Lecture 11

K-means and Mean Shift
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Administrative

A3 is out
- Due Feb 21st

A4 will be out soon
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Administrative

Recitation
- Multiview geometry
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Content-aware Retargeting Operators
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So far: Segmentation and clustering

e Goal: identify groups of pixels that go together
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So far: Agglomerative clustering
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Today's agenda

e K-means clustering
e Mean-shift clustering
e Normalized cuts

Reading:
Szeliski, 2"? edition, Chapter 7.5
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Today's agenda

e K-means clustering

Reading: Szeliski Chapters: 5.2.2, 7.5.2

D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, PAMI 2002.
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https://doi.org/10.1109/34.1000236

Image Segmentation: Binary image Example

white

| pixels

d 3 | black pixels gray P _
2 b / pi)Ie/s ]

input image L o J

intensity
e These pixel values show that there are three things in the image.
e \We could label every pixel in the image according to which of these
primary intensities it is.
o i.e., segment the image based on the intensity feature.
e What if the image isn’t quite so simple?
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Pixel count

Input image L J
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Intensity
e How do we determine the three main intensities that

define our groups?
e Each cluster has a cluster center
o A mean cluster value.
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e (Goal: choose three “centers” as the representative intensities and label
every pixel according to which of these centers it is nearest to.

e Best cluster centers are those that minimize Sum of Square Distance
(SSD) between all points and their nearest cluster center ¢

SSD =Y > (v—c¢)’
C vel
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Clustering

e With this objective, it is a “chicken and egg” problem:

o If we knew the cluster centers, we could allocate points to groups by
assigning each to its closest center.
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o If we knew the group memberships, we could get the centers by
computing the mean per group.
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Given, a set of points, randomly select k=3 of them to be
the cluster centers
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Categorize each point into a cluster defined
by its closest center.

5
Next, move the cluster centers to = |
location amongst its cluster N % . © o0
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Repeat with new cluster center locations

S \
® PN
4 %2 ® o

. " ® °
o @ k30
1 ok, *
<> ¢ &
L R \ < ®
0 .
(9] 1 2 3 4 5

Ranjay Krishna Lecture 11 - 16 February 11, 2025



Categorize into new clusters.
Move center to the mean
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Repeat with new cluster centers
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Computational Complexity

At each iteration,

- Computing distance between each of the n objects and the K cluster

centers is O(Kn).
- Computing cluster centers: Each object gets added once to some

cluster: O(n).
Assume these two steps are each done once for | iterations: O(IKn).

Q. Is K-means guaranteed to converge to a global maximum?

Ranjay Krishna Lecture 11 - 19 February 11, 2025



Results are quite sensitive to seed selection.
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Results are quite sensitive to seed selection.
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Results are quite sensitive to seed selection.
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Results are quite sensitive to seed selection.

e Some seeds can result in poor convergence rate, or convergence to
sub-optimal clustering.

e Select good seeds using a heuristic (e.g., object least similar to any
existing mean)

e Try out multiple starting points (very important!!!)

e Initialize with the results of another method.
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Other issues with k-means

Shape of clusters
— Assumes isotopic, convex clusters
Sensitive to Outliers

Qu:ller F;_e\u?_es |deal decision boundary
MmiSclasslitications
] ]
B l. .. O .-I ol .. :. o l..
.l- -ll:xl' -.X.- sn” mn
o 5] | Eg W a - o] iy ..& o
o] o N -. - e a o 5] m .
a m =" & m u®
a 0 0 o

Ranjay Krishna Lecture 11 - 24 February 11, 2025



How to choose the value of k

e Number of clusters K
— Objective function

— Look for “Knee” in objective function
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Clustering

Goal: cluster to minimize distance of pixels to their cluster centers

Cluster center Data

Whether U4 :is assigned to ¢,

l

Ranjay Krishna Lecture 11 - 26 February 11, 2025



K-means clustering

1. Initialize (#=0): cluster centersc,,...,c,
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K-means clustering

1. Initialize (#=0): cluster centersc,,...,c,

2. Compute o assign each point to the closest center
o &'denotes the set of assignment for each v; to cluster ¢, at

iteration t
&" —argmm—ZZ(St Yt —wy)?
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K-means clustering

1. Initialize (#=0): cluster centersc,,...,c,

2. Compute o assign each point to the closest center
o &'denotes the set of assignment for each v; to cluster ¢, at

iteration ¢
&" —argmm—ZZ(St Yt —wy)?
3. Computer ¢ update cluster centers as the mean of the points

C —argmm—ZZcS 1_%
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K-means clustering

1. Initialize (#=0): cluster centersc,,...,c,

2. Compute o assign each point to the closest center
o &'denotes the set of assignment for each v; to cluster ¢, at

iteration ¢
&" —argmm—ZZ(St Yt —wy)?
3. Computer ¢ update cluster centers as the mean of the points

