
An Interactive Web-Based Ray Tracing Visualization Tool

by

Jake A. Russell

submitted June 10, 1999

to the

 Department of Computer Science, University of Washington

as

Undergraduate Honors Program Senior Thesis Requirement

Copyright 1999 Jake A. Russell. All rights reserved.

Faculty Supervisor signature:

 Date:
Brian Curless

Undergraduate Faculty Advisor signature:

 Date:
Gaetano Borriello

2

Table of Contents

Page

1. Introduction... 3

2. Related Work.. 4

3. Recursive Raycasting or Raytracing .. 6

4. Design and Implementation... 7

4.1 Overview.. 7

4.2 Input Scene Format and RayTrace Program.. 9

4.3 RayConfigReceiver Interface and GetRayConfig Applet 11

4.4 SeeRendered Applet ... 12

4.5 SeeRay Applet .. 14

5. Conclusion and Future Work... 21

References .. 23

Figures
4.1.1 RayTracing Visualization Tools Flow Chart ..8
4.4.1 SeeRay and SeeRendered Applets..13
4.5.1 The SeeRay Applet upon loading a scene...16
4.5.2 SeeRay applet tracing a ray through a sample scene illustrating various rays......18
4.5.3 Point lights in SeeRay modeled as emissive spheres...19

Tables
4.2.1 Input Scene Format Description ..10
4.3.1 GetRayConfig Applet Initialization Parameters ...12
4.4.1 SeeRendered Applet Initialization Parameters ...14
4.5.1 SeeRay User Input Effects ...17
4.5.2 SeeRay Applet Initialization Parameters ..20

3

1. Introduction

Ray tracing is a simple yet powerful rendering technique for creating realistic

images of complex scenes. Due to the simplicity and popularity of the technique, it is

typically part of collegiate-level computer graphics course curricula.

However, education of a technique as three-dimensionally oriented as ray

tracing is impeded by the typical two-dimensional medium of communication used in

the classroom because the surface of a whiteboard or overhead projector in many

instances cannot do justice in fully illustrating a three-dimensional concept. Raycasting

and ray tracing are particularly suited to a three-dimensional visualization due to the

important relationship of rays with scene object geometry.

The solution was to create a computer visualization that in real time can provide

various views of the rays and the scene objects projected onto a computer screen.

Because the number of courses incorporating multimedia devices in the classroom are

increasing and courses are generally shifting more to a web-based or web-supported

format, designing the computer visualization as a set of Applets is potentially the best

medium for interactive educational aids. Java Applets allow educators as much

flexibility as possible in easily incorporating the educational aids into their courses.

4

All Applets described in this paper are available for free and public download

from the Ray Tracing Visualization Tools Website.1

Two direct beneficiaries of this project will be the University of Washington

introductory and advanced courses in computer graphics, CSE457 and CSE557,

respectively.

2. Related Work

Raytracing visualization programs have been created in the past for SGI

machines, such as Ben Garlick’s Flyray [GARLICK89]. Flyray traces an input scene in

real time and as the rays are being shot through the scene, the scene and rays appear in

the scene visualization to be viewed from a navigable viewpoint. This is a very useful

visualization. However, we make two important improvements on it.

First, our ray tracing visualization engine is able to function with pre-rendered

scene image files. We provide the tool that reads the input file and outputs the

raytraced scene either on-screen as an Applet window or to be saved on-file as an

executable Java Class. By running the ray tracing tool as an Applet in an HTML page,

the image will render on-the-fly onto the web page containing the scene visualization,

giving the same functionality as Flyray. But by running the ray tracing tool as a Java

1 http://www.cs.washington.edu/research/graphics/software-data/seeray

5

Program, various rendered image files can be generated and saved, to be recalled by the

Applet or HTML page instantaneously as needed. We provide an Applet that will load

various rendered images of different ray tracing engine parameters during run time

provided there is a library of pre-rendered images made available. The benefit is that

subtle differences in ray tracing engine parameters can have their rendered images

compared back-to-back with the ray tracing visualization engine, possibly active in the

same HTML page, with rendering engine parameters updated accordingly.

The second tangible improvement our ray tracing visualization engine employs

is the advantage of a platform-independent running environment. Recently, there has

been an explosion in the number of Java Applet-based educational aids such as those

used in the Massachusetts Institute of Technology’s curriculum for Computer Graphics

Course 6.831 [TELLER98]. Other numerous examples can be found in Brown

University Computer Graphics Group’s Exploratory educational applet archival

website.2 Beall, Doppelt, and Hughes describe the development of one example in their

work [BEALL96]. By designing our tools as Java Applets, we ensure that a broad

variety of platforms and operating systems will be able to run them.

It should also be noted that our Java ray tracing engine is derived from Leonard

McMillan’s RayTrace skeleton code [MCMILLAN98].

2 http://www.cs.brown.edu/exploratory

6

3. Recursive Raycasting or Raytracing

The ray tracing engine used in our visualization tools can be set to demonstrate

the nonrecursive raycasting algorithm [APPEL68] or the more involved recursive

algorithm of ray tracing where reflection and refraction are modeled [WHITTED80]. In

either case it simulates shadows and uses a shading model incorporating surface

shininess developed by Bui-Thoung Phong [PHONG75].

The ray tracing engine incorporates shadow detection through the use of shadow

rays, originally discussed in one of the first papers written on ray tracing [APPEL68].

For each light source a shadow ray is fired from each point of intersection to the light

position and, if any scene object geometry intersects the shadow ray, then light from

that source will be partially or completely occluded.

The engine also employs the recursive ray-spawning techniques developed by

Turner Whitted [WHITTED80] resulting in the generation of reflected rays and

refracted rays as required, depending on how surface material properties at the point of

intersection are defined. The ray emanating from the center of projection is thus called

the primary ray, while recursively spawned rays are secondary rays. Reflective,

mirror-like surfaces can be modeled as well as transparent surfaces for any arbitrary

index of refraction.

7

The equation used for finding the light intensity, given a primary or secondary

ray with origin p and direction r, is given by:

dtransmittereflecteddirect IIIrpI ++=),(

where

• directI is computed from the Phong model [PHONG75] using object material

property terms according to input scene format; Table 4.2.1.

•),(RPIkI reflectedreflected =

with P, R = origin and direction of reflected ray [WHITTED80]

•),(TPIkI dtransmittedtransmitte =

with (P, T) = origin and direction of refracted ray [WHITTED80]

4. Design and Implementation

4.1 Overview

The components consisting of the Ray Tracing Visualization Tools and one

suggestion for wiring them together are illustrated in Figure 4.1.1.

8

Figure 4.1.1 Ray Tracing Visualization Tools Flow Chart. Red arrows signify inter-applet

communications that occur during runtime via the RayConfigReceiver interface. RayTrace Application

pre-processing indicated by broken lines.

All Applets are designed to run under the Java 2 Runtime Environment.

Currently this is supported by Sun for Netscape Navigator and Microsoft Internet

Explorer via the Java Plug-in. SeeRay furthermore requires that the Java3D 1.1

extension be installed into the runtime environment. Java3D was chosen for its

suitability for implementation on a variety of platforms as well as its compatibility with

a variety of 3D APIs, such as OpenGL and Direct3D.3 A rendering library

3 See author’s installation notes for up-to-date instructions regarding installation of the Java Plug-in as

well as Java3D at:

http://www.cs.washington.edu/research/graphics/software-data/seeray/java3d_setup.html

Input Scene File

Rendered Image Files

RayTrace Application

SeeRay Applet

SeeRendered Applet

GetRayConfig Applet

9

implementing 3D hardware acceleration should be used whenever possible to maximize

scene rendering performance. Java 2 and Java3D are currently supported on the

Windows and Solaris platforms, with a future version for the SGI IRIX platform to

most likely be released in the near future.

4.2 Input Scene Format and RayTrace Program

The input scene is a text file specified to the Applets via relative URL. The

scene file is parsed as a sequence of phrases specified in Table 4.2.1.

The name of the scene file is additionally used by SeeRay and SeeRendered in

the referencing of any pre-rendered image files. The name format for pre-rendered

image files is [sceneinputname].[minweight].[maxdepth].jpeg

Generation of pre-rendered images can be done using the supplied RayTrace

utility, when run as a Java Program. The RayTrace utility is derived from Leonard

McMillan’s RayTrace skeleton code [MCMILLAN98]. It takes minweight, maxdepth,

and datafile input parameters and renders an appropriate ray traced image to a window.

Clicking the mouse in the window after the scene is rendered results in the rendered

image to be saved as an uncompressed, appropriately named JPEG. Although RayTrace

may be run as an Applet, it would then not be able to save output image files due to

Java Applet security restrictions.

