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Lecture 11
K-means and Mean Shift
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Administrative
A3 is out
- Due Feb 21st

A4 will be out soon
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Recitation
- Multiview geometry

Administrative
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Content-aware Retargeting Operators

Content-
aware

Content-
oblivious

“Important”
content
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So far: Segmentation and clustering

● Goal: identify groups of pixels that go together
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So far: Agglomerative clustering
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Today’s agenda

Reading:
Szeliski, 2nd edition, Chapter 7.5
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● K-means clustering
● Mean-shift clustering
● Normalized cuts
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Today’s agenda

8

Reading: Szeliski Chapters: 5.2.2, 7.5.2

D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, PAMI 2002. 

● K-means clustering
● Mean-shift clustering
● Normalized cuts

https://doi.org/10.1109/34.1000236
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Image Segmentation: Binary image Example

● These pixel values show that there are three things in the image.
● We could label every pixel in the image according to which of these 

primary intensities it is.
○ i.e., segment the image based on the intensity feature.

● What if the image isn’t quite so simple?

intensity
input image

black pixels
gray 
pixels

white 
pixels

1 2
3
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● How do we determine the three main intensities that 
define our groups?

● Each cluster has a cluster center
○ A mean cluster value.

Input image
Intensity
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● Goal: choose three “centers” as the representative intensities and label 
every pixel according to which of these centers it is nearest to.

● Best cluster centers are those that minimize Sum of Square Distance 
(SSD) between all points and their nearest cluster center ci:

0 190 255

1 2
3

Intensity
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Clustering
● With this objective, it is a “chicken and egg” problem:

○ If we knew the cluster centers, we could allocate points to groups by 
assigning each to its closest center.

○ If we knew the group memberships, we could get the centers by 
computing the mean per group.
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Given, a set of points, randomly select k=3 of them to be 
the cluster centers

14

Voronoi 
diagram
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Categorize each point into a cluster defined 
by its closest center.

Next, move the cluster centers to the mean 
location amongst its cluster

15 1
5
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Repeat with new cluster center locations

16 1
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Categorize into new clusters.
Move center to the mean

17 1
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Repeat with new cluster centers
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Computational Complexity
At each iteration,
- Computing distance between each of the n objects and the K cluster 

centers is O(Kn).
- Computing cluster centers: Each object gets added once to some 

cluster: O(n).

Assume these two steps are each done once for l iterations: O(lKn).

Q. Is K-means guaranteed to converge to a global maximum?

19
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Results are quite sensitive to seed selection.

20
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Results are quite sensitive to seed selection.
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Results are quite sensitive to seed selection.
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Results are quite sensitive to seed selection.

● Some seeds can result in poor convergence rate, or convergence to 
sub-optimal clustering.

● Select good seeds using a heuristic (e.g., object least similar to any 
existing mean)

● Try out multiple starting points (very important!!!)
● Initialize with the results of another method.

23
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Ideal decision boundary

Other issues with k-means
Shape of clusters
– Assumes isotopic, convex clusters
Sensitive to Outliers 

24

Outlier causes 
misclassifications
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How to choose the value of k

25

• Number of clusters K
– Objective function

– Look for “Knee” in objective function



Ranjay Krishna February 11, 2025Lecture 11 -

Goal: cluster to minimize distance of pixels to their cluster centers

Clustering

Whether      is assigned to

Cluster center Data

26
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K-means clustering
1. Initialize (        ): cluster centers

Slide: Derek Hoiem27
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K-means clustering
1. Initialize (        ): cluster centers

2. Compute      : assign each point to the closest center
○     denotes the set of assignment for each       to cluster       at 

iteration t 

Slide: Derek Hoiem28
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K-means clustering
1. Initialize (        ): cluster centers

2. Compute      : assign each point to the closest center
○     denotes the set of assignment for each       to cluster       at 

iteration t 

3. Computer     : update cluster centers as the mean of the points

Slide: Derek Hoiem29
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K-means clustering
1. Initialize (        ): cluster centers

2. Compute      : assign each point to the closest center
○     denotes the set of assignment for each       to cluster       at 

iteration t 

3. Computer     : update cluster centers as the mean of the points

4. Update               , Repeat Step 2-3 till stopped

Slide: Derek Hoiem30
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K-means clustering
1. Initialize (        ): cluster centers

