
1

11. Ray Tracing

2

Reading

Required:

� Watt, sections 1.3-1.4, 12.1-12.5.1, 10.6.

Further reading:

� Watt, chapter 14 and the rest of chapters 10 and 12.

� A. Glassner. An Introduction to Ray Tracing.
Academic Press, 1989.

� T. Whitted. An improved illumination model for
shaded display. Communications of the ACM 23(6),
343-349, 1980.

3

Geometric optics

Modern theories of light treat it as both a wave and a
particle.

We will take a combined and somewhat simpler view
of light – the view of geometric optics.

Here are the rules of geometric optics:

� Light is a flow of photons with wavelengths.
We'll call these flows “light rays.”

� Light rays travel in straight lines in free space.

� Light rays do not interfere with each other as
they cross.

� Light rays obey the laws of reflection and
refraction.

� Light rays travel form the light sources to the
eye, but the physics is invariant under path
reversal (reciprocity).

4

Eye vs. light ray tracing

Where does light begin?

At the light: light ray tracing (a.k.a., forward ray
tracing or photon tracing)

At the eye: eye ray tracing (a.k.a., backward ray
tracing)

We will generally follow rays from the eye into the
scene.

5

Precursors to ray tracing

Local illumination

� Cast one eye ray, then shade according to light

Appel (1968)

� Cast one eye ray + one ray to light

6

Whitted ray-tracing algorithm

In 1980, Turner Whitted introduced ray tracing to the
graphics community.

� Combines eye ray tracing + rays to light
� Recursively traces rays

Algorithm:

1.For each pixel, trace a primary ray in direction V to the
first visible surface.

2.For each intersection, trace secondary rays:

� Shadow rays in directions Li to light sources
� Reflected ray in direction R.
� Refracted ray or transmitted ray in direction T.

V

T
T

R

R

L

L

T

R
L

T

7

Whitted algorithm (cont’d)

Let’s look at this in stages:

Primary rays Shadow rays

Reflection rays Refracted rays

L

L

L

L

R

R

R

L
L

L

V

V

V

V
V

T
T

R

R

L

L

T

R

P.P.

V

V

L

T

8

Shading

Let I(Po, u) be the intensity seen from point Po along
direction u:

I(Po, u) = Idirect + Ireflected + Itransmitted

where

� Idirect is computed from the Phong model

� Ireflected = kr I (P, R)

� Itransmitted = ktI (P, T)

Typically, we set kr = ks and kt = 1 – ks .

L

R
T

u

P

9

Reflection and transmission

Law of reflection:

θI = θr

Snell’s law of refraction:

ηI sinθI = ηt sin θt

where ηI , ηt are indices of refraction.

N
R

T

u

10

Total Internal Reflection

The equation for the angle of refraction can be
computed from Snell’s law:

What happens when ηI > ηt?

When θt is exactly 90°, we say that θI has achieved the
“critical angle” θc .

For θI > θc , no rays are transmitted, and only reflection
occurs, a phenomenon known as “total internal
reflection” or TIR.

Air

Glass

11

Error in Watt!!

In order to compute the refracted direction, it is useful
to compute the cosine of the angle of refraction in
terms of the incident angle and the ratio of the indices
of refraction.

On page 24 of Watt, he develops a formula for
computing this cosine. Notationally, he uses µ instead
of η for the index of refraction in the text, but uses η
in Figure 1.16(!?), and the angle of incidence is φ and
the angle of refraction is θ.

Unfortunately, he makes a grave error in computing
cosθ.

The last equation on page 24 should read:

2 2cos 1 (1 cos)θ µ φ= − −

12

Ray-tracing pseudocode

function RayTrace(Po, u):

(P, Obj) ← RayCast (Po, u)

I ← ke + ka Ia
for each light source � do:

(P’, Obj’) ← RayCast(P, Dir(P, �))

if Obj’ = � then:

I ← I + (diffuse term) + (spec term)

end if

end for

I ← I + Obj.kr ∗ RayTrace (P, R)

I ← I + Obj.kt ∗ RayTrace (P, T)

return I

end function

13

Terminating recursion

Q: How do you bottom out of recursive ray tracing?

Possibilities:

14

Intersecting rays with spheres

Given:

� A ray P(t) through initial position P0 in direction
u (a unit vector):

P(t) = P0 + t u

� A sphere S centered at c with radius r

Find: The intersection of P(t) with S.

c

15

Intersecting rays with spheres

Solution:

Q: What is the normal to the sphere?

c

2

2

2

2 2

2

[]

((

2

0

))

o

o

r

r

t t r

t r

at bt c

t

t

− =

− =
≡ −

+ +

+ =

+ + =

+

=
+

P c

P c

q P c

q q

q q q

u

u u

u u u

�
� � �

16

Intersecting rays with polyhedra

To intersect a ray with a polyhedron:

� Test intersection of ray with bounding sphere.

