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Lecture 10
Segmentation and clustering
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A2 is out
- Due Feb 7th

A3 is out
- Due Feb 21st

Administrative
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Recitation
- Geometric transformations

Administrative
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Content-aware Retargeting Operators

Content-
aware

Content-
oblivious

“Important”
content
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So far
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So far: Seam carving with pixel energies
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Retargeting in Both Dimensions
● Let T(r,c) denote a new cost matrix of obtaining an image of size (n-r)x(m-c).
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where  is the cost of removing a horizontal

seam from the image
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Today’s agenda
● Introduction to segmentation and clustering
● Gestalt theory for perceptual grouping
● Graph-based oversegmentation
● Agglomerative clustering

Reading:
Szeliski, 2nd edition, Chapter 7.5
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● Introduction to segmentation and clustering
● Gestalt theory for perceptual grouping
● Graph-based oversegmentation
● Agglomerative clustering

Today’s agenda

Reading:
Szeliski, 2nd edition, Chapter 7.5
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Q. What do you see?
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Image Segmentation
● Goal: identify groups of pixels that go together

Slide credit: Steve Seitz, Kristen Grauman11
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The Goals of Segmentation
● Separate image into coherent “objects”

Image Human segmentation

Slide credit: Svetlana Lazebnik12
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The Goals of Segmentation
● Separate image into coherent “objects”
● Group together similar-looking pixels for efficiency of 

further processing

X. Ren and J. Malik. Learning a classification model for segmentation. ICCV 2003.

“superpixels”
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http://ttic.uchicago.edu/~xren/research/iccv2003/
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Segmentation for feature support

50x50 Patch50x50 Patch

Slide: Derek Hoiem14
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Segmentation for efficiency

[Felzenszwalb and Huttenlocher 2004]

[Hoiem et al. 2005, Mori 2005]

[Shi and Malik 2001]

Slide: Derek Hoiem15
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Segmentation is used in Adobe 
photoshop to remove background

Rother et al. 2004
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Segment 
Anything 
[2023]
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https://segment-anything.com/assets/section-3.1b.mp4
https://segment-anything.com/assets/section-3.1b.mp4
https://docs.google.com/file/d/10-6a3qAnhXLh-G_M6GHMIro0OKP6YIXo/preview
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Levels of segmentations

Over-segmentation Under-segmentation
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One way to think about “segmentation” is 
clustering

Clustering: group together similar data points and represent them with a single 
token

Key Challenges:

1) What makes two points/images/patches similar?

2) How do we compute an overall grouping from pairwise similarities? 

Slide: Derek Hoiem19
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Why do we cluster?
● Summarizing data

○ Look at large amounts of data
○ Find clusters of pixels
○ Represent each cluster of pixels with a HoG feature

● Counting
○ Histograms of texture, color, SIFT vectors

● Foreground-background separation
○ Separate the image into different regions

● Prediction
○ Images in the same cluster may have the same labels

Slide: Derek Hoiem20
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How do we cluster?

● Agglomerative clustering
○ Start with each point as its own cluster and iteratively 

merge the closest clusters
● K-means

○ Iteratively re-assign points to the nearest cluster 
center

● Mean-shift clustering
○ Estimate modes of pdf
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General ideas
● Tokens

○ Things that can be grouped together 
○ (e.g. pixels, points, surface elements, etc., etc.)

● Bottom up clustering
○ tokens belong together because they are locally coherent

● Top down clustering
○ tokens belong together because they lie on the same visual 

entity (object, scene…)
●  > These two are not mutually exclusive
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Examples of Grouping in Vision

Determining image regions
Grouping video frames into shots

Object-level grouping Figure-ground
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Similarity
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What things should
 be grouped?

