBIENT, Ia0);
glLightfv(GL_LIGHT0, GL_DIFFUSE, Id0);
glLightfv(GL_LIGHT0, GL_SPECULAR, Is0);
glLightfv(GL_LIGHT0, GL_POSITION, pos0);
glLightfv(GL_LIGHT0, GL_CONSTANT_ATTENUATION, a);
glLightfv(GL_LIGHT0, GL_LINEAR_ATTENUATION, b);
glLightfv(GL_LIGHT0, GL_QUADRATIC_ATTENUATION, c);

• You can have as many as GL_MAX_LIGHTS lights in a scene. This number is
system-dependent.

() () ()[]∑ ++
⋅+⋅+++=

j

n
jlsjsjldjdlajajaae

sRVIkLNIkIkdfIkkI

lighting.exe 3-Nov-2003 cse457-10-shading © 2003 University of Washington 26

BRDF

• The Phong illumination model is really a function that maps
light from incoming (light) directions ωin to outgoing (viewing)
directions ωout:

• This function is called the Bi-directional Reflectance
Distribution Function (BRDF).

• Here’s a plot with ωin held constant:

• BRDF’s can be quite sophisticated…

(,)outinrf ω ω

(,)outinrf ω ω
ωin

3-Nov-2003 cse457-10-shading © 2003 University of Washington 27

Cook-Torrance-Sparrow model

Cook and Torrance, 1982

One of the more common “sophisticated” BRDF’s is the Cook-
Torrance-Sparrow model. It treats the surface as a set of
mirrored facets with random orientations and decides whether or
not light reflects from a given direction directly to the viewer.

The amount of light reflected from
a facet is determined by the
Fresnel coefficient, which depends
in general on wavelength.

From Foley, van Dam

3-Nov-2003 cse457-10-shading © 2003 University of Washington 29

Anisotropic reflection

Westin, Arvo, Torrance 1992 Poulin and Fournier 1990

3-Nov-2003 cse457-10-shading © 2003 University of Washington 30

Weird BRDF: the moon

3-Nov-2003 cse457-10-shading © 2003 University of Washington 31

Gouraud vs. Phong interpolation

• Now we know how to compute the color at a point on a
surface using the Phong lighting model.

• Does graphics hardware do this calculation at every point?
Typically not…

• Smooth surfaces are often approximated by polygonal facets,
because:
» Graphics hardware generally wants polygons (esp. triangles).
» Sometimes it easier to write ray-surface intersection algorithms for

polygonal models.

• How do we compute the shading for such a surface?

3-Nov-2003 cse457-10-shading © 2003 University of Washington 32

Faceted shading

• Assume each face has a constant normal:

• For a distant viewer and a distant light source, how will the
color of each triangle vary?

• Result: faceted, not smooth, appearance.

3-Nov-2003 cse457-10-shading © 2003 University of Washington 33

Gouraud interpolation

To get a smoother result that is easily performed in hardware, we
can do Gouraud interpolation.
Here’s how it works:

Shade

Interpolate

• Compute normals at the vertices.
• Shade only at the vertices.
• Interpolate the resulting vertex

colors to shade the polygon.

3-Nov-2003 cse457-10-shading © 2003 University of Washington 34

Gouraud interpolation, cont'd

• Gouraud interpolation has significant limitations.
» If the polygonal approximation is too coarse, we can miss specular

highlights.

We will encounter Mach banding (derivative discontinuity enhanced by
human eye).

� Alas, this is usually what graphics hardware supports.
� Maybe someday soon we’ll get…

L
V L

V

N V = RLR

R

3-Nov-2003 cse457-10-shading © 2003 University of Washington 35

Phong interpolation
• To get an even smoother result with fewer artifacts,

we can perform Phong interpolation.
• Here’s how it works:

Shade

N

Interpolate• Compute normals at the
vertices.

• Interpolate normals and
normalize.

• Shade using interpolated
normals at each point.

3-Nov-2003 cse457-10-shading © 2003 University of Washington 37

Summary

• The most important thing to take away from this
lecture is the final equation for the Phong model.
» What is the physical meaning of each variable?
» How are the terms computed?
» What effect does each term contribute to the image?
» What does varying the parameters do?

• You should also understand the differences between
faceted, Gouraud, and Phong interpolated shading.

