Animator Help Session:

Introduction

To use the animator, first load a model dll. These are of the same type as we created in project 2. Then, right click on the curve editor to find a list of variables you can modify. To modify them, simply click on an (x,y) location in the curve editor. (The x axis is time, and the y axis is the value of the variable.) In this way you can create functions over time for all your variables. You can drag around points you have created, and delete them by holding down control and clicking on them.

Additionally, we have defined a viewpoint editor to assist in positioning the camera. To use the viewpoint editor, select the edit view button on the curve editor. Then drag the model around until you have positioned it as desired. Next, move the time slider (using shift – middle click) to the desired time, and click set viewpoint. This sets the camera position at the value of the slider to be what you see.

This viewpoint editor is created using a combination of rotations and translations, and as such it is more intuitive to deal with the keyframes as a unit, rather than a collection of components. Because of this, you will only find one variable defined for the viewpoint. This variable only shows the time that a viewpoint setting was made. If you delete this point, it will eliminate that viewpoint setting.

To manipulate the model using the viewpoint editor:

-Left click and drag to rotate about the axis

-Middle click and drag to translate

-Right click and drag vertically to zoom

-Shift – left click to rotate only about the y axis

-Shift – middle click to rotate only about the x axis

-Shift – right click to rotate only about the z axis

NOTE: To use the viewpoint editor, make sure that you don’t reset the modelview matrix in your model dll (i.e. don’t use glLoadIdentity, glLoadMatrix, etc.). The viewpoint editor sets up rotation and translation matrices before it draws the model.

There is no interaction between the curve editor and the particle system simulator. For example, if you have a character that is bouncing a spring in one hand, the force of the spring on the hand doesn’t change the position of the hand. Only the forces created by the hand will affect the spring.

Adding curve types

You need to derive new classes that implement the CurveEvaluator interface. You should do this by adding a header file defining a new class that inherits from CurveEvaluator and a source file that defines this new function. You may add as many private helper functions as you need to help you evaluate the curve. You can basically copy the header from the LinearCurveEvaluator and change the class name and header file include guards.

The control points, wrapping flag, and maximum animation time are passed to you. You must return a vector of evaluated curve points and a vector of bezier control points. The control points vector is a list of control points sorted by x. The wrapping flag will tell you whether wrapping is required and the maximum animation time is required to help you figure out how to wrap the curve (i.e. you will need to add extend the curve to both ends of the range from 0 to the maximum animation time).

STL vectors are relatively simple to use. You can treat them as arrays, with the additional functionality of resizing and checking the size of the array (through the void resize(size_t new_size) and size_t size(void) member functions). You can also clear the vector with the void clear(void) member function. Check the LinearCurveEvaluator source file for examples of all of these functions.

Particle System Help

http://www.cs.cmu.edu/~baraff/sigcourse/notesc.pdf