What cues 
indicate groups?
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Symmetry

Slide credit: Kristen Grauman
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Common Fate

Image credit: Arthus-Bertrand (via F. Durand)

Slide credit: Kristen Grauman
26
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Proximity
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● Introduction to segmentation and clustering
● Gestalt theory for perceptual grouping
● Graph-based oversegmentation
● Agglomerative clustering

What will we learn today?
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The Gestalt School
● Grouping is key to visual perception
● Elements in a collection can have properties that result from different 

relationships (space, affordance, etc.)
○ “The whole is greater than the sum of its parts”

Illusory/subjective 
contours

Occlusion

Familiar configuration

http://en.wikipedia.org/wiki/Gestalt_psychology 29

http://en.wikipedia.org/wiki/Gestalt_psychology
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Gestalt Theory
● Gestalt: whole or group

○ Whole is greater than sum of its parts
○ Relationships among parts can yield new properties/features

● Psychologists identified series of factors that predispose set of elements to be 
grouped (by human visual system)

Untersuchungen zur Lehre von der Gestalt,
Psychologische Forschung, Vol. 4, pp. 301-350, 1923
http://psy.ed.asu.edu/~classics/Wertheimer/Forms/forms.htm

“I stand at the window and see a house, trees, sky. 
Theoretically I might say there were 327 
brightnesses and nuances of colour. Do I have "327"? 
No. I have sky, house, and trees.”

Max Wertheimer
(1880-1943)
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http://psy.ed.asu.edu/~classics/Wertheimer/Forms/forms.htm
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Gestalt Factors
These factors make intuitive sense, but are 
very difficult to translate into algorithms.
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Continuity through Occlusion Cues
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Continuity through Occlusion Cues

Continuity, explanation by occlusion
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Continuity through Occlusion Cues
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Continuity through Occlusion Cues
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Figure-Ground Discrimination 
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The Ultimate Gestalt?
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● Introduction to segmentation and clustering
● Gestalt theory for perceptual grouping
● Graph-based oversegmentation
● Agglomerative clustering

What will we learn today?
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Over-segmenting images

● Graph-based clustering for Image 
Segmentation
○ Introduced by Felzenszwalb and 

Huttenlocher in the paper titled 
Efficient Graph-Based Image 
Segmentation.

39



40

Imagine you have a set of pixels, 
how should you clustering them?

Basic idea: group together similar instances
Q. how do you measure similarity? 
Q. do you need to measure similarity between every two pixels?



Imagine you have a set of pixels, 
how should you clustering them?
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Basic idea: group together similar instances
Q. how do you measure similarity? 
Q. do you need to measure similarity between every two pixels?



Distances calculated using only (x,y) 
location of each pixel can be a bad idea

• Clusters may overlap
• Some clusters may be “wider” than 

others
• Distances can be deceiving!
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● Every pixel is connected to its 8 neighboring pixels 
● The edges between neighbors have weights that are 

determined by the distance between them.
● Edge weights between pixels are determined using 

dist(x, x’) distance in feature space. 
○ where x and x’ are two neighboring pixels

● Q. What is a good feature space?

Image as a Graph - Features and weights

43
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What are good pixel features?
● Use RGB values? 

○ v = [r, g, b] 
○ It is 3-dimensional

● Use location? 
○ v = [x, y]
○ 2-dim

● Use RGB + location? 
○ v = [x, y, r, g, b]
○ 5-dim

● Use gradient magnitude? 
○ v = [df/dx, df/dy]
○ 2-d

44
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Problem Formulation

● Graph G = (V, E) 
● V is set of nodes (i.e. pixels) 
● E is a set of undirected edges between pairs of pixels 
● dist(vi , vj) is the weight/distance of the edge between nodes vi and vj.

● S is a segmentation of a graph G such that G’ = (V, E’) where E’ ⊂ E. 
○ That is, we keep all vertices, but select a subset E’ from all initial 

edges E.
● S divides G into G’ such that it contains distinct clusters C.

45
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Weights of edges: distance measure

Clustering is an unsupervised learning method. Given items 
                         , the goal is to group them into clusters.

We need a pairwise distance/similarity function between items, and 
sometimes the desired number of clusters.

When data (e.g. images, objects, documents) are represented by 
feature vectors, commonly used measures are:
- Euclidean distance.
- Cosine similarity. 

46
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Defining Distance Measures

Let x and x’ be two objects from the universe of possible objects.
The distance (or similarity) between x and x’ is a real number:

● The Euclidean distance is defined as

● In contrast, the cosine similarity measure would be 

47
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What will we learn today?
● Introduction to segmentation and clustering
● Gestalt theory for perceptual grouping
● Graph-based oversegmentation
● Agglomerative clustering
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Slide credit: Andrew Moore
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Agglomerative clustering
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Slide credit: Andrew Moore
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Agglomerative clustering
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Slide credit: Andrew Moore
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Agglomerative clustering
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Slide credit: Andrew Moore
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Agglomerative clustering
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Slide credit: Andrew Moore
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Agglomerative clustering
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Agglomerative clustering

How to define cluster similarity?
- Average distance between all pixels between the two cluster?

