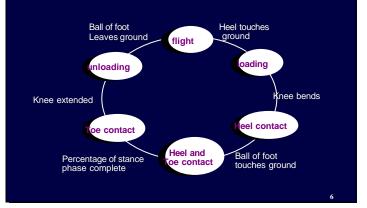


Control Systems

Where do the control laws come from?

2

- Observation
- Biomechanical literature
- Optimization
- Intuition


Hierarchy of control laws

- 1. State machine
- 2. Control actions
- 3. Low level control

Hierarchy of control laws

- 1. State machine
- 2. Control actions
- 3. Low level control

Running state machine

Hierarchy of control laws

5

- 1. State machine
- 2. Control actions
- 3. Low level control


Flight duration

Forward Velocity

Ground speed matching

Balance: roll, pitch, yaw

11

Mirroring: hips and shoulders

Control laws for all states

Neck: turn in desired facing direction Shoulder: mirror hip angle Elbow: mirror magnitude of shoulder Wrist: constant angle Waist: keep body upright

Hierarchy of control laws

- 1. State machine
- 2. Control actions
- 3. Low level control

Low level control

13

15

$$\mathbf{t} = k(\mathbf{q}_d - \mathbf{q}) + k_v(\dot{\mathbf{q}}_d - \dot{\mathbf{q}})$$

Difference between walking and running

14

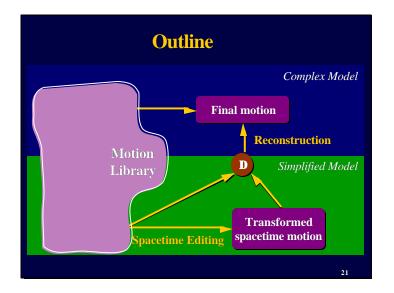
- Walking: double support
- Running: flight phase
- Energy transfer patterns
 - Inverted pendulum
 - Pogostick

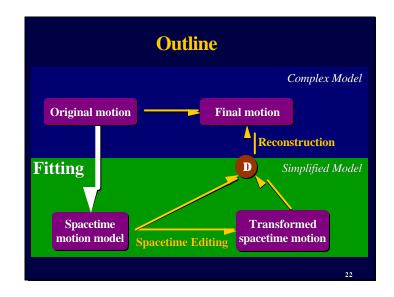
Physically Based Motion Transformation

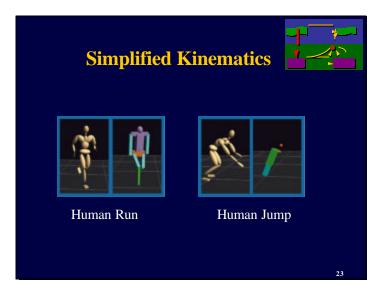
大麦生产大大生生美大

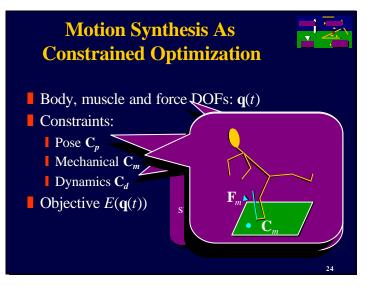
Captured Motion

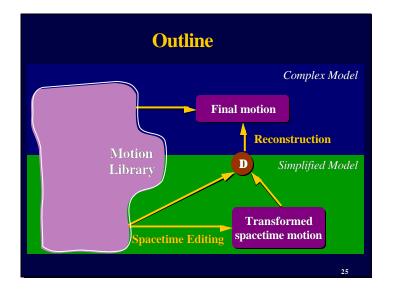
- Works well only for small deformations
- No high-level editing constructs

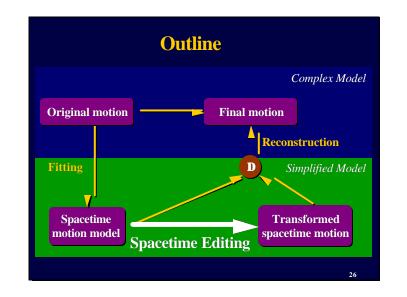



High Level Control


- Get a limp walk by making one leg stiff
- Reduce gravity to get a "moon walk"
- Change the position and timing of foot placements
- Make a "quiet" run by reducing the floor impact forces


The New Approach


- Transform existing motion
- Spacetime constraints formulation
- Simplified character representation
- Get the best of both worlds:
 - Expressiveness of captured data
 - Controllability of the spacetime model

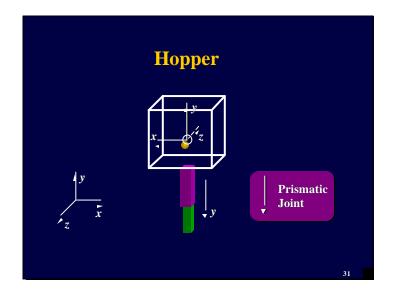


Spacetime Editing

27

- Change pose and environment constraints
 - Foot placement and timing
 - Introduce a new obstacle
- Change the objective function
 - Minimize floor impact forces
 - Make dynamic balance more important

- Change explicit character parameters
 - Short leg
 - Redistribute mass
 - Modify muscle characteristic
 - **Gravity**


Example: Human Run

- Original model has 59 DOFs
- Simplified model has *19* DOFs
- Optimizations are done on one gait cycle
- Each optimization completes within 2 minutes

29

Example: Human Broad Jump

- Original model has 59 DOFs
- Simplified model has *11* DOFs
- Entire upper body reduced to a mass point
- No joint angle DOFs