C —argmm—ZZcS 1_%

4. Update t=1+1 , Repeat Step 2- 3 till stopped
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K-means clustering

1. Initialize (#=0): cluster centersc,,...,c,

2. Compute o assign each point to the closest center
o &'denotes the set of assignment for each v; to cluster ¢, at

iteration ¢
&" —argmm—ZZ(St Yt —wy)?
3. Computer ¢ update cluster centers as the mean of the points

C —argmm—ZZcS 1_%

4. Update t=1+1 , Repeat Step 2- 3 till stopped
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K-means clustering
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1. Initialize 2. Assign‘ Points to 3. Re-compute | Repeat (2) and (3)
Cluster Centers Clusters Means
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http://en.wikipedia.org/wiki/Image:K_Means_Example_Step_1.svg
http://en.wikipedia.org/wiki/Image:K_Means_Example_Step_2.svg
http://en.wikipedia.org/wiki/Image:K_Means_Example_Step_3.svg
http://en.wikipedia.org/wiki/Image:K_Means_Example_Step_4.svg

K-means clustering

Initial cluster centers are randomly initialized

- Can lead to bad initializations
- Can cause bad clusters
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Another example of how K-means Converges to a local

minimum solution
Initialize multiple runs!
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K-Means++

Tries to prevent arbitrarily bad local minima?

1. Randomly choose first center.

2. Pick new center with prob. proportional to (c; — v;)?
a. Basically we want to find as good of an initialization as possible

3. Repeat until K centers.

SENEVANGEIIE Lecture 11 - 35 February 11, 2025



K-means clustering

Initial cluster centers are randomly initialized

- Can lead to bad initializations
- Can cause bad clusters

Different distance measures can change K-Means clusters
- Euclidean distance of cosine distance.

Different feature space can lead to different cluster
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Segmentation as Clustering

P8 2 clusters

v,

o 3 clusters
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Feature Space: pixel value

e Feature space: what measurements do we include in x?

e Depending on what we choose as the feature space, we
can group pixels in different ways.

e Grouping pixels based on
iIntensity similarity

4—.!( C0=CCC(C(0 =0 —CQQ(C(C0-0—-Q(Q(C C(C.—>

e Feature space: intensity value (1D)
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Feature Space: RGB

e Depending on what we choose as the feature space, we )
can group pixels in different ways.

e Grouping pixels based
on color similarity 'B

e Feature space: color value (3-dim)
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Feature Space: edges and blobs

e Depending on what we choose as the feature space, we
can group pixels in different ways.

e Grouping pixels based on oriented gradient similarity
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24 edge & blog filters

e Feature space: filter bank responses (e.g., 24D)
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Smoothing Out Cluster Assignments

e Assigning a cluster label per pixel may yield outliers:

‘

Original Labeled by cluster center’s intensity

|?

3
- K

e How can we ensure they
are spatially smooth?
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Feature Space: RGB + XY location

e Depending on what we choose as the feature space, we can group
pixels in different ways.

e Grouping pixels based on intensity+position similarity

t Intensity

= Way to encode both similarity and proximity.
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K-Means Clustering Results

e Clusters don't have to be spatially coherent

Image grayscale clusters  Color-based clusters
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K-Means Clustering Results

e Clustering based on (r,g,b,x,y) values enforces more
spatial coherence
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How to evaluate clusters?

® Generative
o How well are points reconstructed from the clusters?

e Discriminative
o How well do the clusters correspond to labels?
m Can we correctly classify which pixels belong to the panda?

o Note: unsupervised clustering does not aim to be discriminative as we don’t
have the labels.
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How to choose the number of clusters?

Try different numbers of clusters
In a validation set and look at

performance.
= 9.00E+02 \
g 8.00E+02 \
Plot of SSD versus values of k g e \
L‘L-q 6.00E+02 \
. g 5.00E+02 \
abrupt change at k=2 is g e \
. , S
suggestive of two clusters in the 2 e \
data e ,
1 2 3 k 4 5 6
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K-Means pros and cons oo | A ya
e Pros

» Good representation of data

« Simple and fast, Easy to implement
e Cons

* Need to choose K

« Sensitive to outliers

outher

» Prone to local minima o o8}

S 8 &

* All clusters have the same parameters (e.g., %ﬁ ggé

distance measure is non-adaptive) @%{ oﬁio
ohgo

 Can still be slow: each iteration is O(KNd) for .
N d-dimensional pixels
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What will we learn today?