� Locate the “front-facing” faces of the
polyhedron with

u · N < 0

� Intersect the ray with each front face's
supporting plane.

� Use a point-in-polygon test to see if the ray is
inside the face.

� Sort intersections according to smallest s.

N

17

Acceleration:
Hierarchical bounding volumes

Vanilla ray tracing is really slow!

In practice, some acceleration technique is almost
always used.

One approach is to use hierarchical bounding
volumes.

Intersect with largest B.V... ...then intersect with children...

...until you reach the leaf nodes - the primitives.

18

Acceleration: Spatial subdivision

Another approach is spatial subdivision.

Idea:

� Partition objects spatially.

� Trace ray through voxel array.

Partition can be uniform or adaptive (e.g., octrees).

Uniform subdivion in 2D Quadtree in 2D

Uniform subdivion in 3D Octree in 3D

19

Aliasing

Ray tracing is a form of sampling and can suffer from
annoying visual artifacts...

Consider a continuous function ƒ(x). Now sample it
at intervals ∆ to give ƒ[i] = ƒ(i∆).

Q: How well does ƒ[i] approximate ƒ(x)?

Consider sampling a sinusoid:

In this case, the sinusoid is reasonably well
approximated by the samples.

20

Aliasing (con’t)

Now consider sampling a higher frequency sinusoid

We get the exact same samples, so we seem to be
approximating the first lower frequency sinusoid
again.

We say that, after sampling, the higher frequency
sinusoid has taken on a new “alias”, i.e., changed its
identity to be a lower frequency sinusoid.

21

Practical examples of aliasing

Drawing a polygon into the frame buffer:

Temporal aliasing:

22

Anti-aliasing

Q: How do we avoid aliasing artifacts?

1. Sampling:

2. Filtering:

3. Combination:

Example - polygon revisited:

23

Polygon anti-aliasing

Q:What about temporal aliasing?

Without antialiasing

With antialiasing

Magnification

24

Antialiasing in a ray tracer

We would like to compute the average intensity in
the neighborhood of each pixel.

When casting one ray per pixel, we are likely to have
aliasing artifacts.

To improve matters, we can cast more than one ray
per pixel and average the result.

A.k.a., super-sampling and averaging down.

25

Antialiasing by adaptive sampling

Casting many rays per pixel can be unnecessarily
costly.

For example, if there are no rapid changes in intensity
at the pixel, maybe only a few samples are needed.

Solution: adaptive sampling.

Q: When do we decide to cast more rays in a
particular area?

26

Distribution ray tracing

Idea:

� Use non-uniform (jittered) samples.

� Replaces aliasing artifacts with noise.

� Provides additional effects if we distribute rays
in other dimensions:

• Reflection and refractions

• Light source area

• Camera lens area

• Time

Originally called “distributed ray tracing,” but we will
call it distribution ray tracing so as not to confuse
with parallel computing.

27

Distribution ray tracing (cont’d)

Distributing rays over reflection and/or refraction
directions gives:

R

T

28

Distribution ray tracing (cont’d)

Operationally:

1. Partition the reflection directions into 16 angular
regions. Assign each region a unique number
between 1 and 16.

2. Partition each pixel into 16 regions. Assign each
region a unique number between 1 and 16.

3. Select sub-pixel m = 1.

4. Cast a ray through sub-pixel m, jittered within its
region.

5. After finding the first intersection, reflect into
direction region m, jittered within that region.
Repeat for future reflections.

6. Add result to current pixel total.

7. Increment m and, if m � 16, go to 4.

8. Divide by 16, store the result, choose the next
pixel and go to 3.

29

Distribution ray tracing (cont’d)

Distributing rays over light source area gives:

Surface

Occluder

Light

Umbra

Penumbra

30

Distribution ray tracing (cont’d)

Distributing rays over a finite aperture gives:

Image plane Plane in focus

Aperture

Lens

31

Distribution ray tracing (cont’d)

Distributing rays over time gives:

32

Summary

What to take home from this lecture:

1. The meanings of all the boldfaced terms.

2. Enough to implement basic recursive ray
tracing.

3. How reflection and transmission directions are
computed.

4. How ray--object intersection tests are
performed.

5. Basic acceleration strategies.

6. An intuition for what aliasing is.

7. How to reduce aliasing artifacts in a ray tracer

8. Concept of distribution ray tracing.

