Affine Transformations

CSE 457, Autumn 2003 Graphics

http://www.cs.washington.edu/education/courses/457/03au/

Readings and References

Readings

• Section 1.1, 3D Computer Graphics, Watt

Other References

- Sections 5.1-5.5, Computer graphics: principles and practice, James D. Foley, et al.
 - » on reserve in the Engineering Library

Geometric transformations

- Geometric transformations will map points in one space to points in another: (x',y',z') = f(x,y,z).
- These transformations can be very simple, such as scaling each coordinate, or complex, such as non-linear twists and bends.
- We'll focus on transformations that can be represented easily with matrix operations.
- We'll start in 2D...

Representation: point

• We can represent a **point**, $\mathbf{p} = (x,y)$, in the plane

» as a column vector

$$\begin{bmatrix} x \\ y \end{bmatrix}$$

» as a row vector

$$\begin{bmatrix} x & y \end{bmatrix}$$

Representation: matrix

• Represent a **2-D transformation** *M* by a matrix

$$M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

• If **p** is a column vector, *M* goes on the left:

$$\mathbf{p'} = M\mathbf{p}$$

$$\begin{bmatrix} x' \\ v' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ v \end{bmatrix}$$

• If **p** is a row vector, M^T goes on the right: $\mathbf{p'} = \mathbf{p}M^T$

$$\begin{bmatrix} x' & y' \end{bmatrix} = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} a & c \\ b & d \end{bmatrix}$$

• We will use **column vectors**.

Two-dimensional transformations

• Here's what you get with a 2 x 2 transformation matrix *M*:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

• And so:

$$x' = ax + by$$

 $y' = cx + dy$

• We will develop some intimacy with the elements a, b, c, d...

Identity

- Suppose we choose a=d=1, b=c=0:
 - » Gives the **identity** matrix:

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

» Doesn't move the points at all

Scaling

• Suppose we set b=c=0, but let a and d take on any positive value:

Gives a **scaling** matrix:

Provides **uniform scaling** or **differential scaling** in *x* and *y*:

$$x' = ax$$

$$y' = dy$$

Reflections

- Suppose we keep b=c=0, but let either a or d go negative.
- Examples:

Shear

- Now let's leave a=d=1 and experiment with b. . . .
- The matrix

$$\begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix}$$

• gives:

$$x' = x + by$$
$$y' = y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Effect on unit square

• Let's see how a general 2 x 2 transformation *M* affects the unit square:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} [\mathbf{p} \quad \mathbf{q} \quad \mathbf{r} \quad \mathbf{s}] = [\mathbf{p'} \quad \mathbf{q'} \quad \mathbf{r'} \quad \mathbf{s'}]$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & a & a+b & b \\ 0 & c & c+d & d \end{bmatrix}$$

Effect on unit square, cont.

• Observe:

- » Origin invariant under M
- » *M* can be determined just by knowing how the corners (1,0) and (0,1) are mapped
 - these are the perpendicular basis vectors of the original space
- » a and d give x- and y-scaling
- » b and c give x- and y-shearing

Rotation

• From our observations of the effect on the unit square, it should be easy to write down a matrix for "rotation about the origin":

y

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$M = R(\theta) =$$

Limitations of the 2 x 2 matrix

- A 2 x 2 matrix allows
 - » Scaling
 - » Rotation
 - » Reflection
 - » Shearing
- **Q**: What important operation does that leave out?

Homogeneous coordinates

Idea is to loft the problem up into 3-space, adding a third component to every point:

 $\begin{bmatrix} x \\ y \end{bmatrix} \rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \qquad \begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = T(\mathbf{t}) \begin{vmatrix} x \\ y \\ 1 \end{vmatrix} = \begin{bmatrix} 1 & 0 & t_x & x \\ 0 & 1 & t_y & y \\ 0 & 0 & 1 & 1 \end{bmatrix}$

And then transform with a 3 x 3 matrix:

[1	0	1
$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	1	1/2
0	0	1

... gives translation!

Rotation about arbitrary points

Until now, we have only considered rotation about the origin.

With homogeneous coordinates, you can specify a rotation, q, about any point $\mathbf{q} = [\mathbf{q}_{\mathsf{X}} \ \mathbf{q}_{\mathsf{V}}]^{\mathsf{T}}$ with a matrix:

- Translate **q** to origin
- Rotate
- Translate back
- Note: Transformation order is important!!

Basic 3-D transformations: scaling

- Some of the 3-D transformations are just like the 2-D ones.
- For example, <u>scaling</u>:

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Translation in 3D

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Rotation in 3D

• Rotation now has more possibilities in 3D:

Use right hand rule

$$R_{\mathbf{X}}(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_{\mathbf{Y}}(\theta) = \begin{bmatrix} \cos\theta & 0 & \sin\theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\theta & 0 & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_{\mathbf{Z}}(\theta) = \begin{bmatrix} \cos\theta & -\sin\theta & 0 & 0 \\ \sin\theta & \cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

How else might you specify a rotation?

Shearing in 3D

• Shearing is also more complicated. Here is one example:

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & b & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

• We'll call this a "shear parallel to the x-z plane" or "shear with respect to the x-z plane."

Properties of affine transformations

- All of the transformations we've looked at so far are examples of "affine transformations."
- Here are some useful properties of affine transformations:
 - » Lines map to lines
 - » Parallel lines remain parallel
 - » Midpoints map to midpoints (in fact, ratios are always preserved)

ratio =
$$\frac{\|\mathbf{pq}\|}{\|\mathbf{qr}\|} = \frac{s}{t} = \frac{\|\mathbf{p'q'}\|}{\|\mathbf{q'r'}\|}$$

Affine transformations in OpenGL

- OpenGL maintains a "modelview" matrix that holds the current transformation **M**.
- The modelview matrix is applied to points (usually vertices of polygons) before drawing.
- It is modified by commands including:

```
» glLoadIdentity() \mathbf{M} \leftarrow \mathbf{I}
- set \mathbf{M} to identity

» glTranslatef(\mathbf{t}_{\mathbf{x}}, \mathbf{t}_{\mathbf{y}}, \mathbf{t}_{\mathbf{z}}) \mathbf{M} \leftarrow \mathbf{MT}
- translate by (\mathbf{t}_{\mathbf{x}}, \mathbf{t}_{\mathbf{y}}, \mathbf{t}_{\mathbf{z}})

» glRotatef(\theta, \mathbf{x}, \mathbf{y}, \mathbf{z}) \mathbf{M} \leftarrow \mathbf{MR}
- rotate by angle \theta about axis (\mathbf{x}, \mathbf{y}, \mathbf{z})

» glScalef(\mathbf{s}_{\mathbf{x}}, \mathbf{s}_{\mathbf{y}}, \mathbf{s}_{\mathbf{z}}) \mathbf{M} \leftarrow \mathbf{MS}
- scale by (\mathbf{s}_{\mathbf{x}}, \mathbf{s}_{\mathbf{y}}, \mathbf{s}_{\mathbf{z}})
```

Add transformations by postmultiplication of modelview matrix.

Summary

- What to take away from this lecture:
 - » All the names in boldface.
 - » How points and transformations are represented.
 - » What all the elements of a 2 x 2 transformation matrix do and how these generalize to 3 x 3 transformations.
 - » What homogeneous coordinates are and how they work for affine transformations.
 - » How to concatenate transformations.
 - » The mathematical properties of affine transformations.