Notes from the Help Session

For the Trace Project

Raytracers are often big programs. They're very much the compilers of the graphics world: they compile some sort of scene description into an array of colors. Fortunately, this raytracer is actually pretty small.  It has a limited set of base features, and only has about 5000 lines of C++ code behind it.

Fortunately, its features are a good solid core, and there’s plenty of room for you to add and adjust to your heart’s content.

Part I: Files and Classes

After you have unpacked the skeleton and looked at the sample solution (sample_ray.exe or sample_ray), you will probably want to take some time to just look through the code and figure out what is going on where.  In this section, I’ll describe some of the main files and data structures, as well as show what calls what in a typical run of the program.

Tour of Files

To begin, there are quite a few files associated with this project.  I have grouped files into a directory structure that should make it easier to navigate through the source code:

rt2000sp-skel – project files, Makefile, sample executables


Release – results of MSVC compilation


Debug – results of MSVC compilation


scenes – sample scenes to raytrace


src – top-level raytrace code.  Reflection, Refraction, and most other optional effects go here.



fileio – file input/output code.  You don’t need to modify this unless you modify the file format



scene – classes that represent the “scene.”  Shading & Lighting code goes here.



SceneObjects – geometry classes.  Box & Cylinder Intersection code goes here.



ui – the user interface classes.  Add Custom UI Controls here.



vecmath – vector and matrix math support code.  You don’t need to modify this.

vecmath/vecmath.h
This is a good file to become very familiar with.  It contains two important classes, vec3 and vec4.  These are a 3-component vector and 4-component vector respectively.  Almost all the math you do will be in terms of vectors.  The interface is fairly intuitive, letting you do most algebra operations on vectors using intuitive names like “vector.dot(othervector)” and “vector.cross(othervector)”

scene/ray.h
A useful one to know as well.  A ray is basically a position and a direction, someplace in 3D space.  Also defined in this file is an isect, which contains information about the point where a ray intersected an object.  It contains, among other things, a pointer to the object, the surface normal at the intersection, and a “t” value to use in calculating the intersection point.

RayTracer.cpp
This is where raytracing begins.  For each pixel in the image, traceRay() gets called.  It gets passed a pointer to the scene geometry information, a ray, and two variables you can use to manage recursion.  (Remember, adding in recursion is your job.)  It calls scene->intersect() to find the first intersection of that ray with an object, and gives you an isect to work with.

scene/material.cpp
When an intersection happens, you need to figure out what color the surface is at that point.  For that, you need a handy shading model, and someplace in the program that knows how to do it.  That’s what goes in this file.  This is the place where color gets calculated from material properties.  Right now it only does one thing: return a diffuse color.

scene/light.cpp
As part of shading, you generally need to look at light sources.  This is the code that knows how to handle them.  This is a good place to deal with attenuation.

fileio/read.cpp
Okay, after looking this all over you decide life is too simple, and you’re ready to add extra features, like spotlights for instance.  How do you work them in to the scene graph?  That’s where this file comes in.  As a .ray file is opened, it is parsed into a set of objects, and then each object gets processed in turn into an item in the scene graph.  Additions to the file format would start in the processObject() function in this file.

SceneObjects/*.cpp
This is where most of the intersection code is written.  Look in here to get an idea of how intersections work and to implement box and cylinder intersections. 

ui/TraceUI.cpp
This is where the user interface code resides.  Look at how the example sliders are implemented.  This is where you will put any custom controls you create.  You can access these controls by adding an “extern TraceUI* traceUI” to the top of each file you need UI access in (the global ‘traceUI’ object resides in ‘main.cpp’).  Then, any code inside that file can make calls to                       “traceUI->someFunction()”.

Important Data Structures

For the most part I’ll leave you to explore the data structures in those files on your own.  But to get a good headstart, here are some of the pieces you will need to work with:

Inside class ray:

In general, a ray is a self-contained object with a position and direction.  You can call getPosition and getDirection to get those vectors as you need.  One additional useful method is “at” which calculates the linear formula [P + t*D] and returns a new point.

Inside class isect:

const SceneObject *obj;
A pointer to the object intersected, in case you need to access the object.

double t;
This is the linear value from where the ray intersected the object.  In other words, if you wrote out the ray formula as [P + t*D] where P is the position of the ray and D is the direction, this t is the t in the formula.  You can use it to find the point in 3D space where the intersection took place.

vec3 N;
This is the surface normal where the intersection happened.

const Material &getMaterial() const;
And finally, this method gets the material properties of the surface at the intersection.  It’s just a time-saver, using the intersection’s own material pointer if it’s defined, or getting the object material if not.