10

Input Format Description

eye float_x float_y float_z Location designating center of projection, given as x, y, and z
coordinates. If unspecified, the default center of projection is at the
coordinate 0, 0, 10.

lookat float_x float_y
float_z

Specifies the coordinate that will be in the center of the rendered view.
Default setting is 0, 0, 0.

up float_x float_y float_z Vector describing which direction should be upward for (1) the
rendered field of view and (2) the initial orientation of the visualization
view. Default setting is 0, 1, 0.

fov float Given an angle in the range of (0 .. 180), specifies the width of the
projection plane with respect to the center of projection.

light float_red float_green
float_blue (ambient,
directional float_x float_y
float_z, point float_x float_y
float_z)

Designates a light of specified color components red, green, and blue.
Lights must be additionally designated as one of three varieties:
ambient light, directional light, or point light. Further specification is
required for directional lights by a vector defined by x, y, and z that
indicates the light’s direction and for point lights by x, y, and z
coordinates indicating the light’s position in the scene. For simplicity,
no point light intensity falloff will be used during shading; thus, in an
empty scene, all space receives equal intensity values from a light
source.

surface float_red
float_green float_blue
float_ka float_kd float_ks
float_ns float_kr float_kt
float index

Any objects following the phrase will take on the material properties
specified until another surface phrase overrides. Surface properties
specified are color components given as red, green, and blue values
(each of range [0 .. 1]); lighting modifier coefficients [0 .. 1] for the
ambient, diffuse, and specular coefficients; weights of secondary rays
[0 .. 1] for reflected and refracted rays; and ratio of index of refraction
of object material to that of the immediately surrounding environment.
If an object is declared before a surface phrase is, the default surface
phrase .8 .2 .9 .2 .4 .4 10 0 0 1 will be assumed.

triangle float_x1 float_y1
float_z1 float_x2 float_y2
float_z2 float_x3 float_y3
float_z3

A triangle is specified in the scene at the three vertices, each specified
with x, y, and z coordinates. One side of the triangle is “inside,” and
the other is “out” for purposes of calculating refraction effects.
However, neither front nor back faces will be removed, or culled.

sphere float_x float_y
float_z float_radius

Creates a sphere in the scene at centerpoint specified as x, y, and z
coordinates followed by a final radius designator of range (0 .. ∞).

background float_red
float_green float_blue

Assigns red, green, and blue values to the environment color.
Evaluation of the environment is denoted by dotted rays in the
visualization.

[…] Comments designator. All characters in the rest of the line will be
ignored.

Table 4.2.1 Input Scene Format Description

11

4.3 RayConfigReceiver Interface and GetRayConfig Applet

GetRayConfig is provided with the Applets with full source code to show an

example of how the RayConfigReceiver interface can be used to provide a means of

runtime communication with SeeRay and SeeRendered. The following methods are

defined by the RayConfigReceiver interface:

• setParameters(boolean isfinal, float minWeight, int maxDepth, float

scenetrans) Called to set the rendering engine parameters for adaptive

termination threshold (minWeight) in the range [0 .. 1], and max recursive depth

(maxDepth) in the range [0 .. ∞). Both ray termination criteria will be evaluated

simultaneously. Any currently fired rays will be re-evaluated if new ray

termination criteria are specified. If isfinal is true, the loading of pre-rendered

image files is enabled. Current implementations ignore scenetrans; it is in the

interface solely for future use.

• fireRay(boolean ispointer, float x, float y) Called to create a new pointer on

the image plane or to fire a new primary ray to be recursively evaluated

according to current ray termination criteria. Coordinates of the projection plane

are given as normalized window coordinates through variables x and y;

therefore, both variables must be in the range of [0 .. 1] for a ray to be fired.

Setting of either x or y outside of this range will result in any current rays to be

removed from the visualization.

12

GetRayConfig consists of a slider and a drop-down menu allowing the user to vary

ray termination criteria of SeeRendered or SeeRay during runtime. It accepts Applet

input parameters according to table 4.3.1.

Parameter Name Type/Range

Default

Setting Effect

minweight float in (0..1) 0 Changes the default setting of the

adaptive ray termination coefficient.

Defining this variable has the side

effect of loading the appropriate

pre-rendered image upon Applet

initialization.

maxdepth int in [0..20] 4 Changes the default setting of the

max recursive ray depth. Defining

this variable has the side effect of

loading the appropriate pre-rendered

image upon Applet initialization.