- Maximum distance?

- Minimum distance?

- Distance between means?

How many clusters?
- Clustering creates a dendrogram (a tree)

- Threshold based on max number of clusters or based on distance 
between merges di

st
an

ce
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Agglomerative Hierarchical Clustering - Algorithm

55

Inputs: 
- An input image 
- Feature representation for each pixel
- Distance metric dist(-,-)

➢ Initially, each pixel v1, …, vn is its own cluster C1, …, Cn
➢ While True:

○ Find two nearest clusters according to dist(Ci, Cj) 
○ Merge C = (Ci, Cj) 
○ If only 1 cluster is left:

■ break
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How should we define “closest” for clusters with multiple 
pixels already in it?

56
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– Closest pair
(single-link clustering)

– Farthest pair
(complete-link clustering)

• Average of all pairs

Different choices create different clustering 
behaviors

How should we define “closest” for clusters with 
multiple pixels already in it?
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Farthest pair
(complete-link clustering)

Closest pair
(single-link clustering)

1 2

3 4

5 6

7 8

1 2

3 4

5 6

7 8

[Pictures from Thorsten Joachims]

How should we define “closest” for clusters with 
multiple pixels already in it?
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Single Linkage distance measure

Long, skinny clusters

Connects the clusters based on the distance of their closest pixels
It produces “long” clusters. 

59
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Tight clusters

Produces compact clusters that are similar in diameter

60

Complete Link distance measure
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Average Link distance measures

Robust against noise.

61
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Where 
● dif(C1 , C2 ) is the difference between two clusters. 
● in(C1 , C2 ) is the internal difference in the clusters C1 

and C2

in

dif

62

Inlier-outlier linkage distance measure
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Where 
● dif(C1 , C2 ) is the difference between two clusters. 
● in(C1 , C2 ) is the internal difference in the clusters C1 

and C2

in

dif
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Inlier-outlier linkage distance measure
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Where 
● dif(C1 , C2 ) is the difference between two clusters. 
● in(C1 , C2 ) is the internal difference in the clusters C1 

and C2

in

dif

64

Inlier-outlier linkage distance measure
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inlier-outlier linkage for Segmentation
● k/|C| sets the threshold by which the clusters need to be different 

from the internal pixels in a cluster. 
● Effect of k:

○ If k is large, it causes a preference for larger objects.
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Results

66
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How to implement single-linkage efficiently
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b
a

b c d
a 2 5 6
b 3 5
c 4

Distance Matrix

Euclidean Distance

c d
(1)
c d

a,b

(2)

a,b,c
d

(3)

a,b,c,d

   b c d c d
a    2 5 6 a, b 3 5
b 3 5 c 4
c 4

d
a, b, c 4
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Conclusions: Agglomerative Clustering

Pros:
● Simple to implement, widespread application.
● Clusters have adaptive shapes.
● Provides a hierarchy of clusters.
● No need to specify number of clusters in advance.

Cons:
● May have imbalanced clusters.
● Still have to choose number of clusters eventually for an application
● Does not scale well. Runtime of O(n3).
● Can get stuck at a local optima.
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● Introduction to segmentation and clustering
● Gestalt theory for perceptual grouping
● Graph-based oversegmentation
● Agglomerative clustering

Today’s agenda
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Next time
K-means and mean shift
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Other Kernels

source

71

https://saravananthirumuruganathan.wordpress.com/2010/04/01/introduction-to-mean-shift-algorithm/
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Technical Details

Comaniciu & Meer, 2002 

• Term1: this is proportional to the density estimate at x (similar to equation 1 
from two slides ago).

• Term2: this is the mean-shift vector that points towards the direction of 
maximum density. 

Taking the derivative of:

72
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Technical Details

Comaniciu & Meer, 2002 

Finally, the mean shift procedure from a given point x
t
 is:

1.  Compute the mean shift vector m:

2. Translate the density window: 

3. Iterate steps 1 and 2 until convergence.
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Technical Details

Comaniciu & Meer, 2002 74


