
27-Oct-2003 cse457-09-hiddensurfaces © 2003 University of Washington 1

Hidden Surface Algorithms

CSE 457, Autumn 2003
Graphics

http://www.cs.washington.edu/education/courses/457/03au/

27-Oct-2003 cse457-09-hiddensurfaces © 2003 University of Washington 2

Readings and References

Readings
• Sections 6.6 (esp. intro and subsections 1, 4, and 8–10), 12.1.4,

3D Computer Graphics, Watt

Other References
• Foley, van Dam, Feiner, Hughes, Chapter 15
• I. E. Sutherland, R. F. Sproull, and R. A. Schumacker, A

characterization of ten hidden surface algorithms, ACM
Computing Surveys 6(1): 1-55, March 1974.

» http://www.acm.org/pubs/citations/journals/surveys/1974-6-1/p1-sutherland/

27-Oct-2003 cse457-09-hiddensurfaces © 2003 University of Washington 3

Introduction
• In the previous lecture, we figured out how to transform the

geometry so that the relative sizes will be correct if we drop
the z component.

• But, how do we decide which geometry actually gets drawn to
a pixel?

• Known as the hidden surface elimination problem or the
visible surface determination problem.

• There are dozens of hidden surface algorithms.
• They can be characterized in at least three ways:

» Object-precision vs. image-precision (a.k.a., object-space vs. image-
space)

» Object order vs. image order
» Sort first vs. sort last

27-Oct-2003 cse457-09-hiddensurfaces © 2003 University of Washington 4

Object-precision algorithms
• Basic idea:

» Operate on the geometric primitives themselves. (We’ll use “object” and
“primitive” interchangeably.)

» Objects typically intersected against each other
» Tests performed to high precision
» Finished list of visible objects can be drawn at any resolution

• Complexity:
» For n objects, can take O(n2) time to compute visibility.
» For an mxm display, have to fill in colors for m2 pixels.
» Overall complexity can be O(kobj n2 + kdisp m2).

• Implementation:
» Difficult to implement
» Can get numerical problems

27-Oct-2003 cse457-09-hiddensurfaces © 2003 University of Washington 5

Image-precision algorithm

• Basic idea:
» Find the closest point as seen through each pixel
» Calculations performed at display resolution
» Does not require high precision

• Complexity:
» Naïve approach checks all n objects at every pixel. Then, O(n m2).
» Better approaches check only the objects that could be visible at each

pixel. Let’s say, on average, d objects are visible at each pixel (a.k.a.,
depth complexity). Then, O(d m2).

• Implementation:
» Very simple to implement.

• Used a lot in practice.

27-Oct-2003 cse457-09-hiddensurfaces © 2003 University of Washington 6

Object order vs. image order

• Object order:
» Consider each object only once, draw its pixels, and move

on to the next object.
» Might draw the same pixel multiple times.

• Image order:
» Consider each pixel only once, find nearest object, and

move on to the next pixel.
» Might compute relationships between objects multiple

times.

27-Oct-2003 cse457-09-hiddensurfaces © 2003 University of Washington 7

Sort first vs. sort last

• Sort first:
» Find some depth-based ordering of the objects relative to

the camera, then draw back to front.
» Build an ordered data structure to avoid duplicating work.

• Sort last:
» Sort implicitly as more information becomes available.

27-Oct-2003 cse457-09-hiddensurfaces © 2003 University of Washington 8

Outline of Lecture

• Z-buffer
• Ray casting
• Binary space partitioning (BSP) trees

27-Oct-2003 cse457-09-hiddensurfaces © 2003 University of Washington 9

Z-buffer
•The Z-buffer or depth buffer algorithm [Catmull, 1974] is
probably the simplest and most widely used.
•Here is pseudocode for the Z-buffer hidden surface algorithm:

for each pixel (i,j) do
Z-buffer [i,j] ← FAR
Framebuffer[i,j] ← <background color>

end for
for each polygon A do

for each pixel in A do
Compute depth z and shade s of A at (i,j)
if z > Z-buffer [i,j] then

Z-buffer [i,j] ← z
Framebuffer[i,j] ← s

end if
end for

end for Q: What should FAR be set to?

