Lecture 10

Segmentation and clustering

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 1

Administrative

A2 is out

- Due Feb 7th

A3 is out

- Due Feb 21st

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 2

Administrative

Recitation

- Geometric transformations

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 3

Content-aware Retargeting Operators

Contentoblivious

"Important" content

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 4

So far

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 5

So far: Seam carving with pixel energies

$$M(i,j) = E(i,j) + min egin{cases} M(i-1,j-1) + C_L(i,j) \ M(i-1,j) + C_V(i,j) \ M(i-1,j+1) + C_R(i,j) \end{cases}$$

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 6

Retargeting in Both Dimensions

• Let T(r,c) denote a new cost matrix of obtaining an image of size (n-r)x(m-c).

$$\mathbf{T}(r,c) = \min(\mathbf{T}(r-1,c) + E(\mathbf{s}^{\mathbf{x}}(\mathbf{I}_{\mathbf{n}-\mathbf{r}-1\times\mathbf{m}-\mathbf{c}})), \mathbf{T}(r,c-1) + E(\mathbf{s}^{\mathbf{y}}(\mathbf{I}_{\mathbf{n}-\mathbf{r}\times\mathbf{m}-\mathbf{c}-1})))$$

where $E(\mathbf{s}^{\mathbf{x}}(\mathbf{I}_{n-r-1\times m-c}))$ is the cost of removing a horizontal seam from the image $\mathbf{I}_{n-r-1\times m-c}$

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 7

Today's agenda

• Introduction to segmentation and clustering

Lecture 10 - 8

February 6, 2025

- Gestalt theory for perceptual grouping
- Graph-based oversegmentation
- Agglomerative clustering

Reading: Szeliski, 2nd edition, Chapter 7.5

Ranjay Krishna, Jieyu Zhang

Today's agenda

- Introduction to segmentation and clustering
- Gestalt theory for perceptual grouping
- Graph-based oversegmentation
- Agglomerative clustering

Reading: Szeliski, 2nd edition, Chapter 7.5

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 9

Q. What do you see?

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 10

Image Segmentation

• Goal: identify groups of pixels that go together

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 11 Slide credit: Stev February 6, 2025

The Goals of Segmentation

• Separate image into coherent "objects"

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 12

stide creebruary 6, 2025

The Goals of Segmentation

- Separate image into coherent "objects"
- Group together similar-looking pixels for efficiency of further processing

"superpixels"

X. Ren and J. Malik. Learning a classification model for segmentation. ICCV 2003.

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 13

Segmentation for feature support

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 14

Segmentation for efficiency

[Felzenszwalb and Huttenlocher 2004]

[Hoiem et al. 2005, Mori 2005] [Shi and Malik 2001]

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 15

February-6,-2025

Segmentation is used in Adobe photoshop to remove background

Rother et al. 2004

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 16

Segment Anything [2023]

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 17

Levels of segmentations

Over-segmentation

Under-segmentation

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 18

One way to think about "segmentation" is clustering

Clustering: group together similar data points and represent them with a single token

Key Challenges:

- 1) What makes two points/images/patches similar?
- 2) How do we compute an overall grouping from pairwise similarities?

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 19

Why do we cluster?

• Summarizing data

- \circ Look at large amounts of data
- \circ Find clusters of pixels
- Represent each cluster of pixels with a HoG feature

• Counting

 \circ Histograms of texture, color, SIFT vectors

• Foreground-background separation

Separate the image into different regions

• Prediction

Images in the same cluster may have the same labels

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 20

How do we cluster?

• Agglomerative clustering

 Start with each point as its own cluster and iteratively merge the closest clusters

• K-means

Iteratively re-assign points to the nearest cluster center

• Mean-shift clustering

 \circ Estimate modes of pdf

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 21

General ideas

• Tokens

- Things that can be grouped together
- (e.g. pixels, points, surface elements, etc., etc.)
- Bottom up clustering
 - tokens belong together because they are locally coherent
- Top down clustering
 - tokens belong together because they lie on the same visual entity (object, scene...)

Lecture 10 - 22

February 6, 2025

• > These two are not mutually exclusive

Ranjay Krishna, Jieyu Zhang

Examples of Grouping in Vision

Determining image regions

Grouping video frames into shots

Object-level grouping

Figure-ground

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 23

Similarity

What things should be grouped?

What cues indicate groups?

February 6, 2025

Lecture 10 - 24

Ranjay Krishna, Jieyu Zhang

Symmetry

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 25

Common Fate

February 6, 2025

Lecture 10 - 26

Ranjay Krishna, Jieyu Zhang

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 27

What will we learn today?

