Image Processing

CSE 457, Autumn 2003 Graphics

http://www.cs.washington.edu/education/courses/457/03au/

Reading

- Sections 4.2-4.4, 4.5(intro), 4.5.5, 4.5.6, 5.1-5.4. in *Machine Vision*, Jain, Kasturi, Schunck.
 - » on reserve in Engineering Library

What is an image?

- We can think of an **image** as a function, f, from R² to R:
 - » f(x, y) gives the intensity of a channel at position (x, y)
 - » Realistically, we expect the image only to be defined over a rectangle, with a finite range:
 - $f: [a,b] \times [c,d] \rightarrow [0,1.0]$
- A color image is just three functions pasted together. We can write this as a "vector-valued" function:

$$\vec{f}(x,y) = \begin{bmatrix} r(x,y) \\ g(x,y) \\ b(x,y) \end{bmatrix}$$

Images as functions

What is a digital image?

- In computer graphics, we usually operate on **digital** (**discrete**) images:
 - » Sample the space on a regular grid
 - » Quantize each sample (round to nearest integer)

If our samples are Δ apart, we can write this as:

 $f[i,j] = \text{Quantize} \{ f(i \Delta, j \Delta) \}$

Image processing

- An **image processing** operation typically defines a new image g in terms of an existing image f.
- The simplest operations are those that transform each pixel in isolation. These pixel-to-pixel operations can be written as g(x,y)=t(f(x,y))
- Examples:
 - » threshold: emphasize a particular transition level
 - » RGB \rightarrow grayscale: extract the luminance for the pixel

A typical choice for mapping to grayscale is to apply the YIQ television matrix and keep the Y.

$$\begin{bmatrix} Y \\ I \\ Q \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ 0.596 & -0.275 & -0.321 \\ 0.212 & -0.523 & 0.311 \end{bmatrix} * \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

single pixel changes

to grayscale

threshold at 55

threshold at 128

Pixel movement

• Some operations preserve intensities, but move pixels around in the image $g(x, y) = f(\tilde{x}(x, y), \tilde{y}(x, y))$

example: image registration

more pixel movement effects

ripple

image transitions

reflection in ripples

Noise

- Image processing is also useful for noise reduction
- Common types of noise:
 - » Salt and pepper noise: contains random occurrences of black and white pixels
 - » Impulse noise: contains random occurrences of white pixels
 - Gaussian noise: variations in intensity drawn from a
 Gaussian normal distribution

Original

Impulse noise

Salt and pepper noise

Gaussian noise

Ideal noise reduction

image 1 image 2 average

average

Practical noise reduction

• How can we "smooth" away noise in a single image?

• Is there a more abstract way to represent this sort of operation? *Of course there is!*

Convolution

- One of the most common methods for filtering an image is called convolution.
- In 1D, convolution is defined as:

$$g(x) = f(x) * h(x)$$

$$= \int_{-\infty}^{\infty} f(x')h(x - x')dx'$$

$$= \int_{\infty}^{\infty} f(x')\tilde{h}(x' - x)dx' \qquad \text{where } \tilde{h}(x) = h(-x)$$

g(x) is "f convolved with h":

evaluate the integral of $f \cdot h$ with h flipped around the y-axis and centered at x

Discrete convolution

• For a digital signal, we define **discrete convolution** as:

$$g[i] = f[i] * h[i]$$

$$= \sum_{j} f[j]h[i-j]$$

$$= \sum_{j} f[j]\tilde{h}[j-i] \qquad \text{where } \tilde{h}[i] = h[-i]$$

g[i] is "f convolved with h":

evaluate the sum of $f \cdot h$ with h flipped around the y-axis and centered at i

Convolution in 2D

In two dimensions, convolution becomes:

$$g(x,y) = f(x,y) * h(x,y)$$

$$= \int_{-\infty-\infty}^{\infty} \int_{-\infty-\infty}^{\infty} f(x',y')h(x-x',y-y')dx'dy'$$

$$= \int_{-\infty-\infty}^{\infty} \int_{-\infty-\infty}^{\infty} f(x',y')\tilde{h}(x'-x,y'-y)dx'dy' \qquad \text{where } \tilde{h}(x,y) = h(-x,-y)$$

Similarly, discrete convolution in 2D becomes:

$$g[i, j] = f[i, j] * h[i, j]$$

$$= \sum_{k} \sum_{l} f[k, l] h[i - k, j - l]$$

$$= \sum_{k} \sum_{l} f[k, l] \tilde{h}[k - i, l - j]$$

where
$$\tilde{h}[i, j] = h[-i, -j]$$

Convolution representation

• Since f, g, and \tilde{h} are defined over finite regions, we can write them out in two-dimensional arrays:

f

242	245	245	245	244	228	191	165
245	246	240	220	204	184	151	138
232	192	165	141	131	142	138	136
190	165	144	143	142	140	137	138
141	145	148	146	135	135	135	135

g

 \tilde{h}

Note: This is not matrix multiplication!

