
1

Hierarchical Modeling

Reading

w Angel, Interactive Computer Graphics , sections 8.1 - 8.6

Optional

w Foley, Computer Graphics, Chapter 5.
w OpenGL Programming Guide, chapter 3

Symbols and instances

Most graphics APIs support a few geometric primitives:

w spheres
w cubes
w cylinders

These symbols are instanced using an instance
transformation.

Q: What is the matrix for the instance transformation above?

Instancing in OpenGL

In OpenGL, instancing is created by modifying the model-
view matrix:

Do the transforms seem to be backwards? Why was OpenGL
designed this way?

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(...);
glRotatef(...);
glScalef(...);
house();

2

Instancing in real OpenGL

The advantage of right-multiplication is that it places the
earlier transforms closer to the primitive.

glPushMatrix();
glTranslate(...);
glRotate(...);
house();
glPopMatrix();

glPushMatrix();
glTranslate(...);
glRotate(...);
house();
glPopMatrix();

Connecting Primitives

3D Example: A robot arm

Consider this robot arm with 3 degrees of freedom:

w Base rotates about its vertical axis by θ
w Lower arm rotates in its xy-plane by φ
w Upper arm rotates in its xy-plane by ψ

Q: What matrix do we use to transform the base?

Q: What matrix for the lower arm?

Q: What matrix for the upper arm?

Robot arm implementation

The robot arm can be displayed by keeping a global matrix and computing
it at each step:
Matrix M_model;

main()
{

. . .
robot_arm();

. . .

}
robot_arm()

{

M_model = R_y(theta);
base();

M_model = R_y(theta)*T(0,h1,0)*R_z(phi);
upper_arm();

M_model = R_y(theta)*T(0,h1,0)*R_z(phi)

*T(0,h2,0)*R_z(psi);
lower_arm();

}

Do the matrix computations seem wasteful?

3

Instead of recalculating the global matrix each time, we can just update it
in place:

Matrix M_model;
main()

{
. . .

M_model = Identity();

robot_arm();
. . .

}

robot_arm()
{

M_model *= R_y(theta);
base();

M_model *= T(0,h1,0)*R_z(phi);

upper_arm();
M_model *= T(0,h2,0)*R_z(psi);

lower_arm();
}

Robot arm implementation, better
OpenGL maintains a global state matrix called the model-
view matrix.

main()
{

. . .
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
robot_arm(a, b, c);
. . .

}
robot_arm(theta, phi, psi)

{
glRotatef(theta, 0.0, 1.0, 0.0);

base();

glTranslatef(0.0, h1, 0.0);
glRotatef(phi, 0.0, 0.0, 1.0);

lower_arm();
glTranslatef(0.0, h2, 0.0);

glRotatef(psi, 0.0, 0.0, 1.0);

upper_arm();
}

Robot arm implementation, OpenGL

Hierarchical modeling

Hierarchical models can be composed of instances using trees
or DAGs:

w edges contain geometric transformations
w nodes contain geometry (and possibly drawing attributes)

A complex example: human figure

Q: What’s the most sensible way to traverse this tree?

4

Human figure implementation

The traversal can be implemented by saving the model-view
matrix on a stack:

figure()
{

glPushMatrix();
glTranslate(...);
glRotate(...);
torso();
glPushMatrix();

glTranslate(...);
glRotate(...);
head();

glPopMatrix();
glPushMatrix();

glTranslate(...);
glRotate(...);
left_upper_leg();

glPopMatrix();
. . .

glPopMatrix();
}

Animation

The above examples are called articulated models:

w rigid parts
w connected by joints

They can be animated by specifying the joint angles (or other
display parameters) as functions of time.

t1 t2

θ

t1 t2

()tθ

Scene graphs

The idea of hierarchical modeling can be extended to an
entire scene, encompassing:

w many different objects
w lights
w camera position

This is called a scene tree or scene graph.

object1camera light

Scene

object3object2

Summary

Here’s what you should take home from this lecture:

w How primitives can be instanced and composed to create
hierarchical models using geometric transforms.

w How transforms can be thought of as affecting either the geometry,
or the coordinate system which it is drawn in.

w How the notion of a model tree or DAG can be extended to entire
scenes.

