Parametric Curves

Reading

+ Foley, Section 11.2
Optional
+ Bartels, Beatty, and Barsky . An Introduction to Splines

for usein Computer Graphics and Geometric Modeling,
1987.

+ Farin. Curves and Surfaces for CAGD: A Practical
Guide, 4th ed., 1997.

Curves before computers
The" loftsman’s spling”:

+ long, narrow strip of wood or metal
+ shaped by lead weights called “ducks’
+ gives curves with second-order continuity, usualy

Used for designing cars, ships, airplganei €etc.

M otivation for curves

What do we use curvesfor?
+ building models

+ movement paths

* animation




Mathematical curve representation

* Explicit y=f(X)
« what if the curveisn’t afunction?

¢ Implicit f(xy)=0
« hardtoworkwith

x2+y?-R2=0

+ Parametric (f(u),g(u))
X(u) = cos 2pu
y(u) =sin2pu

Parametric polynomial curves

We'll use parametric curves where the functions are all
polynomialsin the parameter.

Nk
X(u)= & aku
k=0
n k
y(u)= & hu
k=0
Advantages:

+ easy (and efficient) to compute
+ infinitely differentiable

Cubic curves
Fix n=3

For simplicity we define each cubic function within the range
O£t £1

QM =[xt) y@) z®)]
Q) =at’+ht’ +gt+d

Q(t)=at’+ht*+gt+d,
Q) =at’+ht* +gt+d,

Compact representation

Place dll coefficientsinto a matrix

gzx a, @3
c=¢€" B bz@ T=g € t 1
&, ¢ Gu
& d, dg
@ a3 au
QM) =[xt) wt) zv)]=g* ¢ tl‘gbx b, bzg =T>C
¢ %e, ¢, c.0
&, d o

d . d_ ., \
QA =QW=—TC=@" 2 1 OfpC




Controlling the cubic Constraining the cubics

Q: How many constraints do we need to specify to fully

determine the cubic Q(t)? Redefine C asaproduct of thebasis matrixM and the

4-element column vector of constraints or geometry vector G

C=M>G
en, m, my; m,uG, G, Glﬂ
Q=g t* t g M M Maie O Cuy
y My my MGG, G, Ggu
gm41 m, Mg mMHnglx G4V G4ZH

=T MG

Hermite Curves
Determined by

¢ endpoints P, and P,
+ tangent vectors at the endpoints R, and R,

)
QM =TxM, G,

Where
éP, P, Pl
e u
Gh - §P4x P4v P4Zl;|
erR, R, R,U
e u
éR4x Riy Rlz(]
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Computing Hermite basis matrix

The constraints on Q(0) and Q(1) are found by direct
substitution:
Q) =[0 0 0 1:M,G,

QW=[1 1 1 1M G,
Tangents are defined by

Q&)=g3% 2t 1 OpM G,
S0 constraints on tangents are.

Q%0)=[0 0 1 0]M, G,

Q%n=[3 2 1 0]M G,
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Computing Hermite basis matrix

Collecting al constraints we get

éR, R, R.U € 0 0 14
é G é U
?Rlx Bly lez@:Ghzél 11 1L9Mh)Gh
eR, R, R.U €0 0 1 0u
u
X R4y R4Z|:] gg 21 OH
S
€0 0 0 14" 62 -2 1 1¢
é a e 9
yooel 111 g3 3 2 -1
"e 0100 €0 0 1 0¢
@210 & o0 o of
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Computing a point

Given two endpoints (P,,P,) and two endpoint tangent vectors
(Rl ’ R4) Q(t)

S IS
R,

0

é Uép U
Q=g © t &> > 7 taehy
&0 0 1 0GR
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Blending Functions

Polynomials weighting each element of the geometry vector

€2 -2 1 1UépU

e ue u

_&3 2 e 3 -2 -1gePayg
Q) =8° t= t 14 ey
e 0ép 0 1 0UERqU

e gé

61 0 0 OpeR4p

éPu R
ép G Bi(t) ]
:Bh(t)e 4l,'| 1 I34
u

e,
es u
&R, 0




Continuity of Splines

CO: points coincide,
velocities don't

G points coincide,
velocities have same direction

Ct points and velocities
coincide

Q: What'sC??
17
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Bezier Curves

Indirectly specify the tangent vectors
by specifying two intermediate points s

P2

R1=3(P2'P1)

R, =3(P, - P,)

eplx Ply F)].Zl;l éPlu ! ¢ ’
€ U &0
G éPZX PZy PZZ L’J_ ZPZH
P8R, Ry RO &R
€ u e u
e ax P4y Rlz[] eP40
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Bezier basis matrix

Establish the relation between the Hermite and Besier
geometry vectors:

R, =3(P,- R)
R1:3(P4' Ps)
6P.U €1 0 0 OWPU
®p,Y €0 0 0 1YY
G,=¢ "u=¢ ue "U=M,G,
éR,0 &3 3 0 0eRu
e, U e Ue, u
&R0 60 0 -3 3gelua
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Bezier basis matrix

Q(t):TthGh:TMR(M rb>Gb)
=TH{M, M, )G, =TM, G,

é1 3 -3 1

é a
€3 -6 3 0V
M. =M.M. =€ u
© " a3 3 0 o0
€1 0o o of

Q) =T>M G,
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Bezier Blending Functions

ak.a Bernstein polynomials

&1 3 -3 14, . 6P 0
€3 .6 3 ol €p U
Q=43 2 « 10é Uer2i=p, (t)€ 2d
: 63 3 0 Ougfsy &R u
§1 0 o0 ogfH &,
By(t)
1+ B
B, 4
BZ B3
1 t 22

Alternative Bezier Formulation

Qv=4 R a-u*
(7]

i=0

&1 3 -3 1

é B Ue “a

on =43 2 t 1@é3 6 3 Oy :
© ‘&3 3 0 ouf2d

g1 0 o ofes

8
QO

Ay =4PT3a-v

N
o

QJO:
-0
@0
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Displaying Bézier curves
How could we draw one of these things?

W

DisplayBezier( VO, V1, V2, V3) "
begin
if ( FlatEnough( VO, V1,V2,V3))
Line( VO, V3); Y
else /
do something smart;
end;

It would be nice if we had an adaptive algorithm, that would
take into account flatness.

24




Subdivide and conquer

LS| My 1".?
P o —— - - -
"I - : s
lln' '\-'; il .'- e E N 2 .
T L :__,.- S+ 1T ] T "_ -0 ¥
Pl R
[, '-\'\
vag S .
.I £ q"‘.
o DisplayBezier( VO, V1,V2,V3) ,
/ . ‘\.w,.
Y begin
i if ( FlatEnough( VO, V1,V2,V3))
‘f Line( VO, V3);
Yo else
Subdivide(V)P L R
DisplayBezier(LO, L1, L2, L3);
DisplayBezier( RO, R1,R2,R3);
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Testing for flatness
Wa

Wi

il

i
" Va

Vi d
Comparetotal length of control polygon to length of line

connecting endpoints:

SV VI Y Vs <l+e
o= Vs

0
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end,;

M ore complex curves
Suppose we want to draw a more complex curve.

Why not use a high-order Bézier?

Instead, we'll splice together a curve from individual segmentsthat are
cubic Béziers.

Why cubic?

There are three properties we'd like to have in our newly constructed
27

splines...

L ocal control

One problem with Béziersis that every control point affects every point
on the curve (except the endpoints).

Moving a single control point affects the whole curve!

" Wedlikeour spline to havelocal control, thet is, have each control point
*  affect some well-defined neighborhood around that point.

28




I nter polation

Bézier curves are approximating. The curve does not
(necessarily) pass through al the control points. Each point
pullsthe curve toward it, but other points are pulling aswell.

e -

We'd like to have a splinethat isinterpolating, that is, that
aways passes through every control point.
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Continuity

We want our curve to have continuity. There shouldn't be an abrupt
change when we move from one segment to the next.

There are nested degrees of continuity:

co ct

cz

e
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Ensuring continuity

Let’slook at continuity first.

Since the functions defining a Bézier curve are polynomial,
dl their derivatives exist and are continuous.

Therefore, we only need to worry about the derivatives at the
endpoints of the curve.

First, we'll rewrite our equation for Q(t) in matrix form:

é&1 3 -3 1w éRu
é G0ésl
23 -6 3 - ZP~
W= t2 t 1y € uég
e fes s uen
&1 b &Y
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Derivativesat the endpoints

Q%0) =3(v;- V%)

QL) =3(V;- V)

QK0) = 6(V, - 2y +V,)

Q8L) = 6V~ 2, +V,)

In generd, the nth derivative at an endpoint depends only on
the n+1 points nearest that endpoint.

32




Ensuring C? continuity

Suppose we want to join two cubic Bézier curves
(Vo V1, V4, V5) and (W, W4, W,,W,) so that thereis C2

continuity at thejoint. w, w,
W v
= W.
" ¥ W, .:

vl QM=Q,0 P V; =W,
QUO) =3(,- \,) Qv¢(1) = QW‘KO) P Vs -V, 2W, - W,
QL) =3(%- Vi) Q¥D=Q.%0) P V- 2,+V,=W,- 2W, +W,
Q®0) =6(Vy 2/ +V,) R

Q%1)=6(- ¥, +V;)

W, =V +4V,- 4V
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A-frames and continuity

Let’ stry to get some geometrical intuition about what thislast
continuity equation means.

If aand b are points, what is (2a-b)?

Building a complex spline

Instead of specifying the Bézier control points themselves, let’s specify
the corners of the A-frames in order to build a C? continuous spline.

These are called B-splines. The starting set of points are called de Boor

points. -

W, =V, +4;- A,

v, =2 (2V;-V)-(2V,- V)
2:
f
' — -
Vv, /};

- \ o = ‘.-'

wooow, N

B-splines

Hereisthe completed R-spline

or
-

= \ I
il o

e 2 1o s
h=5 @t (B BY BB, B):

V=B +3(B,-B)

V=B 2@ B)
V=
What are the Bézier control points, in terms of the de Boor

ints?
points? 36




Endpoints of B-splines

We can see that B-splines don't interpol ate the de Boor
points.