27-Oct-2003 cse457-09-hiddensurfaces © 2003 University of Washington 10

Rasterization

• The process of filling in the pixels inside of a polygon is called
rasterization.

Interesting fact:
� Described as the “brute-force image space algorithm” by [SSS]
� Mentioned only in Appendix B of [SSS] as a point of comparison for huge

memories, but written off as totally impractical.
Today, Z-buffers are commonly implemented in hardware. Tomorrow ...

http://www.cs.washington.edu/education/courses/457/03au/misc/power-trends.png

x

y
(x1,y1,z1)

(R1,G1,B1)

(x2,y2,z2)
(R2,G2,B2)

(x3,y3,z3)
(R3,G3,B3)

During rasterization, the z value
and shade s can be computed
incrementally (ie, quickly!).

27-Oct-2003 cse457-09-hiddensurfaces © 2003 University of Washington 11

Clipping and the viewing frustum
• The center of projection and the portion of the projection

plane that map to the final image form an infinite
pyramid. The sides of the pyramid are clipping planes.

COP

PP

d

Near
Far(Hither)

(Yon)

f

n

• Frequently, additional clipping
planes are inserted to restrict the
range of depths. These clipping
planes are called the near and
far or the hither and yon
clipping planes.

• All of the clipping planes bound
the the viewing frustum.

27-Oct-2003 cse457-09-hiddensurfaces © 2003 University of Washington 12

Computing z
• In the lecture on projections, we said that we would apply the

following 3x4 projective transformation:

• and keep the z-component to do Z-buffering (ie, z’=z)
• Strictly speaking, in order for interpolated z to work correctly,

we actually need to map it according to:
z’ = A + B/z

• For B < 0, is depth ordering preserved?
• In addition, we have finite precision and would like all of our z

bits to be uniformly distributed between the clipping planes.

' 1 0 0 0
' 0 1 0 0
' 0 0 1/ 0

x
x

y
y

z
w d

w

 
     
     =
     
   −     

 

27-Oct-2003 cse457-09-hiddensurfaces © 2003 University of Washington 13

Computing z, cont’d
• These requirements lead to the following 4x4 projective

transformation:

• What is z’ after the perspective divide?

• What do z=-n and z=-f get mapped to?

1 0 0 0'
0 1 0 0'

20 0'
() ()

' 10 0 1/ 0

x x
y y

f n fnz z
d f n d f n

w d

 
    
    
   = = +
    − −    
   −  

27-Oct-2003 cse457-09-hiddensurfaces © 2003 University of Washington 14

Z-buffer: Analysis
• Classification?
• Easy to implement?
• Easy to implement in hardware?
• Incremental drawing calculations (uses coherence)?
• Pre-processing required?
• On-line (doesn’t need all objects before drawing begins)?
• If objects move, does it take more work than normal to draw the frame?
• If the viewer moves, does it take more work than normal to draw the frame?
• Typically polygon-based?
• Efficient shading (doesn’t compute colors of hidden surfaces)?
• Handles transparency?
• Handles refraction?

27-Oct-2003 cse457-09-hiddensurfaces © 2003 University of Washington 15

Ray casting

• Idea: For each pixel center Pij
» Send ray from eye point (COP), C, through Pij into scene.
» Intersect ray with each object.
» Select nearest intersection.

PijC

27-Oct-2003 cse457-09-hiddensurfaces © 2003 University of Washington 16

Ray casting, cont.
Implementation:

» Might parameterize each ray: r(t) = C + t (Pij - C)
» Each object Ok returns tk > 0 such that first intersection with Ok occurs at

r(tk).

Q: Given the set {tk} what is the first intersection point?
Note: these calculations generally happen in world coordinates. No
projective matrices are applied.

PijC

27-Oct-2003 cse457-09-hiddensurfaces © 2003 University of Washington 17

Ray casting: Analysis
• Classification?
• Easy to implement?
• Easy to implement in hardware?
• Incremental drawing calculations (uses coherence)?
• Pre-processing required?
• On-line (doesn’t need all objects before drawing begins)?
• If objects move, does it take more work than normal to draw the frame?
• If the viewer moves, does it take more work than normal to draw the frame?
• Typically polygon-based?
• Efficient shading (doesn’t compute colors of hidden surfaces)?
• Handles transparency?
• Handles refraction?

