Realistic Character Animation

Reading

- Jessica Hodgins, et.al, Animating Human Athletics, SIGGRAPH '95
- Zoran Popović, Changing Physics for Character Animation, SIGGRAPH '00

Modeling Realistic Motion

- Model muscles
- Environment forces
- Energy consumption
- Individual style

Two Approaches

- Simulate robot controllers
- Solve a large optimization that obeys laws of physics and minimized energy consumption

Control Systems

Where do the control laws come from?

- Observation
- Biomechanical literature
- Optimization
- Intuition

Hierarchy of control laws

- 1. State machine
- 2. Control actions
- 3. Low level control

5

Hierarchy of control laws

- 1. State machine
- 2. Control actions
- 3. Low level control

Running state machine

Hierarchy of control laws

- 1. State machine
- 2. Control actions
- 3. Low level control

Flight duration

Forward Velocity

13

Ground speed matching

14

Balance: roll, pitch, yaw

Mirroring: hips and shoulders

Control laws for all states

Neck: turn in desired facing direction Shoulder: mirror hip angle Elbow: mirror magnitude of shoulder Wrist: constant angle Waist: keep body upright

Hierarchy of control laws

- 1. State machine
- 2. Control actions
- 3. Low level control

Low level control

$$\tau = k(\theta_d - \theta) + k_v(\dot{\theta}_d - \dot{\theta})$$

Difference between walking and running

- Walking: double support
- Running: flight phase
- Energy transfer patterns
 - Inverted pendulum
 - Pogostick

17

Spacetime Optimization

21

Captured Motion

- Works well only for small deformations
- No high-level editing constructs

High Level Control

- Get a limp walk by making one leg stiff
- Reduce gravity to get a "moon walk"
- Change the position and timing of foot placements
- Make a "quiet" run by reducing the floor impact forces

The New Approach

- Transform existing motion
- Spacetime constraints formulation
- Simplified character representation
- Get the best of both worlds:
 - Expressiveness of captured data
 - Controllability of the spacetime model

Complex Model Final motion Notion Library Spacetime Editing

25

Simplified Kinematics

Human Run

Human Jump

- Foot placement and timing
- Introduce a new obstacle
- Change the objective function
 - Minimize floor impact forces
 - Make dynamic balance more important

Reconstruction

Transformed spacetime motion

Δ

Spacetime Editing

Simplified Model

Fitting

Spacetime

motion model

Spacetime Editing

- Change explicit character parameters
 - Short leg
 - Redistribute mass
 - Modify muscle characteristic
 - Gravity

Example: Human Run

- Original model has 59 DOFs
- Simplified model has **19** DOFs
- Optimizations are done on one gait cycle
- Each optimization completes within 2 minutes

33

Example: Human Broad Jump

- Original model has 59 DOFs
- Simplified model has **11** DOFs
- Entire upper body reduced to a mass point
- No joint angle DOFs