2. Compute      : assign each point to the closest center
○     denotes the set of assignment for each       to cluster       at 

iteration t 

3. Computer     : update cluster centers as the mean of the points

4. Update               , Repeat Step 2-3 till stopped

Slide: Derek Hoiem31
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K-means clustering

Illustration Source: wikipedia

1. Initialize 
Cluster Centers

2. Assign Points to 
Clusters

3. Re-compute 
Means

Repeat (2) and (3)

32

http://en.wikipedia.org/wiki/Image:K_Means_Example_Step_1.svg
http://en.wikipedia.org/wiki/Image:K_Means_Example_Step_2.svg
http://en.wikipedia.org/wiki/Image:K_Means_Example_Step_3.svg
http://en.wikipedia.org/wiki/Image:K_Means_Example_Step_4.svg
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K-means clustering
Initial cluster centers are randomly initialized
- Can lead to bad initializations
- Can cause bad clusters

33
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Another example of how K-means Converges to a local 
minimum solution
Initialize multiple runs!
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K-Means++

Tries to prevent arbitrarily bad local minima?

1. Randomly choose first center.
2. Pick new center with prob. proportional to 

a. Basically we want to find as good of an initialization as possible
3. Repeat until K centers.

35
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K-means clustering
Initial cluster centers are randomly initialized
- Can lead to bad initializations
- Can cause bad clusters

Different distance measures can change K-Means clusters
- Euclidean distance of cosine distance.

Different feature space can lead to different cluster

36
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Segmentation as Clustering

2 clusters

Original image
3 clusters

37
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Feature Space: pixel value
● Feature space: what measurements do we include in xi?
● Depending on what we choose as the feature space, we 

can group pixels in different ways.

● Grouping pixels based on 
intensity similarity

● Feature space: intensity value (1D) 

38
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Feature Space: RGB
● Depending on what we choose as the feature space, we 

can group pixels in different ways.

● Grouping pixels based 
on color similarity 

● Feature space: color value (3-dim) 

R=255
G=200
B=250

R=245
G=220
B=248

R=15
G=189
B=2

R=3
G=12
B=2

R

G
B
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Feature Space: edges and blobs
● Depending on what we choose as the feature space, we 

can group pixels in different ways.

● Grouping pixels based on oriented gradient similarity

● Feature space: filter bank responses (e.g., 24D) 24 edge & blog filters
F24

F2

F1

…

40
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Smoothing Out Cluster Assignments
● Assigning a cluster label per pixel may yield outliers:

● How can we ensure they 
are spatially smooth? 1 2

3
?

Original Labeled by cluster center’s intensity

41
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Feature Space: RGB + XY location
● Depending on what we choose as the feature space, we can group 

pixels in different ways.

● Grouping pixels based on intensity+position similarity

⇒ Way to encode both similarity and proximity.
Slide credit: Kristen Grauman

X

Intensity

Y

42
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K-Means Clustering Results

Image grayscale clusters Color-based clusters

43

● Clusters don’t have to be spatially coherent
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K-Means Clustering Results

44

● Clustering based on (r,g,b,x,y) values enforces more 
spatial coherence
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How to evaluate clusters?

● Generative

○ How well are points reconstructed from the clusters?

● Discriminative

○ How well do the clusters correspond to labels?

■ Can we correctly classify which pixels belong to the panda?

○ Note: unsupervised clustering does not aim to be discriminative as we don’t 
have the labels.

Slide: Derek Hoiem45



Ranjay Krishna February 11, 2025Lecture 11 -

How to choose the number of clusters?
Try different numbers of clusters 
in a validation set and look at 
performance.

Plot of SSD versus values of k

abrupt change at k=2 is 
suggestive of two clusters in the 
data

Slide: Derek Hoiem46
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K-Means pros and cons

47

● Pros
• Good representation of data
• Simple and fast, Easy to implement

● Cons
• Need to choose K
• Sensitive to outliers
• Prone to local minima
• All clusters have the same parameters (e.g., 

distance measure is non-adaptive)
• Can still be slow: each iteration is O(KNd) for 

N d-dimensional pixels
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What will we learn today?

48

● K-means clustering
● Mean-shift clustering
● Normalized cuts
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Mean-Shift Segmentation

● An advanced and versatile technique for clustering-based 
segmentation

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, PAMI 2002. 

49

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html
http://www.caip.rutgers.edu/~comanici/Papers/MsRobustApproach.pdf
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Region of
interest

Center of
mass

Mean Shift
vector

26-Oct-1750

Slide by Y. Ukrainitz & B. Sarel

Mean-Shift
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Region of
interest

Center of
mass

Mean Shift
vector

26-Oct-1751

Slide by Y. Ukrainitz & B. Sarel

Mean-Shift
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Region of
interest

Center of
mass

Mean Shift
vector

26-Oct-1752

Slide by Y. Ukrainitz & B. Sarel

Mean-Shift
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Region of
interest

Center of
mass

Mean Shift
vector

Mean-Shift
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Slide by Y. Ukrainitz & B. Sarel
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Region of
interest

Center of
mass

Mean Shift
vector
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Slide by Y. Ukrainitz & B. Sarel

Mean-Shift
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Region of
interest

Center of
mass

Mean Shift
vector

Mean-Shift

Slide by Y. Ukrainitz & B. Sarel
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Region of
interest

Center of
mass

Mean-Shift

Slide by Y. Ukrainitz & B. Sarel

56



Ranjay Krishna February 11, 2025Lecture 11 -
Tessellate the space with windows Run the procedure in parallel
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Real Modality Analysis
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The blue data points were traversed by the windows towards the mode. Sl
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1. Represent each pixel i using some feature vector vi
2. Generate a window W as a random pixel feature vw
3. Identify all the pixels within a radius r of vw
4. Calculate the mean (“center of gravity”) amongst the neighbors of W
5. Translate the window W to the mean feature location
6. Repeat Step 2 until convergence

Mean-Shift Algorithm

59
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● Initialize not just 1 window but a multiple windows at random
● All pixels that end up in the same location belong to the same cluster
● Attraction basin: the feature region for which all windows end up in the 

same location

Mean-Shift Clustering

60
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Mean-Shift Segmentation Results

http://www.caip.rutgers.edu/~comanici/MSPAM
I/msPamiResults.html

61

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html
http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html
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More 
Results

62
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More Results

63
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Problem: Computational Complexity

● Need to shift one window for every pixel
● Many computations will be redundant.

64
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Speedups: Basin of Attraction

1. Assign all points within radius r of end point to the mode.

r

65
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Speedups

2. Assign all points within radius r/c of the search path to the mode -> reduce 
the number of data points to search.

66
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Example of what running mean shift looks like

67
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Another example

68
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Mean-Shift Clustering
● Find features (color, gradients, texture, 

etc)
● Initialize windows at individual pixel 

locations
● Perform mean shift for each window until 

convergence
● At every step, merge windows that have 

high overlap to reduce computation

69
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Mean-Shift pros and cons
● Pros

○ General, application-independent algorithm
○ Model-free, does not assume any prior shape (spherical, elliptical, etc.) of data clusters
○ Just a single parameter (window size r) 

■ r has a physical meaning (unlike k-means)
○ Finds variable number of modes
○ Robust to outliers

● Cons
○ Output depends on window size
○ Window size (bandwidth) selection is not easy
○ Computationally (relatively) expensive (~2s/image)
○ Does not scale well with dimension of feature space

70
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Today’s agenda

71

● K-means clustering
● Mean-shift clustering
● Normalized cuts
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– Node (vertex) for every pixel
– Edge between pairs of pixels, (p,q)
– Affinity weight wpq for each edge

• wpq measures similarity
• Similarity is inversely proportional to difference (in 

color and position…)

p

q

w
pq

w

slide credit: Steve Seitz

Images as Graphs
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Images as Graphs
Which edges to include?