Mean filters

• How can we represent our noise-reducing averaging filter as a convolution diagram?

Gaussian Salt and pepper noise noise 3x3 5x5 7x7

Effect of mean filters

Gaussian filters

• Gaussian filters weigh pixels based on their distance from the center of the convolution filter. In particular: $a^{-(i^2+j^2)/(2\sigma^2)}$

 $h[i, j] = \frac{e^{-(i^2 + j^2)/(2\sigma^2)}}{C}$

- This does a decent job of blurring noise while preserving features of the image.
- What parameter controls the width of the Gaussian?
- What happens to the image as the Gaussian filter kernel gets wider?
- What is the constant C? What should we set it to?

Salt and pepper noise Gaussian noise 3x3 5x5 7x7

Effect of Gaussian filters

Median filters

- A **Median Filter** operates over an *m*x*m* region by selecting the median intensity in the region.
- What advantage does a median filter have over a mean filter?
- Is a median filter a kind of convolution?

Effect of median filters

Mean Gaussian Median

Comparison: Gaussian noise

5x5

7x7

3x3

Mean Gaussian Median

Comparison: salt and pepper noise

5x5

3x3

Edge detection

- One of the most important uses of image processing is **edge detection:**
 - » Really easy for humans
 - » Really difficult for computers
 - » Fundamental in computer vision
 - » Important in many graphics applications

What is an edge?

• **Q**: How might you detect an edge in 1D?

Gradients

• The **gradient** is the 2D equivalent of the derivative:

$$\nabla f(x, y) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$$

- Properties of the gradient
 - » It's a vector
 - » Points in the direction of maximum increase of f
 - » Magnitude is rate of increase
- How can we approximate the gradient in a discrete image?

Less than ideal edges

Steps in edge detection

- Edge detection algorithms typically proceed in three or four steps:
 - » Filtering: cut down on noise
 - » Enhancement: amplify the difference between edges and non-edges
 - » **Detection**: use a threshold operation
 - » Localization (optional): estimate geometry of edges beyond pixels

Edge enhancement

 A popular gradient magnitude computation is the Sobel operator:

$$S_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

$$S_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \qquad S_{y} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

• We can then compute the magnitude of the vector (s_x, s_y) .

Results of Sobel edge detection

Original

Smoothed

Sx + 128

Sy + 128

Magnitude

Threshold = 64

Threshold = 128

Second derivative operators

 The Sobel operator can produce thick edges.
 Ideally, we're looking for infinitely thin boundaries.

An alternative approach is to look for local extrema in the first derivative: places where the change in the gradient is highest.

Q: A peak in the first derivative corresponds to what in the second derivative?

Localization with the Laplacian

• An equivalent measure of the second derivative in 2D is the **Laplacian**: $\partial^2 f \partial^2 f$

 $\nabla^2 f(x, y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$

• Using discrete difference equations, the Laplacian filter can be shown to be:

$$\Delta^2 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Zero crossings of this filter correspond to positions of maximum gradient. These zero crossings can be used to localize edges.

Localization with the Laplacian

Original

Smoothed

Laplacian (+128)

Sharpening with the Laplacian

Original

Laplacian (+128)

Why does the sign make a difference?

How can you write a filter that makes the bottom image?

Original + Laplacian

Original - Laplacian

Summary

- What you should take away from this lecture:
 - » The meanings of all the boldfaced terms.
 - » A richer understanding of the terms "image" and "image processing"
 - » How noise reduction is done
 - » How convolution filtering works
 - » The effect of mean, Gaussian, and median filters
 - » What an image gradient is and how it can be computed
 - » How edge detection is done
 - » What the Laplacian image is and how it is used in either edge detection or image sharpening