Inside class material:

vec3 ke;
Emmisive property

vec3 ka;
Ambient property

vec3 ks;
Specular property

vec3 kd;
Diffuse property

vec3 kt;
Transmissive property

double shininess;
The shininess exponent when calculating specular highlights

double index;
Index of refraction for use in forming transmitted rays.

RayTracing Call Path

The TraceUI class starts off the rendering process whenever the user presses the ‘render’ button.  You can follow the code from there, starting with the ‘TraceUI::cb_render’ method.  This method calls ‘RayTracer:: tracePixel()’ repeatedly, once for each window coordinate.

From traceRay(), the process can go in different directions.  For the simple ray-caster we gave you, the ray that was passed in is intersected against the geometry, the material properties of the intersection are retrieved, and a call to shadeLocal() on that material class calculates a color.  Your version will probably use these same methods; all you need to do is flesh them out.

Miscellaneous Advice

Some other pointers to get you moving:

When implementing intersections, remember that for each object we keep around a matrix that adjusts the coordinate system such that the unscaled object is at the center, and the ray is somewhere in space.  This way we know exactly where our object is.

When you are viewing scenes rendered with your solution, the scenes may appear washed out or excessively dark.  This is due to light attenuation parameters.  For attenuation of light sources, you might want to use the attenuation equation presented in class rather than a real-world model. You can try fiddling with these parameters (labeled constant/linear/quadratic falloff in the sample solution). They're like physical constants, only in some alternate universe that obeys Phong's model. Change the constants and light behaves differently (and maybe better for raytracing purposes).

For (semi-)transparent surfaces, you should probably multiply the diffuse and ambient terms by (1-kt). Otherwise, the diffuse and transmitted rays will add up and the surface will become washed out.  If you do this well enough it will be worth a whistle.

Arbitrary indices of refraction are pretty much handled for you; all you have to do is take advantage of the data in the isect class.  A good value to use for testing things is 1.5, roughly the IOR of diamond.  Glass and water are around 1.3-ish.

For ns in the phong formula, use shininess*128 (where shininess is the scene's shininess output between 0 and 1.)

It might be a good idea to have your project looked over by a TA before you start to add bells and whistles.

Don't feel like you have more work to do just because you haven't used all the fields provided in all the data structures. They are scalable data structures designed to handle some optional extensions.  If you implement all of the requirements listed on the assignment web page, you should be fine.

Part 2: Survey of STL

The Trace project is written in very highly structured C++ and takes advantage of the whole object-oriented paradigm.  While this makes it very versatile, it also means it may be significantly different than most of the other C++ code you have seen.  Becoming familiar with the class hierarchy is not particularly difficult, but one item that you may find confusing if you’ve never dealt with it before is the Standard Template Library, or STL.

The STL is a very large collection of templated C++ classes that implement a large number of data structures and algorithms.  Here, we have used the STL to keep track of several data items, including a list of light sources – something you will need to use.  As such, this is a very brief description of how to use the STL list structure.

Access to the STL's container classes, like ‘list,’ is in general managed through objects called iterators. These sort of work like smart pointers.

If I defined this:

class foo_c { /* some stuff */ };
list<foo_c> foolist;

It makes a STL list of class foo_c. It also defines an iterator type called "list<foo_c>::iterator". Normally, to make typing easier on yourself, you would put a type-def on the iterator.

class foo_c { /* some stuff */ };
list<foo_c> foolist;
typedef list<foo_c>::iterator fooiter;

Now, when I'm ready to add stuff to that list, I use "push_front" to add items to the beginning.

foo_c myFoo;
/* do what you want to myFoo */
foolist.push_front( myFoo );

And when I want to access the list items, I iterate through them like this:

fooiter iter1;
for( iter1 = foo.begin(); iter1 != foo.end(); ++iter1 ) {
  // At this point, *iter1 is the current list item, just
  // as if iter1 were a pointer.
  cout << *iter1;
  *iter1 = something;
}

And finally, it's easy to delete an item from the list too. If you have an iterator pointing to the item you want to get rid of, you can call this:

erase( iter2 );

That's in general, how any of the storage classes work, whether a list or some other type.  Applied to the trace program, you would for instance use an iterator to loop through all the lights in the scene.  The only additional trick is that some of the data you might want to access is encapsulated with member functions to get at it.  For instance, the Scene::beginLights() and Scene::endLights() methods exist for no reason than to pass back iterators to the list of lights.