e Mean-shift clustering
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Mean-Shift Segmentation

e An advanced and versatile technique for clustering-based
segmentation

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html
D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, PAMI 2002.
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http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html
http://www.caip.rutgers.edu/~comanici/Papers/MsRobustApproach.pdf
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Slide by Y. Ukrainitz & B. Sarel
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Mean-Shift
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Mean-Shift
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Mean-Shift
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Mean-Shift
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Mean-Shift
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Real Modality Analysis

Slide by Y. Ukrainitz & B. Sarel

O O0UO

Tessellate the space with windows Run the procedure in parallel
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Real Modality Analysis

O O
O
O O ®
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The blue data points were traversed by the windows towards the mode.
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Mean-Shift Algorithm

Represent each pixel i using some feature vector v,

Generate a window W as a random pixel feature v

Identify all the pixels within a radius rof v

Calculate the mean (“center of gravity”) amongst the neighbors of W
Translate the window W to the mean feature location

Repeat Step 2 until convergence

o Uk wbheE
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Mean-Shift Clustering

e |nitialize not just 1 window but a multiple windows at random
e All pixels that end up in the same location belong to the same cluster

e Attraction basin: the feature region for which all windows end up in the
same location
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Mean Shlft Segmentatlon Results

http://www.caip.rutgers.edu/~comanici/MSPAM
I/msPamiResults.html
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More
Results
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More Results
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Problem: Computational Complexity

e Need to shift one window for every pixel
e Many computations will be redundant.
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Speedups: Basin of Attraction

O - N O @)

1. Assign all points within radius r of end point to the mode.
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Speedups

O O

@
O ® °

2. Assign all points within radius r/c of the search path to the mode -> reduce
the number of data points to search.
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Example of what running mean shift looks like
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Another example
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Mean-Shift Clustering

e Find features (color, gradients, texture,

etc)
e Initialize windows at individual pixel
locations _
e Perform mean shift for each window until i
convergence (a) ()

e At every step, merge windows that have
high overlap to reduce computation

NORMALIZED DENSITY

Ranjay Krishna Lecture 11 - 69 February 11, 2025



Mean-Shift pros and cons

e Pros
o General, application-independent algorithm
o Model-free, does not assume any prior shape (spherical, elliptical, etc.) of data clusters
o Just a single parameter (window size r)
=  has a physical meaning (unlike k-means)
o Finds variable number of modes
o Robust to outliers

e Cons
o Output depends on window size
o Window size (bandwidth) selection is not easy
o Computationally (relatively) expensive (~2s/image)
o Does not scale well with dimension of feature space
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Today's agenda

e Normalized cuts
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Images as Graphs

— Node (vertex) for every pixel

— Edge between pairs of pixels, (p,q)
— Affinity weight W for each edge
* W  measures similarity

- Similarity is inversely proportional to difference (in
color and position...)
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Images as Graphs

Which edges to include?

Fully connected:
- Captures all pairwise similarities

- Infeasible for most images

Neighboring pixels:
- Very fast to compute
- Only captures very local interactions

Local neighborhood:

- Reasonably fast, graph still very sparse
- Good tradeoff
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Measuring Affinity

1

9
20 g

. Distance:  aff(z,y) — exp (— Hf(-fv)—f(y)!|2>

 Examples: f(x) = location(z)

- Distance:  7(4) = intensity(x)
- Intensity:  f(x) = color(z)
_ Color f(x) = filterbank(x)

- Texture:
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Distance:
f(x) = location(x)
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Measuring Affinity

Intensity:
f(x) = intensity(x)
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Measuring Affinity

Color:
f(x) = color(z)
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Measuring Affinity

Texture:
f(x) = filterbank(x)
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Segmentation as Graph Cuts

®
AB C

Break Graph into Segments
— Delete links that cross between segments

— Easiest to break links that have low similarity (low weight)
« Similar pixels should be in the same segments
 Dissimilar pixels should be in different segments
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Graph Cut with Eigenvalues

 Given: Affinity matrix W
- Goal: Extract a single good cluster v

- v(i): score for point / for cluster v
max v! Wu
»
T

s.t. viv =1
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Optimizing

max vl Wwo min —%UTW’U
() < > )

s.t. vl =1 st viv=1
. R 1 ,TII* : )\ ’T 1
Lagrangian: —5v Wu+ (v'v—1)

—Wov+A=>0

Wuov = M\

v is an eigenvector of W
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Clustering via Eigenvalues

1. Construct affinity matrix W

2. Computeeigenvalues and vectors of W
3. Until done

1. Take eigenvector of largest unprocessed eigenvalue

2. Zero all components of elements that have already been
clustered

3. Threshold remaining components to determine cluster
membership

Note: This is an example of a spectral clustering algorithm
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Graph Cuts - Another Look