Table 4.3.1 GetRayConfig Applet Initialization Parameters

4.4 SeeRendered Applet

The SeeRendered Applet displays a pre-rendered image always appropriate for

the current rendering engine configuration. By accepting and communicating the

rendering engine configuration to SeeRay, provided it exists in the same environment,

13

communications will automatically propagate, i.e., both Applets will remain in sync

with a single communication to SeeRendered.

SeeRendered also accepts runtime input as mouse movement over the rendered

image, which is communicated to SeeRay in order to render a pointer on the

visualization scene’s image plane at the appropriate location. If the left mouse button is

clicked, a primary ray will be fired through that location (see Figure 4.2.1).

Figure 4.4.1 SeeRay (on left) and SeeRendered (on right) Applets. As mouse is clicked on SeeRendered,

SeeRay fires a new primary Ray through the pointer. Pointer appears as a yellow dot in SeeRay on the

texture-mapped rendered image. Secondary Rays are repeatedly reflected and refracted by objects in the

scene.

14

SeeRendered accepts Applet initialization parameters as given in Table 4.4.1.

Parameter Name Type/Range

Default

Setting Effect

minweight float in (0..1) 0 Changes the default setting of the

adaptive ray termination coefficient.

Defining this variable has the side

effect of loading the appropriate

pre-rendered image upon Applet

initialization.

maxdepth int in [0..20] 4 Changes the default setting of the

max recursive ray depth.

Defining this variable has the side

effect of loading the appropriate

pre-rendered image upon applet

initialization.

datafile

(required)
string N/A Relative URL to the scene input file

and associated pre-rendered images.

Table 4.4.1 SeeRendered Applet Initialization Parameters

4.5 SeeRay Applet

The SeeRay Applet is the main ray tracing visualization component. Its purpose

is to render a three-dimensional scene visualization including the generation of primary

and secondary rays from an arbitrary viewpoint. Via inter-applet communication,

15

SeeRay accepts commands during runtime to (a) vary the ray tracing engine’s ray

termination settings, and (b) indicate where a new pointer should be positioned or a new

primary ray should be fired. These commands are issued to SeeRay in accordance with

the RayConfigReceiver interface, described in detail in Section 4.3.

Upon applet startup, the visualization viewpoint is set at a location behind the

scene’s center of projection and pointing in a direction toward the origin, as in

Figure 4.5.1. The roll angle of the visualization viewpoint is set by default in

accordance with the up vector defined in the scene input file.

16

Figure 4.5.1 The SeeRay Applet upon loading a scene. Note that the dot representing the center of

projection in the center is also the tip of the viewing frustum, with the pre-rendered image texture

mapped at its base as a partially transparent square. The starting viewpoint is set behind the center of

projection and is aimed at the origin of the scene.

17

SeeRay also accepts direct user input as a means to allow navigation in the scene

in a manner that treats the scene as a giant object to be examined. User input and

corresponding effects are described in Table 4.5.1

Mouse Input Corresponding Effect

Left Button Drag Trackball-Rotates the scene visualization about the origin

such that horizontal mouse movement adjusts the yaw angle

of the scene and vertical movement adjusts pitch angle.

Center Button Drag

(for three-button mouse)

or Alt+left Button Drag

(for two-button mouse)

Zooms the visualization viewpoint towards or away from

the scene origin as the pointer is moved vertically.

Right Button Drag Rolls the scene about the center of the current viewpoint.

Adjustments to rotation angle will mimic adjustments to the

pointer angle, both with respect to the center of the screen.

Table 4.5.1 SeeRay User Input Effects

SeeRay models rays as lines, with special cases denoted by differing colors and

stroke patterns. As illustrated in Figure 4.5.2, frustum rays and lines bordering the

projection plane are illustrated in yellow, while primary and secondary rays are

illustrated in white. Also shown are directional light shadow rays (dashed and

representing the color of the corresponding light) and environment rays as dotted lines.

Figure 4.5.3 illustrates point lights and point light shadow rays which lead from the

18

point of intersection to the light source, appearing as a dash-dot sequence. Only lights

that are not completely occluded for the point of intersection will have shadow rays

leading to them.

