
9. Hidden Surface Algorithms

Reading

Reading

� Watt, 6.6 (esp. intro and subsubsections 1, 4,
and 8-10), 12.1.4.

Optional reading:

� Foley, van Dam, Feiner, Hughes, Chapter 15

� I. E. Sutherland, R. F. Sproull, and R. A.
Schumacker, A characterization of ten hidden
surface algorithms, ACM Computing Surveys 6(1):
1-55, March 1974.

Introduction

In the previous lecture, we figured out how to
transform the geometry so that the relative sizes will
be correct if we drop the z component.

But, how do we decide which geometry actually gets
drawn to a pixel?

Known as the hidden surface elimination problem
or the visible surface determination problem.

There are dozens of hidden surface algorithms.

They can be characterized in at least three ways:

� Object-precision vs. image-precision (a.k.a,
object-space vs. image-space)

� Object order vs. image order

� Sort first vs. sort last

Object-precision algorithms

Basic idea:

� Operate on the geometric primitives
themselves. (We’ll use “object” and “primitive”
interchangeably.)

� Objects typically intersected against each other
� Tests performed to high precision
� Finished list of visible objects can be drawn at

any resolution

Complexity:

� For n objects, can take O(n2) time to compute
visibility.

� For an mxm display, have to fill in colors for m2

pixels.

� Overall complexity can be O(kobjn
2+ kdispm2)

Implementation:

� Difficult to implement
� Can get numerical problems

Image-precision algorithms

Basic idea:

� Find the closest point as seen through each
pixel

� Calculations performed at display resolution

� Does not require high precision

Complexity:

� Naïve approach checks all n objects at every
pixel. Then, O(n m2).

� Better approaches check only the objects that
could be visible at each pixel. Let’s say, on
average, d objects are visible at each pixel
(a.k.a. depth complexity). Then, O(d m2).

Implementation:

� Very simple to implement!
• Used a lot in practice!

Object order vs. image order

Object order:

� Consider each object only once, draw its pixels,
and move on to the next object.

� Might draw to the same pixel multiple times.

Image order:

� Consider each pixel only once, find nearest
object, and move on to the next pixel.

� Might compute relationships between objects
multiple times.

Sort first vs. sort last

Sort first:

� Find some depth-based ordering of the objects
relative to the camera, then draw back to front.

� Means building an ordered data structure to
avoid duplicating work.

Sort last:

� Sort implicitly as more information becomes
available.

Outline of lecture

� Z-buffer

� Ray casting

� Binary space partitioning (BSP) trees

Z-buffer

The Z-buffer or depth buffer algorithm [Catmull,
1974] is probably the simplest and most widely used.

Here is pseudocode for the Z-buffer hidden surface
algorithm:

for each pixel (i,j) do

Z-buffer[i,j] � -FAR

Framebuffer[i,j] � <background color>

end for

for each polygon A do

for each pixel in A do

Compute depth z and shade s of A at (i,j)

if z > Z-buffer[i,j] then

Z-buffer[i,j] � z

Framebuffer[i,j] � s

end if

end for

end for

Z-buffer (cont’d)

The process of filling in the pixels inside of a polygon
is called rasterization.

During rasterization, the z value and shade s can be
computed incrementally (fast!).

Curious fact:

� Described as the ‘ ‘brute-force image space
algorithm’’ by [SSS]

� Mentioned only in Appendix B of [SSS] as a
point of comparison for huge memories, but
written off as totally impractical.

Today, Z-buffers are commonly implemented in
hardware.

Z-buffer: Analysis

� Classification?

� Easy to implement?
� Easy to implement in hardware?
� Incremental drawing calculations (uses

coherence)?

� Pre-processing required?

� On-line (doesn’t need all objects before
drawing begins)?

� If objects move, does it take extra work than
normal to draw the frame?

� If the viewer moves, does it take extra work
than normal to draw the frame?

� Typically polygon-based?

� Efficient shading (doesn’t compute colors of
hidden surfaces)?

� Handles transparency?

� Handles refraction?

Ray casting

Idea: For each pixel center pij

� Send ray from the eye point (COP), c, through
pij into scene.

� Intersect ray with each object.

� Select nearest intersection.

O
2

pijc

O
16

Ray casting (cont’d)

Implementation:

� Might parameterize each ray:

r(t) = c + t (pij - c)

� Each object Ok returns tk > 1 such that first
intersection with Ok occurs at r(tk).

Q: Given the tk what is the first intersection point?

Note: these calculations generally happen in world
coordinates.

O
2

pijc

O
16

Ray casting: Analysis

� Classification?

� Easy to implement?
� Easy to implement in hardware?
� Incremental drawing calculations (uses

coherence)?

� Pre-processing required?

� On-line (doesn’t need all objects before
drawing begins)?

� If objects move, does it take extra work than
normal to draw the frame?

� If the viewer moves, does it take extra work
than normal to draw the frame?

� Typically polygon-based?

� Efficient shading (doesn’t compute colors of
hidden surfaces)?

� Handles transparency?

� Handles refraction?

Binary-space partitioning (BSP) trees

Idea:

� Do extra preprocessing to allow quick display
from any viewpoint.

Key observation: A polygon A is painted in correct
order if

� Polygons on far side of A are painted first.

� P is painted next.

� Polygons in front of A are painted last.

PP

2D scene

BSP tree creation

1

2
3

4

5

5b
5a

1

2
3

4

5

5b
5a

1

2
3

4

5

5b
5a

BSP tree creation (cont’d)

procedure MakeBSPTree:

takes PolygonList L

returns BSPTree

Choose polygon A from L to serve as root

Split all polygons in L according to A

node � A

node.neg � MakeBSPTree(polygons on neg. side of A)

node.pos � MakeBSPTree(polygons on pos. side of A)

return node

end procedure

Note: Performance is improved when fewer polygons are
split – in practice, best of ~5 random splitting polygons
are chosen.

Note: BSP is created in world coordinates.

BSP tree display

procedure DisplayBSPTree:

Takes BSPTree T

if T is empty then return

if viewer is in front (on pos. side) of T.node then

DisplayBSPTree(T.neg)

Draw T.node

DisplayBSPTree(T.pos)

else

DisplayBSPTree(T.pos)

Draw T.node

DisplayBSPTree(T.neg)

end if

end procedure

BSP trees: Analysis

� Classification?

� Easy to implement?
� Easy to implement in hardware?
� Incremental drawing calculations (uses

coherence)?

� Pre-processing required?

� On-line (doesn’t need all objects before
drawing begins)?

� If objects move, does it take extra work than
normal to draw the frame?

� If the viewer moves, does it take extra work
than normal to draw the frame?

� Typically polygon-based?

� Efficient shading (doesn’t compute colors of
hidden surfaces)?

� Handles transparency?

� Handles refraction?

Summary

What to take home from this lecture:

� Classification of hidden surface algorithms

� Understanding of Z-buffer and ray casting
hiddensurface algorithms

� Familiarity with BSP trees