« Set of edges whose removal makes a graph disconnected

([ COSt Of a CUt Cuvt(A’ B) — Z ,u/,pq
— Sum of weights of cut edges: pEAGEB

* A graph cut gives us a segmentation
— What is a “good” graph cut and how do we find one?
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Formulation: Min Cut

We can do segmentation by finding the minimum cut
- either smallest number of elements (unweighted) or smallest
sum of weights (weighted)

- efficient algorithms exist

Drawback
- Weight of cut proportional to number of edges

- Biased towards cutting small, isolated components

oo ©& e —
Cuts with

‘ . . . ‘ lesser weight

D) D) D than the ideal
/ @ D) cut
Ideal Cut
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Solution: Normalized Cuts

1. Construct weighted graph G = (V,E)
2. Construct affinity matrix W/

3. Solve for smallest few eigenvectors.(D — W)y = ADy
4. Threshold eigenvectors to get a discrete cut

This is the approximation
As before, several heuristics for doing this
5. Recursively subdivide as desired.

Ranjay Krishna Lecture 11 - February 11, 2025



Formulation: Normalized Cuts

- Key idea: normalize segment size

- Fixes min cut’s bias
- Formulation:
Neut(A, B) = cut( A, B) | _cut( A4, B)
assoc( A,V')  assoc(B,V)

1 1
= cut(A, B) +

Z})EA Wp,q quB Wp,q

assoc( A, V5 sum of weights of edges in V that touch A

. NP-hard, but can approximate
J. Shi and J. Malik. Normalized cuts and image segmentation. PAMI 2000
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NCuts as GeneralizedEigenvector Problem

Definitions:
W affinity matrix N
. diagonal matrix, D? =2, w
: vector in

In matrix form:
NCut(A, B) - cut(A, B) N cut(A, B)

assoc(A,V) assoc(B,V)
_(1+)"(D-W)(1+ .-_.)+['1 —2)(D-W)1-=z) . > .0 D7)
a k17 D1 (1-k)17D1 T YL D(iLd)
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After a lot of math...

« After simplification, we get

_yT(D-W)y

. _ T _ This is hard,
yTDy Yi € {1, b}, Y D1 0

y is discrete!

NCut(A, B)

* This is a Rayleigh Quotient
— Solution given by the “generalized” eigenvalue problem
Relaxation:

« Subtleties continuous y
__Optimal solution is second smallest eigenvector

__Gives continuous result—must convert into discrete values of y
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Normalized Cuts example

Smallest eigenvectors

1
b

| S

NCuts segments

. Image source: Shi & Malik
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Normalized Cuts example
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Normalized Cuts example
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Normalized Cuts summary

« Pro
- Flexible tochoice of affinity matrix

- Generally works better than other methods
we’ve seen so far

o rm® -/‘.,'éﬁ
i gl
- Con

- Can be expensive, especially with many cuts.

- Bias toward balanced partitions
- Constrained by affinity matrix model
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Today's agenda

e K-means clustering
e Mean-shift clustering
e Normalized cuts
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Next time

Cameras and Calibration
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Other Kernels

A kernel is a function that satisfies the following requirements :
1. fRd o(x) =1

2. ¢(z) =0

Some examples of kernels include :

1l a<zxz<b

olz) =
1. Rectangular ¢ ( ) {() else

2

2. Gaussian (;‘)(ll') — (»";T'If

3. Epanechnikov @(T) = {

source
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https://saravananthirumuruganathan.wordpress.com/2010/04/01/introduction-to-mean-shift-algorithm/

Technical Detalls

) .. A 1 X — X;
Taking the derivative of: fx = T ; K ( )

n 2 =
n > % (J|=2]°)
2 2Ck,4 x — %; | i=1 r
Vi) =35 | D9 - -x|, (3
nhots | & h i 12
o CET X L 2o (=)
term 1 ~— it - i
term 2
where g(z) = —k'(z) denotes the derivative of the selected kernel profile.

* Terml: this is proportional to the density estimate at x (similar to equation 1
from two slides ago).

* Terma2: this is the mean-shift vector that points towards the direction of
maximum density.

Comaniciu & Meer, 2002
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Technical Detalls

Finally, the mean shift procedure from a given point x_is:
1. Compute the mean shift vector m:

3= g (J15=1)

—

2. Translate the density window:

t+1

X, = X:+ m(x}).

3. lterate steps 1 and 2 until convergence.
Vf(xz) = (.

Comaniciu & Meer, 2002
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Technical Detalls

Given n data points x; € R% the multivariate kernel density estimate using a
radially symmetric kernel® (e.g., Epanechnikov and Gaussian kernels), K(x), is given

by,
A 1 X — X;
=—E K 1

where h (termed the bandwidth parameter) defines the radius of kernel. The radially
symmetric kernel is defined as,

K (x) = cxk([[x]), (2)

where c; represents a normalization constant.
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