Dot Product

CSE 457, Autumn 2003 Graphics

http://www.cs.washington.edu/education/courses/457/03au/

Readings and References

Readings

• Sections 1.3.4, 1.3.5, 3D Computer Graphics, Watt

Other References

 Section A.3, Dot Products and Distances, Computer Graphics, Principles and Practice, Foley, van Dam

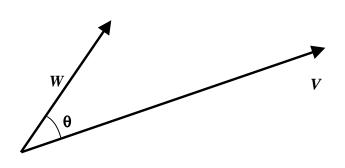
Dot Product

- The dot product or inner product of two vectors is a very useful operation in computer graphics and is applied in numerous ways
- These notes are a short review of what it the dot product is and some examples of how it gets used

Definition

$$v = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$$

$$w = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix}$$

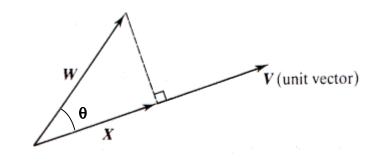


$$v \cdot w = v_1 w_1 + v_2 w_2 + v_3 w_3$$

= $||v|| ||w|| \cos(\theta)$

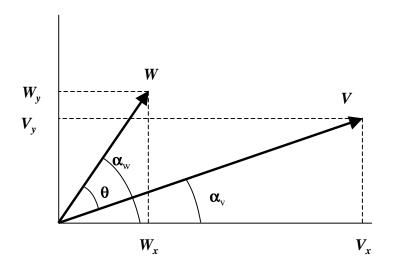
if v is a unit vector, then

$$v \cdot w = v_1 w_1 + v_2 w_2 + v_3 w_3$$
$$= ||w|| \cos(\theta)$$



and so $v \cdot w$ is the length of the projection of w onto v

Illustration of $V \cdot W$



$$V_{x} = ||V|| \cos(\alpha_{v})$$

$$V_{y} = ||V|| \sin(\alpha_{v})$$

$$W_{x} = ||W|| \cos(\alpha_{w})$$

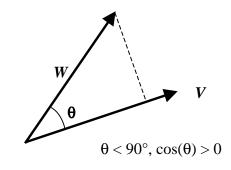
$$W_{y} = ||W|| \sin(\alpha_{w})$$

$$\begin{aligned} V \cdot W &= V_x W_x + V_y W_y \\ &= \|V\| \cos(\alpha_v) \|W\| \cos(\alpha_w) + \|V\| \sin(\alpha_v) \|W\| \sin(\alpha_w) \\ &= \|V\| \|W\| [\cos(\alpha_v) \cos(\alpha_w) + \sin(\alpha_v) \sin(\alpha_w)] \\ &= \|V\| \|W\| \cos(\alpha_w - \alpha_v) \\ &= \|V\| \|W\| \cos(\theta) \end{aligned}$$

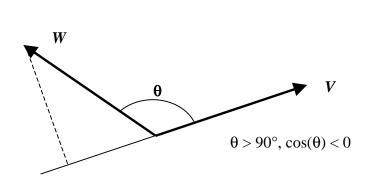
The cosine is a useful function ...

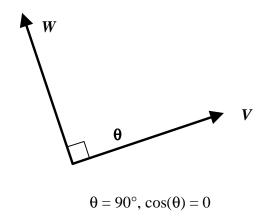
if both v and w are unit vectors, then

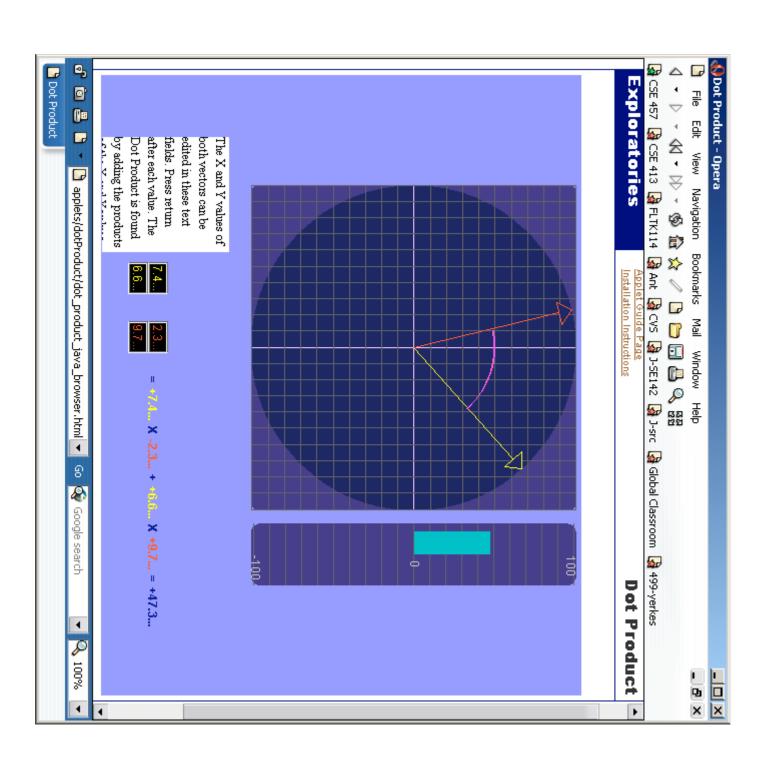
$$v \cdot w = v_1 w_1 + v_2 w_2 + v_3 w_3$$
$$= ||v|| ||w|| \cos(\theta)$$
$$= \cos(\theta)$$



