Surfaces

Reading
Foley et.al., Section 11.3
Recommended:

Bartels, Beatty, and Barsky . An Introduction to Splines for
usein Computer Graphics and Geometric Modeling, 1987.

Tensor product Bézier surfaces

Given agrid of control pointsV;;, forming a control net, contruct a
surface S(u,v) by:

+ treatingrowsof V as control points for curvesVy(u),..., V).

* treatingVo(U),..., V,(u) ascontrol points for acurve parameterized by v.

Building surfaces from curves

Let the geometry vector vary by a second parameter v:
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Geometry matrices

By transposing the geometry curve we get:
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Tensor product surfaces, cont.

Let'swalk through the steps:
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Which control points are interpolated by the surface?

Bezier Blending Functions

ak.a. Bernstein polynomials
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Matrix form

Tensor product surfaces can be written out explicitly:

S(u,v) =8 aV,B"(u)B'(v)

Tensor product B-spline surfaces

Aswith spline curves, we can piece together a sequence of Bézier surfaces
to make a spline surface. If we enforce C2 continuity and local control,
we get B-spline curves:
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+ treatrowsof B ascontrol pointsto generate Bézier control pointsinu.
+ treat Bézier control pointsinu asB-spline control pointsinv.
+ treat B-spline control pointsinv to generate Bézier control pointsinu.
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Tensor product B-splines cont.
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Which B-spline control points are interpolated by the surface?
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Tensor product B-splines cont.
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Trimmed NURBS surfaces
Uniform B-spline surfaces are a special case of NURBS surfaces.

Sometimes, we want to have control over which parts of a NURBS
surface get drawn.

For example:
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We can do this by trimming the u-v domain.
+ Defineaclosed curvein the u-v domain (atrim curve)
+ Donot draw thesurface pointsinsideof thiscurve.
It'sredly hard to maintain continuity in these regions, especi aly while

animating.
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Surfaces of revolution

4

Idea: rotate a 2D profile curve around an axis.

What kinds of shapes can you model thisway?
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Variations

Severd variations are possible:

+ Scae C(u) asit moves, possibly using length of T(v) asascde
factor.
+ Morph C(u) into some other curve C’(u) asit moves aong T(v).
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Constructing surfaces of revolution
Given: A curveC(u) intheyz-plane:
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Let R (g) be arotation about the x-axis.

Find: A surface S(u,v) which isC(u) rotated about the zaxis.

S(u,v) =R (v)>C(u)
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General sweep surfaces
The surface of revolution is a specia case of a swept surface.
Idea: Trace out surface S(u,v) by moving aprofile curve C(u) dong a
trajectory curve T(v).

S(u,v) = T(T(v)) *C(u)
T(v

O
. C(u)
More specifically:
* Suppose that C(u) liesin an (X.,y.) coordinate system with originOy.
+ For every point along T(v), lay C(u) so thatO, coincides with T(v).
17

Orientation
The big issue:
+ How to orient C(u) asit moves dong T(v)?
Here are two options:
1. Fixed (or static): Just translateO, along T(v).

2. Moving. UsetheFrenet frame of T(v).

+ Allows smoothly varying orientation.
¢ Permits surfaces of revolution, for example.
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Frenet frames

Motivation: Given acurve T(v), we want to attach a smoothly varying
coordinate system. A

To get a 3D coordinate system, we need 3 independent direction vectors.

£(v) = normaliz&T ¢v))
b(v) =normalizgT ¢v)" T &)
AW) =b(v)” £(v)

Aswe move dong T(v), the Frenet frame (t,b,n) varies smoothly.
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Frenet swept surfaces

Orient the profile curve C(u) using the Frenet frame of the
trajectory T(v):

Put C(u) inthenormal planenb.
Place O, onT(v).

Align x. for C(u) with -n.

Align y, for C(u) with b.

HMw DR

If T(v) isacircle, you get a surface of revolution exactly?
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Summary

What to take home:

+ How to construct tensor product Bézier surfaces

¢ How to construct tensor product B-spline surfaces

¢ Surfaces of revolution

+ Construction of swept surfaces from a profile and trajectory curve

« With afixed frame
« With aFrenet frame
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