One final note: You should ALWAYS declare iterators as local variables in one function or another. Pass them into sub-functions as you need, but for good coding technique don't ever declare a pointer and dynamically allocate an iterator with operator "new." It's almost asking for memory leaks if you do, because of the way iterators get passed around elsewhere – using copious copy constructor calls. So just always make your iterators local to some function or block, and you'll be fine.

Part 3: Other possibly useful stuff

[image: image1.wmf](

)

(

)

[

]

å

ú

ú

û

ù

ê

ê

ë

é

þ

ý

ü

î

í

ì

+

+

×

+

×

+

+

=

+

+

i

i

i

n

i

s

i

d

l

a

a

e

phong

d

a

d

a

a

k

k

I

I

k

k

I

s

i

2

2

1

0

1

,

1

min

R

V

L

N

Phong Shading Model

Raytracing Model

[image: image2.wmf]transmit

t

reflect

r

phong

pixel

I

k

I

k

I

I

+

+

=


Reflection Angle

[image: image3.wmf](

)

l

n

n

l

r

-

×

=

2


[image: image4.wmf](

)

(

)

v

n

t

v

n

h

q

q

h

q

h

q

q

h

h

h

-

-

=

-

-

=

×

=

=

t

v

v

t

v

t

v

cos

cos

.

cos

1

1

cos

cos

imaginary

 

is

root 

 

square

 

 when the

occurs

 

Reflection

 

Internal

 

Total

 that 

Note

2

2

Transmition Angle

Cross Product (implemented as ‘vector.cross(othervector)’ in vecmath.h)

[image: image5.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

-

-

-

=

ú

ú

ú

û

ù

ê

ê

ê

ë

é

´

ú

ú

ú

û

ù

ê

ê

ê

ë

é

bx

ay

az

cx

cy

bz

z

y

x

c

b

a


Finding two perpindicular vectors both perpindicular to a given input vector

[image: image6.wmf](

)

I

O

O

O

I

1

2

1

´

=

+

=

ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

c

b

a

c

b

a

/

1

1


Rectangular to Polar

[image: image7.wmf]f

f

q

f

q

cos

sin

sin

sin

cos

r

z

r

y

r

x

=

=

=

[image: image8.wmf]f

f

q

f

sin

cos

sin

sin

cos

1

1

1

r

x

r

y

r

z

z

y

x

r

-

-

-

=

=

=

=


� EMBED Equation.3  ���





� EMBED Equation.3  ���








� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���





� EMBED Equation.3  ���








[image: image9.wmf](

)

(

)

[

]

å

ú

ú

û

ù

ê

ê

ë

é

þ

ý

ü

î

í

ì

+

+

×

+

×

+

+

=

+

+

i

i

i

n

i

s

i

d

l

a

a

e

phong

d

a

d

a

a

k

k

I

I

k

k

I

s

i

2

2

1

0

1

,

1

min

R

V

L

N

[image: image10.wmf]transmit

t

reflect

r

phong

pixel

I

k

I

k

I

I

+

+

=

[image: image11.wmf](

)

l

n

n

l

r

-

×

=

2

[image: image12.wmf](

)

(

)

v

n

t

v

n

h

q

q

h

q

h

q

q

h

h

h

-

-

=

-

-

=

×

=

=

t

v

v

t

v

t

v

cos

cos

.

cos

1

1

cos

cos

imaginary

 

is

root 

 

square

 

 when the

occurs

 

Reflection

 

Internal

 

Total

 that 

Note

2

2

[image: image13.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

-

-

-

=

ú

ú

ú

û

ù

ê

ê

ê

ë

é

´

ú

ú

ú

û

ù

ê

ê

ê

ë

é

bx

ay

az

cx

cy

bz

z

y

x

c

b

a

[image: image14.wmf](

)

I

O

O

O

I

1

2

1

´

=

+

=

ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

c

b

a

c

b

a

/

1

1

[image: image15.wmf]f

f

q

f

sin

cos

sin

sin

cos

1

1

1

r

x

r

y

r

z

z

y

x

r

-

-

-

=

=

=

=

[image: image16.wmf]f

f

q

f

q

cos

sin

sin

sin

cos

r

z

r

y

r

x

=

=

=

_973324178.unknown

_973324430.unknown

_987280577.unknown

_973324219.unknown

_973324269.unknown

_972829852.unknown

_973041513.unknown

_972828017.unknown