27-Oct-2003 cse457-09-hiddensurfaces © 2003 University of Washington 18

Binary-space partitioning (BSP) trees

• Idea:
» Do extra preprocessing to allow quick display from any viewpoint.

• Key observation: A polygon A is painted in correct order if
» Polygons on far side of A are painted first
» A is painted next
» Polygons in front of A are painted last.

A
B

C

D

27-Oct-2003 cse457-09-hiddensurfaces © 2003 University of Washington 19

BSP tree creation

1

2
3

4

5

5b
5a

1

2
3

4

5

5b
5a

1

2
3

4

5

5b
5a

27-Oct-2003 cse457-09-hiddensurfaces © 2003 University of Washington 20

BSP tree creation (cont’d)
procedure MakeBSPTree:

takes PolygonList L

returns BSPTree

Choose polygon A from L to serve as root

Split all polygons in L according to A

node ← A

node.neg ← MakeBSPTree(Polygons on neg. side of A)

node.pos ← MakeBSPTree(Polygons on pos. side of A)

return node

end procedure

Note: Performance is improved when fewer polygons are split --- in practice,
best of ~ 5 random splitting polygons are chosen.

Note: BSP is created in world coordinates. No projective matrices are applied.

27-Oct-2003 cse457-09-hiddensurfaces © 2003 University of Washington 21

BSP tree display
procedure DisplayBSPTree:

Takes BSPTree T

if T is empty then return

if viewer is in front half-space of T.node

DisplayBSPTree(T. _____)

Draw T.node

DisplayBSPTree(T._____)

else

DisplayBSPTree(T. _____)

Draw T.node

DisplayBSPTree(T. _____)

end if

end procedure

27-Oct-2003 cse457-09-hiddensurfaces © 2003 University of Washington 23

BSP trees: Analysis
• Classification?
• Easy to implement?
• Easy to implement in hardware?
• Incremental drawing calculations (uses coherence)?
• Pre-processing required?
• On-line (doesn’t need all objects before drawing begins)?
• If objects move, does it take more work than normal to draw the frame?
• If the viewer moves, does it take more work than normal to draw the frame?
• Typically polygon-based?
• Efficient shading (doesn’t compute colors of hidden surfaces)?
• Handles transparency?
• Handles refraction?

27-Oct-2003 cse457-09-hiddensurfaces © 2003 University of Washington 24

Cost of Z-buffering

•Z-buffering is the algorithm of choice for hardware rendering, so
let’s think about how to make it run as fast as possible…
•The steps involved in the Z-buffer algorithm are:

• Send a triangle to the graphics hardware.
• Transform the vertices of the triangle using the modeling matrix.
• Shade the vertices.
• Transform the vertices using the projection matrix.
• Set up for incremental rasterization calculations
• Rasterize and update the framebuffer according to z.

•What is the overall cost of Z-buffering?

27-Oct-2003 cse457-09-hiddensurfaces © 2003 University of Washington 25

Cost of Z-buffering, cont’d
We can approximate the cost of this method as:

Where:
kbus = bus cost to send a vertex
vbus = number of vertices sent over the bus
kshade,xform = cost of transforming and shading a vertex
vshade,xform = number of vertices transformed and shaded
ksetup = cost of setting up for rasterization
∆rast = number of triangles being rasterized
d = depth complexity (average times a pixel is covered)
m2 = number of pixels in frame buffer

kbus vbus + kxform vxform + kshade vshade + ksetup ∆rast + d m2

27-Oct-2003 cse457-09-hiddensurfaces © 2003 University of Washington 26

Visibility tricks for Z-buffers

Given this cost function:

what can we do to accelerate Z-buffering?
kbus vbus + kxform vxform + kshade vshade + ksetup ∆rast + d m2

27-Oct-2003 cse457-09-hiddensurfaces © 2003 University of Washington 27

Summary

• What to take home from this lecture:
» Classification of hidden surface algorithms
» Understanding of Z-buffer, ray casting, and BSP tree

hidden surface algorithms
» Familiarity with some Z-buffer acceleration strategies

