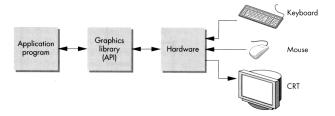
1. Displays and framebuffers

Reading

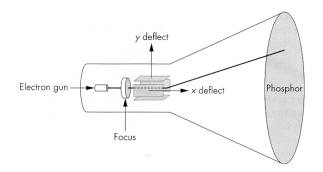

Optional

- Angel, sections 1.2, 1.7
- Hearn & Baker, sections 2.1-2.2, 4.3
- Foley et al., sections 1.5, 4.2-4.5
- I.E. Sutherland. Sketchpad: a man-machine graphics communication system. *Proceedings* of the Spring Join Computer Conference, p. 329-346, 1963.
- T.H. Myer & I.E. Sutherland. On the design of display processors. Communications of the ACM 11(6): 410-414, 1968.

History

- Whirlwind Computer MIT, 1950
 - CRT display
- SAGE air-defense system middle 1950's
 - "Whirlwind II"
 - light pens
- Sketchpad 1963, Ivan Sutherland
 - first interactive graphics system
 - constraint-based
 - interaction techniques for choosing, pointing, drawing
 - data structures for replicating components

Modern graphics systems



Current graphics systems consist of:

- An application, which talks to a...
- Graphics library (e.g., OpenGL or Direct3D), which talks to the...
- Graphics hardware

The graphics hardware can do a lot of fancy work these days. At a minimum, it contains a framebuffer to drive a display...

Cathode ray tubes (CRTs)

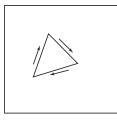
Consists of:

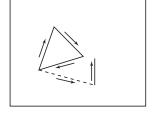
- electron gun
- electron focusing lens
- deflection plates/coils
- electron beam
- anode with phosphor coating

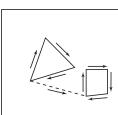
CRTs, cont.

Electrons "boil off" the heated cathode and shoot towards the anode. Electrons striking the phosphors create light through:

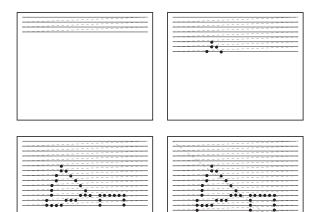
- fluorescence (fraction of usec)
- phosphorescence (10 to 60 usec)


Different phosphors have different:


- color
 - red: europium yttrium vanadate
 - green: zinc cadmium sulfide
 - blue: zinc sulfide
- persistence (as long as a few seconds)


The image must be **refreshed** to avoid **flicker**, typically at least 60 Hz, though 72 Hz is easier on the eyes.

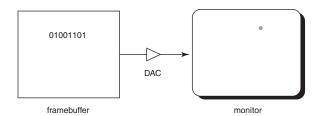
Calligraphic displays


Also called **vector displays**, **stroke displays**, or **random-scan displays**.

Used by:

- Sutherland's Sketchpad
- Asteroids video game
- Oscilloscopes

Raster displays


ras.ter, from radere, "to scrape"

Electron beam traces over screen in **raster scan** order.

- Each left-to-right trace is called a scan line.
- Each spot on the screen is a **pixel**.
- When the beam is turned off to sweep back, that is a **retrace**, or a **blanking interval**.

Framebuffers

Intensity of the raster scan beam is modulated according to the contents of a **framebuffer**.

Each element of the framebuffer is associated with a single **pixel** on the screen.

Resolution

The display's "resolution" is determined by:

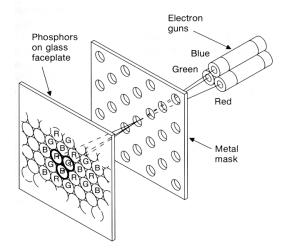
- number of scan lines
- number of pixels per scan line
- number of bits per pixel

Resolution is used here to mean total number of bits in a display. It should really refer to the resolvable dots per unit length...