and so $v \cdot w$ is just the cosine of the angle between the vectors







Unit vectors

The dot product of v with itself is

$$v \cdot v = v_1 v_1 + v_2 v_2 + v_3 v_3$$

$$= ||v|| ||v|| \cos(0)$$

$$= ||v||^2$$
and so $v \cdot v$ is the square of its length and if v is a unit vector then $v \cdot v$ is 1

the columns of a rotation matrix are perpendicular unit vectors

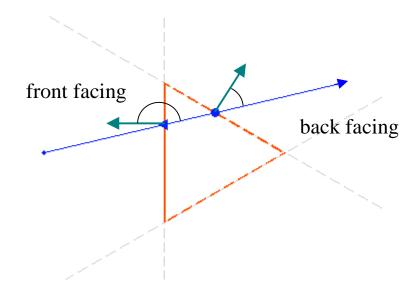
$$a \cdot a = \cos \theta \cos \theta + \sin \theta \sin \theta = 1$$

 $a \cdot b = \cos \theta(-\sin \theta) + \sin \theta \cos \theta = 0$
and so the transpose of a rotation matrix
is its inverse

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} * \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

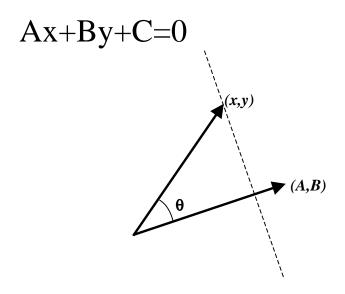
notice that the transpose is also rotation through $-\theta$, since $-\sin(-\theta) = \sin(\theta)$

Front facing polygon?



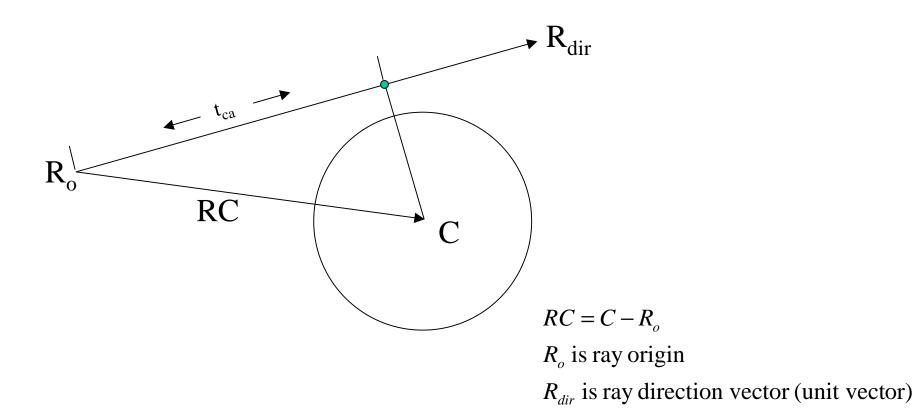
surface normal dot product with ray direction

Equation of a line



All vectors (x,y) for which $(A,B) \cdot (x,y) = -C$

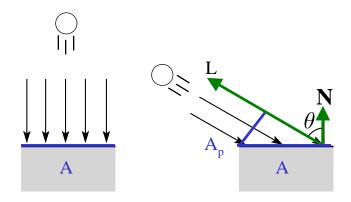
Where on ray is closest approach to C?



SO

 $t_{ca} = RC \cdot R_{dir}$

Diffuse reflection of light



$$A_p = A\cos\theta$$

$$\frac{A_p}{A} = \cos \theta$$

$$N \cdot L = ||L|| \cos \theta$$

so $N \cdot L$ gives a scaled value for diffuse reflected light intensity