Figure 4.5.2 SeeRay applet tracing a ray through a sample scene illustrating various rays. Center

of projection, in upper-right corner, appears as a yellow dot at the tip of the viewing frustum, also in

yellow. Pre-rendered image is texture-mapped at upper right. The primary ray, in white, emanates

from the center of projection to the intersection point with the refractive sphere. Secondary

refraction rays also appear as white solid lines, while the environment ray reflected by the

checkerboard pattern appears dotted. Directional light shadow rays are dashed lines shooting up

out of the scene, colored by the corresponding light value (bright white in this illustration).

19

Figure 4.5.3 Point lights in SeeRay modeled as emissive spheres. Notice that at the point of

intersection of the primary ray with the plane at the bottom, point light shadow rays (dot-

dashed lines) run to the unoccluded grey and blue lights, but not to the red point light in the

upper left corner. The lack of shadow ray to the red point light is due to the total occlusion of

light caused by the object in the center of the scene.

20

SeeRay accepts applet initialization parameters as given in Table 4.5.2.

Parameter Name Type/Range

Default

Setting Effect

pointlightsize float in

(0..∞)

.2 Modifies the size of the emissive

spheres in visualization that

represent point lights.

projplanetrans float in [0..1] .1 Transparency value of the texture-

mapped image plane.

scenetrans float in [0..1] 0 Adjusts the overall transparency

level of the scene visualization.

Useful if opaque objects must be

able to be viewed through.

planedist float in

(0..∞)

2 Adjusts the position of the texture

mapped image plane from the center

of projection.

datafile

(required)
string N/A Relative URL to the scene input file

and associated pre-rendered images.

Table 4.5.2 SeeRay Applet Initialization Parameters

21

5. Conclusion and Future Work

The possibilities of future interactive educational aid development to enhance

the education of computer graphics concepts are exciting. Although our ray tracing

visualization software is a nice start, there are a few specific modifications worth

mentioning that could prove worthwhile.

One extension would be to modify SeeRay so it can send inter-applet

communications. Additional Applets could then be created to offer information during

runtime about which objects in the scene are currently under the mouse in SeeRay, or

the Applets might organize the rays currently displayed by SeeRay into a tree-view

format. It would then be possible to analyze an individual point of intersection or ray

appearing in the visualization with an additional query to the Applet.

We would also like to extend the functionality offered by SeeRay itself. SeeRay

currently offers no visualization of spatial optimization techniques, a potentially useful

feature. It would be a welcome extension to the Applet for a three dimensional

representation of bounding spheres, axis-aligned bounding boxes, and K-D trees to be

implemented. Volumes or regions in space where intersection points lie, or through

which rays pierce, might be denoted in the visualization through colored transparent

objects. Potentially, performance data such as number of object intersections evaluated

could be outputted, allowing the user to explore how well optimization techniques work

for various scenarios.

22

The current version of the Applets also make use of a proprietary scene input

format. It would be a nice feature to include a Virtual Reality Modeling Language

(VRML) parser to make the Applets suitable to a wider variety of sample scenes.

Creation of a translation utility to convert VRML to the proprietary input scene format

would alternatively accomplish the same.

23

References

APPEL68 Appel, A., “Some Techniques for Shading Machine Renderings of
Solids,” Proceedings of the Spring Joint Computer Conference, 1968,
pp. 37-45.

BEALL96 Beall, J.E., Doppelt A.M., and Huges, J.F., “Developing an
Interactive Illustration: Using Java and the Web to Make It
Worthwhile,” Computer Graphics (Proceedings of 3D and
Multimedia on the Internet, WWW and Networks), 16-18 April 1996,
Pictureville, National Musuem of Photography, Film & Television,
Bradford, UK.

GARLICK89 Garlick, Ben, Flyray program for SGI (unpublished).

MCMILLAN98 McMillan, Leonard, RayTrace Applet at
http://graphics.lcs.mit.edu/classes/6.837/F98/Project5/homepage.html

TELLER98 McMillan, Leonard and Teller, Seth, Massachusetts Institute of
Technology Computer Graphics Course Website at
http://graphics.lcs.mit.edu/classes/6.837/F98

PHONG75 Bui-Thoung Phong, “Illumination for Computer Generated Images,”
Communications of the ACM, 18(6), June 1975, pp. 311-317.

WHITTED80 Whitted, Turner, “An Improved Illumination Model for Shaded
Display,” Communications of the ACM, 23(6), June 1980, pp. 343-
349.