Examples:

	Bitmapped display	960 x 1152 x 1b	1/8 MB
	NTSC TV	640 x 480 x 16b	1/2 MB
	Color workstation	1280 x 1024 x 24b	4 MB
Laser-printed page			
	300 dpi	8.5 x 11 x 300 ² x 1b	1 MB
	1200 dpi	8.5 x 11 x 1200 ² x 1b	17 MB
	Film	4500 x 3000 x 30b	50 MB

Aspect ratio

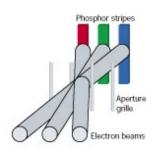

Frame aspect ratio = horizontal / vertical size

TV	4:3
HDTV	16:9
Letter-size paper	8.5 : 11 (about 3 : 4)
35mm film	3:2
Panavision	2.35 : 1

Pixel aspect ratio = pixel width / pixel height

• nowadays, this is <u>almost</u> always 1.

Color CRT monitors

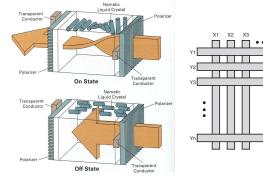


Many color monitors employ **shadow mask** technology. The variety depicted above:

- uses **triads** of red, green, and blue phosphors at each pixel
- uses three electron guns, one per color
- shadow mask used to make each kind of phosphor only "visible" from one gun

These are also known as **RGB monitors**.

Color CRT monitors, cont'd



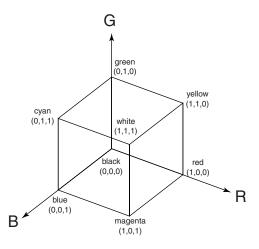
A competing technology is called Trinitron (by Sony):

- uses vertical stripes of red, green, and blue phosphors at each pixel
- uses three electron guns, one per color
- uses an aperture grille to make each kind of phosphor only "visible" from one gun

You can see two horizontal lines at about 1/4 and 3/4 of the way up the screen on Trinitron displays. Why?

Liquid Crystal Displays

Laptops typically use **liquid crystal displays** (LCD's).

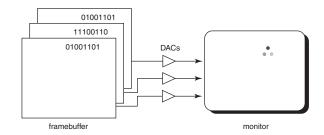

- Light enters a **vertical polarizer**
- **Nematic crystal** twists light based on applied voltage (more voltage, less twisting)
- Light passes through horizontal polarizer

Passive matrix displays use a matrix of electrodes to control the voltages. Problem: slow to switch, overflows.

Active matrix displays have a transistor at each cell. They use a faster switching crystal and transistors that hold charge and prevent overflow.

Color filters are used to get color display.

Additive color mixing

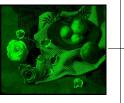


All colors on a monitor or LCD are produced using combinations of red, green, and blue.

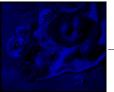
A display that allows 256 voltage settings for each of R, G, and B is known as a **full-color system**.

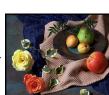
The description of each color in framebuffer memory is known as a **channel**.

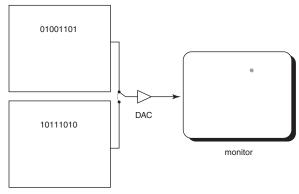
RGB framebuffer



The term **true-color** is sometimes used to refer to systems which the framebuffer directly stores the values of each channel.


As memory prices have fallen, true-color has become fairly standard.


Anatomy of an RGB image



Q: What happens when you write to the framebuffer while it is being displayed on the monitor?

Double-buffering provides a solution.

framebuffer

Summary

Here's what you should take home from this lecture:

- Sketchpad (1963) was the first interactive graphics system.
- The basic components of black-and-white and color CRTs.
- All of the **boldfaced terms**. ٠
- Raster vs. calligraphic displays.
- Computing screen resolution & framebuffer size.
- The correspondence between elements of framebuffer memory and pixels on-screen.
- How double-buffering works.