9. Hidden Surface Algorithms

Introduction

In the previous lecture, we figured out how to transform the geometry so that the relative sizes will be correct if we drop the z component.

But, how do we decide which geometry actually gets drawn to a pixel?

Known as the hidden surface elimination problem or the visible surface determination problem.

There are dozens of hidden surface algorithms.

They can be characterized in at least three ways:

- Object-precision vs. image-precision (a.k.a, object-space vs. image-space)
- Object order vs. image order
- Sort first vs. sort last

Object-precision algorithms

Basic idea:

- Operate on the geometric primitives themselves. (We'll use "object" and "primitive" interchangeably.)
- Objects typically intersected against each other
- Tests performed to high precision
- Finished list of visible objects can be drawn at any resolution

Complexity:

- For n objects, can take $O\left(n^{2}\right)$ time to compute visibility.
- For an $m \times m$ display, have to fill in colors for m^{2} pixels.
- Overall complexity can be $O\left(k_{o b j} n^{2}+k_{\text {disp }} m^{2}\right)$

Implementation:

- Difficult to implement
- Can get numerical problems

Image-precision algorithms

Basic idea:

- Find the closest point as seen through each pixel
- Calculations performed at display resolution
- Does not require high precision

Complexity:

- Naïve approach checks all n objects at every pixel. Then, $O\left(n^{2}\right)^{2}$.
- Better approaches check only the objects that could be visible at each pixel. Let's say, on average, d objects are visible at each pixel (a.k.a. depth complexity). Then, $O\left(d^{2}\right)$.

Implementation:

- Very simple to implement!
- Used a lot in practice!

Object order vs. image order

Object order:

- Consider each object only once, draw its pixels, and move on to the next object.
- Might draw to the same pixel multiple times.

Image order:

- Consider each pixel only once, find nearest object, and move on to the next pixel.
- Might compute relationships between objects multiple times.

Sort first vs. sort last

Sort first:

- Find some depth-based ordering of the objects relative to the camera, then draw back to front.
- Means building an ordered data structure to avoid duplicating work.

Outline of lecture

- Z-buffer
- Ray casting
- Binary space partitioning (BSP) trees

Sort last:

- Sort implicitly as more information becomes available.

Z-buffer

The Z-buffer or depth buffer algorithm [Catmull, 1974] is probably the simplest and most widely used.

Here is pseudocode for the Z-buffer hidden surface algorithm:

```
for each pixel ( \(i, j\) ) do
    Z-buffer \([i, j] \leftarrow-F A R\)
    Framebuffer \([i, j] \leftarrow\) <background color>
end for
for each polygon \(A\) do
    for each pixel in \(A\) do
        Compute depth \(z\) and shade \(s\) of \(A\) at \((i, j)\)
        if \(z>Z\)-buffer \([i, j]\) then
            Z-buffer[i,j] \(\leftarrow z\)
            Framebuffer[i,j] \(\leftarrow s\)
        end if
    end for
end for
```

Z-buffer $[i, j] \leftarrow-F A R$
Framebuffer $[i, j] \leftarrow$ <background color>
end for
for each polygon A do
for each pixel in A do
Compute depth z and shade s of A at (i,j)
if $z>Z$-buffer $[i, j]$ then
Z-buffer[i,j] $\leftarrow z$
Framebuffer[i,j] $\leftarrow s$
end if
end for
end for

Z-buffer (cont'd)

The process of filling in the pixels inside of a polygon is called rasterization.

During rasterization, the z value and shade s can be computed incrementally (fast!).

Curious fact:

- Described as the " brute-force image space algorithm" by [SSS]
- Mentioned only in Appendix B of [SSS] as a point of comparison for huge memories, but written off as totally impractical.
Today, Z-buffers are commonly implemented in hardware.

Z-buffer: Analysis

- Classification?
- Easy to implement?
- Easy to implement in hardware?
- Incremental drawing calculations (uses coherence)?
- Pre-processing required?
- On-line (doesn't need all objects before drawing begins)?
- If objects move, does it take extra work than normal to draw the frame?
- If the viewer moves, does it take extra work than normal to draw the frame?
- Typically polygon-based?
- Efficient shading (doesn't compute colors of hidden surfaces)?
- Handles transparency?
- Handles refraction?

Ray casting

Idea: For each pixel center $\boldsymbol{p}_{i j}$

- Send ray from the eye point (COP), c, through $\boldsymbol{p}_{i j}$ into scene.
- Intersect ray with each object.
- Select nearest intersection.

Ray casting (cont'd)

Implementation:

- Might parameterize each ray:

$$
\mathbf{r}(\mathrm{t})=\mathbf{c}+\mathrm{t}\left(\mathbf{p}_{i j}-\mathbf{c}\right)
$$

- Each object O_{k} returns $t_{k}>1$ such that first intersection with O_{k} occurs at $\mathbf{r}\left(t_{k}\right)$.
Q: Given the t_{k} what is the first intersection point?

Note: these calculations generally happen in world coordinates.

Ray casting: Analysis

- Classification?
- Easy to implement?
- Easy to implement in hardware?
- Incremental drawing calculations (uses coherence)?
- Pre-processing required?
- On-line (doesn't need all objects before drawing begins)?
- If objects move, does it take extra work than normal to draw the frame?
- If the viewer moves, does it take extra work than normal to draw the frame?
- Typically polygon-based?
- Efficient shading (doesn't compute colors of hidden surfaces)?
- Handles transparency?
- Handles refraction?

Binary-space partitioning (BSP) trees

Idea:

- Do extra preprocessing to allow quick display from any viewpoint.

Key observation: A polygon A is painted in correct order if

- Polygons on far side of A are painted first.
- P is painted next.
- Polygons in front of A are painted last.

BSP tree creation

BSP tree creation (cont'd)

procedure MakeBSPTree:

takes PolygonList L
returns BSPTree
Choose polygon A from L to serve as root
Split all polygons in L according to A
node $\leftarrow A$
node.neg \leftarrow MakeBSPTree(polygons on neg. side of A)
node.pos \leftarrow MakeBSPTree(polygons on pos. side of A)
return node
end procedure

Note: Performance is improved when fewer polygons are split - in practice, best of ~ 5 random splitting polygons are chosen.

Note: BSP is created in world coordinates.

BSP tree display

procedure DisplayBSPTree:
Takes BSPTree T
if T is empty then return
if viewer is in front (on pos. side) of T.node then
DisplayBSPTree(T.neg)
Draw T.node
DisplayBSPTree(T.pos)
else
DisplayBSPTree(T.pos)
Draw T.node
DisplayBSPTree(T.neg)
end if
end procedure

BSP trees: Analysis

- Classification?
- Easy to implement?
- Easy to implement in hardware?
- Incremental drawing calculations (uses coherence)?
- Pre-processing required?
- On-line (doesn't need all objects before drawing begins)?
- If objects move, does it take extra work than normal to draw the frame?
- If the viewer moves, does it take extra work than normal to draw the frame?
- Typically polygon-based?
- Efficient shading (doesn't compute colors of hidden surfaces)?
- Handles transparency?
- Handles refraction?

Summary

What to take home from this lecture:

- Classification of hidden surface algorithms
- Understanding of Z-buffer and ray casting hiddensurface algorithms
- Familiarity with BSP trees