• Introduction to segmentation and clustering

Lecture 10 - 28

February 6, 2025

- Gestalt theory for perceptual grouping
- Graph-based oversegmentation
- Agglomerative clustering

Ranjay Krishna, Jieyu Zhang

The Gestalt School

- Grouping is key to visual perception
- Elements in a collection can have properties that result from different relationships (space, affordance, etc.)

February 6, 2025

 \circ "The whole is greater than the sum of its parts"

Gestalt Theory

- Gestalt: whole or group
 - $\circ\,$ Whole is greater than sum of its parts
 - Relationships among parts can yield new properties/features
- Psychologists identified series of factors that predispose set of elements to be grouped (by human visual system)

"I stand at the window and see a house, trees, sky. Theoretically I might say there were 327 brightnesses and nuances of colour. Do I have "327"? No. I have sky, house, and trees."

> Max Wertheimer (1880-1943)

Untersuchungen zur Lehre von der Gestalt, *Psychologische Forschung*, Vol. 4, pp. 301-350, 1923 http://psy.ed.asu.edu/~classics/Wertheimer/Forms/forms.htm

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 30

These factors make intuitive sense, but are very difficult to translate into algorithms.

Gestalt Factors

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 31

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 32

Continuity, explanation by occlusion

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 33

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 34

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 35

Figure-Ground Discrimination

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 36
The Ultimate Gestalt?

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 37

What will we learn today?

• Introduction to segmentation and clustering

Lecture 10 - 38

February 6, 2025

- Gestalt theory for perceptual grouping
- Graph-based oversegmentation
- Agglomerative clustering

Ranjay Krishna, Jieyu Zhang

Over-segmenting images

- Graph-based clustering for Image Segmentation
 - Introduced by Felzenszwalb and Huttenlocher in the paper titled Efficient Graph-Based Image Segmentation.

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 39

Imagine you have a set of pixels, how should you clustering them?

Basic idea: group together similar instances

Q. how do you measure similarity?

Q. do you need to measure similarity between every two pixels?

Imagine you have a set of pixels, how should you clustering them?

Basic idea: group together similar instances

Q. how do you measure similarity?

Q. do you need to measure similarity between every two pixels?

Distances calculated using only (x,y) location of each pixel can be a bad idea

- Clusters may overlap
- Some clusters may be "wider" than others
- Distances can be deceiving!

Image as a Graph - Features and weights

- Every pixel is connected to its 8 neighboring pixels
- The edges between neighbors have weights that are determined by the distance between them.
- Edge weights between pixels are determined using dist(x, x') distance in feature space.
 - $\circ~$ where x and x' are two neighboring pixels
- Q. What is a good feature space?

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 43

What are good pixel features?

- Use RGB values?
 - \circ v = [r, g, b]
 - It is 3-dimensional
- Use location?
 - \circ v = [x, y]
 - \circ 2-dim
- Use RGB + location?
 - $\circ v = [x, y, r, g, b]$
 - **5-dim**
- Use gradient magnitude?
 - \circ v = [df/dx, df/dy]
 - **2-d**

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 44

Problem Formulation

- Graph G = (V, E)
- V is set of nodes (i.e. pixels)

• dist(v_i , v_j) is the weight/distance of the edge between nodes v_i and v_j .

- S is a segmentation of a graph G such that G' = (V, E') where E' ⊂ E.
 That is, we keep all vertices, but select a subset E' from all initial edges E.
- S divides G into G' such that it contains distinct clusters C.

February 6, 2025

Ranjay Krishna, Jieyu Zhang

Weights of edges: distance measure

Clustering is an unsupervised learning method. Given items $v_1, v_2, \ldots, v_n \in \mathbb{R}^D$, the goal is to group them into clusters.

We need a pairwise distance/similarity function between items, and sometimes the desired number of clusters.

When data (e.g. images, objects, documents) are represented by feature vectors, commonly used measures are:

Lecture 10 - 46

February 6, 2025

- Euclidean distance.
- Cosine similarity.

Ranjay Krishna, Jieyu Zhang

Defining Distance Measures

Let x and x' be two objects from the universe of possible objects. The distance (or similarity) between x and x' is a real number:

• The Euclidean distance is defined as di

$$dist(v_1, v_2) = \sqrt{\sum_i (v_{1i} - v_{2i})^2}$$

February 6, 2025

• In contrast, the cosine similarity measure would be

$$dist(v_1, v_2) = 1 - cos(v_1, v_2)$$

= $1 - rac{v_1^T v_2}{||v_1|| \cdot ||v_2||}$

Ranjay Krishna, Jieyu Zhang

What will we learn today?

