#### Reading

Stollnitz, DeRose, and Salesin. *Wavelets for Computer Graphics: Theory and Applications*, 1996, section 10.2.

#### **Subdivision surfaces**

# Subdivision curves

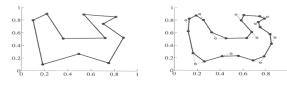
 $\rightarrow$  ...

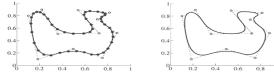
#### Idea:

• repeatedly refine the control polygon

$$\begin{array}{cccc} P_0 & \to & P_1 & \to & P_2 \\ & & C = \lim P_i \end{array}$$

• curve is the limit of an infinite process

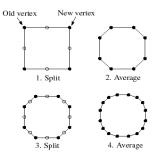




# Chaikin's algorithm

Chakin introduced the following "corner-cutting" scheme in 1974:

- Start with a piecewise linear curve
- Insert new vertices at the midpoints (the **splitting step**)
- Average each vertex with the "next" neighbor (the **averaging step**)
- Go to the splitting step



#### Averaging masks

The limit curve is a quadratic B-spline!

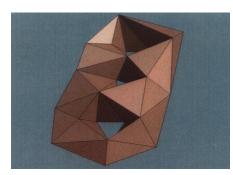
Instead of averaging with the nearest neighbor, we can generalize by applying an **averaging mask** during the averaging step:

$$r = (\dots, r_{-1}, r_0, r_1, \dots)$$

In the case of Chaikin's algorithm:

r =

# **Building complex models**





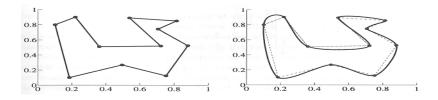
# **DLG interpolating scheme (1987)**

Slight modification to algorithm:

- splitting step introduces midpoints
- averaging step only changes midpoints

For DLG (Dyn-Levin-Gregory), use:

$$r = \frac{1}{16}(-2,6,10,6,-2)$$



Since we are only changing the midpoints, the points after the averaging step do not move.

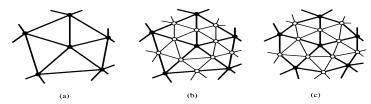
# Subdivision surfaces

Chaikin's use of subdivision for curves inspired similar techniques for subdivision.

Iteratively refine a **control polyhedron** (or **control mesh**) to produce the limit surface

$$\sigma = \lim_{j \to \infty} M^{j}$$

using splitting and averaging steps.

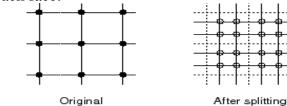


There are two types of splitting steps:

- vertex schemes
- face schemes

#### **Vertex schemes**

A vertex surrounded by *n* faces is split into *n* subvertices, one for each face:



Original Doo-Sabin subdivision:

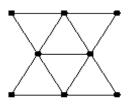






# Face schemes, cont.

Each triangular face is split into four subfaces:

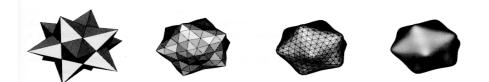


Original



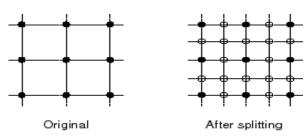
After splitting

#### Loop subdivision:

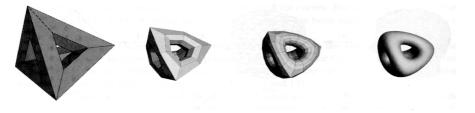


# **Face schemes**

Each quadrilateral face is split into four subfaces:

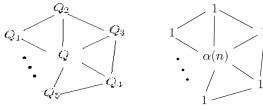


Catmull-Clark subdivision:



# Averaging step

Once again we can use **masks** for the averaging step:



Vertex labeling

Averaging mask

$$Q \leftarrow \frac{\alpha(n) + Q_1 + \dots + Q_n}{\alpha(n) + n}$$

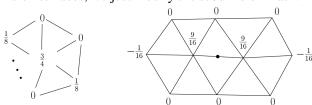
where

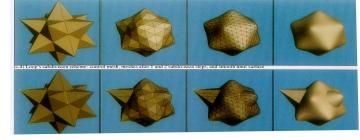
$$\alpha(n) = \frac{n(1 - \beta(n))}{\beta(n)} \quad \beta(n) = \frac{5}{4} - \frac{(3 + 2\cos(2\pi/n))^2}{32}$$

(carefully chosen to ensure smoothness.)

#### Adding creases without trim curves

Sometimes, particular feature such as a crease should be preserved. With NURBS surfaces, this required the use of trim curves. For subdivision surfaces, we just modify the subdivision mask:





# Creases without trim curves, cont.

Here's an example using Catmull-Clark surfaces of the kind found in Geri's Game:

