Topicsin Articulated Animation

Animation

Articulated models:
® rigid parts
® connected by joints

They can be animated by specifying the joint angles (or other
display parameters) as functions of time.
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Reading

Shoemake, “ Quaternions Tutorial”

Character Representation

Character Models arerich, complex
® hair, clothes (particle systems)

® muscles, skin (FFD’setc.)

Focusisrigid-body Degrees of Freedom (DOFs)

® jointangles




SimpleRigid Body Skeleton
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K ey-frame animation
® Each joint specified a various key frames (not necessarily the same as other
joints)

® System does interpolation or in-betweening

Doing thiswell requires:

® A way of smoothly interpolating key frames. splines
® A good interactive system

® Alot of skill on the part of the animator
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Kinematics and dynamics
Kinematics. how the positions of the parts vary asafunction of the
joint angles.

Dynamics: how the positions of the partsvary asafunction of
applied forces.

Efficient Skeleton: Hierarchy

® eachbonerelativeto parent
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Computing a Sensor Position
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Euler angles

Joints = Rotations

To specify a pose, we specify the joint-angle rotations

Each joint can have up to three rotational DOFs

An Euler angle is a rotation about a single Cartesian axis

Create multi-DOF rotations by concatenating Eulers

Can get three DOF by concatenating:

Euler-X Euler-Y

Euler-Z
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rotation

Why isthis bad?

DOFs (i.e. derivatives)

® continuous subspace of parameter space dl of whose elements map to same

induces gimbal lock - two or more axes aign, results in loss of rotational

1 DOF: knee 2 DOF: wrist 3 DOF: arm
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Singularities
What is asingularity?
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Singularitiesin Action

An object whose orientation is controlled by Euler rotation XYZ( , , )

(0,0,0) : Okay

(0, £90°,0) : Xand Z axes align
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Resulting Behavior

No applied force or other stimuli can induce
rotation about world X-axis

The object locks up!!
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Eliminatesa DOF

In this configuration, changing (X Euler angle) and  (Z Euler angle) produce
the same result.

No way to rotate around world X axis!

Z-rot Y-rot X-rot
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Singularitiesin Euler Angles
Cannot be avoided (occur at 0° or 90°)
Difficult towork around

But, only affects three DOF rotations
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Other Propertiesof Euler Angles

Several important tasks are easy:
® interactive specification (siders, €c.)
® joint limits
® Euclidean interpolation (Hermites, Beziers, etc.)
— May befunky for tumbling bodies

— finefor most joints
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History of Quaternions

Invented by Sir William Rowan Hamilton in 1843
H = w+i x+ y+kz
wherei?=j % =k * Sjk =-1

| still must assert that this discovery appears to me to be asimportant for the middle of the nineteenth
century as the discovery of fluxions [ the calculus] was for the close of the seventeenth.

Hamilton

[quaternions] ... although beautifully ingenious, have been an unmixed evil to those who have touched
themin any way.

Thompson
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Quaternions

But... singularities are unacceptable for IK, optimization

Traditiond solution: Use unit quaternions to represent rotations
® S8 has same topology as rotation space (a sphere), so no singularities
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Axis-anglerotation asa quaternion

_a®03(q/2) ¢
&sin@/2)r g
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Quaternion Product
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Unit Quaternions

822 W:—Jl—(X2+ V' +7Z)

Jaf=1
X2 +y? +z% +w® =1
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Quaternion Conjugate
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Quaternion Inverse

qg =1
q'l=0|'/|q|=aewt_;"/|o||=89N';9(vv2 + V)
g'Vz g'Vﬂ
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Quaternion constraints

Restricting the rotation cone

1- co!
zs(qx) - qyz +qzz

Restricting the rotation twist around an axis
v

tan(q /2) =is

Iw
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Quaternion Rotation
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What about a quaternion producta,q,?
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Matrix Form

a&- 2y*- 27> 2xy+2wz  2xz- 2wy €
M :g 2y- 2wz 1-2x*- 22  2yz+2wx .
S 2z+2wy  2yz-2wx  1-2x*- 2y*7
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Quaternions. What Works

Simple formulae for converting to rotation matrix

Continuous derivatives - no singularities

“Optimal” interpolation - geodesics map to shortest pathsin rotation

space

Nice calculus (corresponds to rotations)
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Procedural Animation

Transformation parameters as
functions of other variables

Simple example:
® aclock with second, minute and hour
hands
® hands should rotate together

® expressall themotionsintermsof a
“seconds’ variable

® whole clock is animated by varying the
seconds parameter
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What Hierarchies Can and Can’t Do

Advantages:
® Reasonable control knobs
® Maintains structural constraints
Disadvantages:
® Doesn't aways give the “right” control knobs
— e.g. hand or foot position- re-rooting may help
® Can't do closed kinematic chains (keep hand on hip)
® Other congraints: do not walk through walls
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Models as Code: draw-a-bug

voi d draw _bug(wal k_phase_angl e, xpos, ypos zpos){

pushmatri x

transl at e( xpos, ypos, zpos)

calculate all six sets of |leg angl es based on
wal k phase angl e.

draw bug body

for each |eg:
pushmat ri x
transl ate(l eg pos relative to body)
draw_bug_l eg(thetal& heta2 for that |eg)
popmat ri x

popnat ri x

voi d draw bug_| eg(float thetal, float theta2){
gl PushMatri x();
gl Rotatef (thetal, 0,0, 1);
draw_| eg_segnent ( SEGVENT1_LENGTH)
gl Transl at ef (SEGVENT1_LENGTH, 0, 0) ;
gl Rotatef (theta2,0,0,1);
draw_| eg_segnent ( SEQVENT2_LENGTH)
gl PopMatrix();
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Hard Example

In the figure below, what expression would you use to calculate the
arm’ srotation angle to keep thetip on the star-shaped wheel asthe
wheel rotates???
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