It would be nice if we could at least control the endpoints of
the splines explicitly.

There' s ahack to make thespline begin and end at control
points by repeating them.

-f\
= — _-..f =
37

B-spline basis matrix

é1 3 -3 1,

e a&oy
Q=4 2 t 193(93 -6 3 Oueug

6e3 0 3 002y
§1 4 1 ofese
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C2? interpolating splines
Interpolation is a really handy property to have.

How can we keep the C? continuity we get with B-splines but get
interpolation, too?

Here' stheideabehind C2interpolating splines. Suppose we had cubic
Béziers connecting our control points C,, C,, C, ..., and that we
somehow knew the first derivative of the spline a each point.

[

Gy

L.

[ Oz

What are the VVand W control pointsin termsof Csand Ds?
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Finding the derivatives

Now what we need to do is solvefor the derivatives. Todo
thiswe'll use the C2 continuity requirement.

%=G W=G
V=CgHD. W=C;HD,
V=630 W=C;14D,
V=G W=G,
6(Vyi- 2V, +V;) =6(W, - 2W, +W,)
R

D,+4D,+ D, =3(C,- Cy)

40
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Finding the derivatives, cont.

Here' swhat we' vegot sofar:

D, +4D,+ D, =3(C,- C,)
D, +4D, +D, =3(C,- C,)
M
D, ,+4D,,+D_=3(C, - C,,)

How many eguationsisthis?

How many unknowns are we solving for?

41

Not quite done yet

We have two additional degrees of freedom, which we can
nail down by imposing more conditions on the curve.

There are various ways to do this. We'll use the variant
cdled natural C2inter polating splines, which requiresthe
second derivative to be zero at the endpoints.

This condition gives us the two additional equations we need.
AttheC, endpoint, it is:

6(V, - 2V, +V,) =0

2

Solving for the derivatives

Let'scollect our m+1 equations into a single linear system:

e 1 0éD, 0 63(C,-G) U
ue u e u
et 41 aePig e X% G g
6 1 4 1 UéD, U é3C,-C) U
é ué u=é U
é 0O ae Mg e M g
e 1 4’ ll;' ?Dmlu iB(Cm-Cm-Z)U
e ue u e
é 1 258D,0 &(C,-Ch)i

It's easier to solve than it looks.

We can use forward elimination to zero out everything below the
diagonal, then back substitution to compute each D vdue.

Forward eimination

First, we eliminate the elements below the diagonal:

& 1 0 6D, U 6E, U
8 Gép U &p G
et 41 aePig eBiyg
e 141 4 éD, u_€E,
e ue u=e u
e © geMy eMy
€ 1 4 1uep,,u g U
€ u e u € u
] 1 25 eD.0 €E. M@
& 1 uébou e FKR=E U
ue u u
o 721 i &0y gl=1=E1-(1/2)EoL:j
¢ 141 ueépue E U
e ue u-—e u
é o aéMg é M a
8 14 108 4 & E a
¢ Getoe Mg
é 1 208D,q & E. a
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Back subsitution

Theresulting matrix is upper diagonal :
UD=F

on

Uy,

g
o

D> D> D> Dr
O o O
-
™ D D D

o N

N
[ Y ey e e e enY e ey end

0] M

<

8) D D
3
A
[(eYalaY el el oY ey el o
I
SR) D D
<

z

a> D> D> (D> D> D> D> D> E\
coooooooc

@D,
O

@D,
n

U @

m

3

We can now solve for the unknowns by back substitution:
ummDm = Fm
u D, +UpmDn=Fo

m-1m-1="m: m-1lm—m 415

C? interpolating spline

Once we've solved for the real D;s, we can plug them in to find our Bézier
control points and draw the final spline:

Have we lost anything?
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A third option

If we're willing to sacrifice C2 continuity, we can get
interpolation and local control.

Instead of finding the derivatives by solving a system of
continuity equations, we'll just pick something arbitrary but
local.

If we set each derivative to be a constant multiple of the
vector between the previous and next controls, we get a
Catmull-Rom spline.

Catmull-Rom splines

The math for Catmull-Rom splinesispretty smple:
Do :Cl - Co
D,;=%(C; - Cy)
D2 = %(Qz - C1) L1

12



Catmull-Rom basis matrix

gL 3 13 Tl
- - e, u
Q=43 2 t 1@&@2 5 4 lu(:eplg
© 261 0 1 oG

é UgP3p
g0 2 0 og¥
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Summary

*Enforcing constraints on cubic functions

*The meaning of basis matrix and geometry vector
*Genera procedure for computing the basis matrix
*Properties of Hermiteand Bezier splines

*The meaning of blending functions

Enforcing continuity across multiple curve segments
*How to display Bézier curves with line segments.
*Meanings of Ck continuities.

*Geometric conditions for continuity of cubicsplines.

*Properties of C2 interpolating splines, B-splines, and Catmull-Rom
splines.

50

13