Fully connected:
- Captures all pairwise similarities
- Infeasible for most images

Neighboring pixels:
- Very fast to compute
- Only captures very local interactions

Local neighborhood:
- Reasonably fast, graph still very sparse
- Good tradeoff

w
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Measuring Affinity

• Distance:

• Examples:
- Distance:
- Intensity:
- Color:
- Texture:

•
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Measuring Affinity

Distance:
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Measuring Affinity

Intensity:
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Measuring Affinity

Color:
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Measuring Affinity

Texture:
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A B C

Break Graph into Segments
– Delete links that cross between segments
– Easiest to break links that have low similarity (low weight)

• Similar pixels should be in the same segments
• Dissimilar pixels should be in different segments

Segmentation as Graph Cuts

w

slide credit: Steve Seitz
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•

•

Given: Affinity matrix W
Goal: Extract a single good cluster v
- v(i): score for point i for cluster v

Graph Cut with Eigenvalues
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Optimizing

Lagrangian:

v is an eigenvector of W
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1. Construct affinity matrix W
2. Computeeigenvalues and vectors of W
3. Until done

1. Take eigenvector of largest unprocessed eigenvalue
2. Zero all components of elements that have already been 

clustered

3. Threshold remaining components to determine cluster 
membership

Note: This is an example of a spectral clustering algorithm

Clustering via Eigenvalues
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Graph Cuts - Another Look

A

• Set of edges whose removal makes a graph disconnected
• Cost of a cut

– Sum of weights of cut edges:

• A graph cut gives us a segmentation
– What is a “good” graph cut and how do we find one?

B
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We can do segmentation by finding the minimum cut
- either smallest number of elements (unweighted) or smallest 

sum of weights (weighted)

- efficient algorithms exist
Drawback
- Weight of cut proportional to number of edges
- Biased towards cutting small, isolated components

Formulation: Min Cut

Ideal Cut

Cuts with 
lesser weight 
than the ideal 
cut
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Solution: Normalized Cuts
1. Construct weighted graph
2. Construct affinity matrix
3. Solve for smallest few eigenvectors.
4. Threshold eigenvectors to get a discrete cut

•

•

This is the approximation
As before, several heuristics for doing this

5. Recursively subdivide as desired.
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• Key idea: normalize segment size
- Fixes min cut’s bias

• Formulation:

= sum of weights of edges in V that touch A

• NP-hard, but can approximate
J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI 2000

Formulation: Normalized Cuts

assoc( A,V )    assoc(B,V )
cut( A, B)        cut( A, B)+

Lecture 2 - 86
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NCuts as GeneralizedEigenvector Problem

In matrix form:

Definitions:
: affinity matrix
: diagonal matrix
: vector in

Lecture 2 - 87
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After a lot of math…
• After simplification, we get

This is hard,
y is discrete!

• This is a Rayleigh Quotient
– Solution given by the “generalized” eigenvalue problem

• Subtleties
–Optimal solution is second smallest eigenvector

–Gives continuous result—must convert into discrete values of y

Slide credit: Alyosha Efros

Relaxation: 
continuous y

Lecture 2 - 88
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Normalized Cuts example

Smallest eigenvectors

Image source: Shi & Malik
NCuts segments
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90

Normalized Cuts example
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Normalized Cuts example
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• Pro
- Flexible tochoiceof affinity matrix
- Generally works better than other methods 

we’ve seen so far

• Con
- Can be expensive, especially with many cuts.

- Bias toward balanced partitions
- Constrained by affinity matrix model

Normalized Cuts summary

Lecture 2 - 92
92
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Today’s agenda

93

● K-means clustering
● Mean-shift clustering
● Normalized cuts
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Next time
Cameras and Calibration

94
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Other Kernels

source

95

https://saravananthirumuruganathan.wordpress.com/2010/04/01/introduction-to-mean-shift-algorithm/
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Technical Details

Comaniciu & Meer, 2002 

• Term1: this is proportional to the density estimate at x (similar to equation 1 
from two slides ago).

• Term2: this is the mean-shift vector that points towards the direction of 
maximum density. 

Taking the derivative of:

96
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Technical Details

Comaniciu & Meer, 2002 

Finally, the mean shift procedure from a given point x
t
 is:

1.  Compute the mean shift vector m:

2. Translate the density window: 

3. Iterate steps 1 and 2 until convergence.

97
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Technical Details

Comaniciu & Meer, 2002 98