- Introduction to segmentation and clustering
- Gestalt theory for perceptual grouping
- Graph-based oversegmentation
- Agglomerative clustering

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 48

Slide credit: Andrew Moore

Ranjay Krishna, Jieyu Zhang

- 1. Say "Every point is its own cluster"
- 2. Find "most similar" pair of clusters

R

Slide credit: Andrew Moore

Ranjay Krishna, Jieyu Zhang

- Say "Every point is its own cluster"
- Find "most similar" pair of clusters
- 3. Merge it into a parent cluster

Slide credit: Andrew Moore

Ranjay Krishna, Jieyu Zhang

- Say "Every point is its own cluster"
- Find "most similar" pair of clusters
- 3. Merge it into a parent cluster
- 4. Repeat

RR

Slide credit: Andrew Moore

Ranjay Krishna, Jieyu Zhang

- 1. Say "Every point is its own cluster"
- Find "most similar" pair of clusters
- 3. Merge it into a parent cluster
- 4. Repeat

Slide credit: Andrew Moore

Ranjay Krishna, Jieyu Zhang

How to define cluster similarity?

- Average distance between all pixels between the two cluster?
- Maximum distance?
- Minimum distance?
- Distance between means?

How many clusters?

- Clustering creates a dendrogram (a tree)
- Threshold based on max number of clusters or base between merges

Lecture 10 - 54

February 6, 2025

Ranjay Krishna, Jieyu Zhang

Agglomerative Hierarchical Clustering - Algorithm

Inputs:

- An input image
- Feature representation for each pixel
- Distance metric dist(-,-)
- > Initially, each pixel $v_1, ..., v_n$ is its own cluster $C_1, ..., C_n$
- While True:
 - Find two nearest clusters according to dist(C_i, C_i)
 - Merge C = (C_i, C_j)
 - If only 1 cluster is left:
 - break

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 55

How should we define "closest" for clusters with multiple pixels already in it?

Ranjay Krishna, Jieyu Zhang

How should we define "closest" for clusters with multiple pixels already in it?

- Closest pair
 - (single-link clustering)
- Farthest pair
 - (complete-link clustering)
 - Average of all pairs

February 6, 2025

Different choices create different clustering behaviors

Ranjay Krishna, Jieyu Zhang

How should we define "closest" for clusters with multiple pixels already in it?

Closest pair (single-link clustering)

Farthest pair (complete-link clustering)

[Pictures from Thorsten Joachims]

February 6, 2025

Ranjay Krishna, Jieyu Zhang

Single Linkage distance measure $dist(C_i, C_j) = \min_{v_i \in C_i, v_j \in C_j, (C_i, C_j) \in E} dist(v_i, v_j)$

Connects the clusters based on the distance of their closest pixels It produces "long" clusters.

Ranjay Krishna, Jieyu Zhang

Complete Link distance measure

$$dist(C_i, C_j) = \max_{v_i \in C_i, v_j \in C_j, (C_i, C_j) \in E} dist(v_i, v_j)$$

Produces compact clusters that are similar in diameter

Tight clusters

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 60

Average Link distance measures

$$dist(C_i, C_j) = \frac{\sum_{v_i \in C_i, v_j \in C_j, (C_i, C_j) \in E} dist(v_i, v_j)}{|C_i||C_j|}$$

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 61

Inlier-outlier linkage distance measure

 $Merge(C_1, C_2) = \begin{cases} True & if dif(C_1, C_2) < in(C_1, C_2) \\ False & otherwise \end{cases}$

Where

- dif(C1, C2) is the difference between two clusters.
- in(C1, C2) is the internal difference in the clusters C1 and C2

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 62

Inlier-outlier linkage distance measure

$$Merge(C_1, C_2) = \begin{cases} True & if dif(C_1, C_2) < in(C_1, C_2) \\ False & otherwise \end{cases}$$
$$dif(C_i, C_j) = \min_{v_i \in C_i, v_j \in C_j, (C_i, C_j) \in E} dist(v_i, v_j)$$

Where

- dif(C1, C2) is the difference between two clusters.
- in(C1, C2) is the internal difference in the clusters C1 and C2

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 63

Inlier-outlier linkage distance measure

$$Merge(C_1, C_2) = \begin{cases} True & if dif(C_1, C_2) < in(C_1, C_2) \\ False & otherwise \end{cases}$$
$$dif(C_i, C_j) = \min_{v_i \in C_i, v_j \in C_j, (C_i, C_j) \in E} dist(v_i, v_j)$$

$$in(C_i, C_j) = \min_{C \in \{C_i, C_j\}} [\max_{v_i, v_j \in C} [dist(v_i, v_j) + \frac{k}{|C|}]$$

Where

Ranjay Krishna, Jieyu Zhang

- dif(C1, C2) is the difference between two clusters.
- in(C1, C2) is the internal difference in the clusters C1 and C2

Lecture 10 - 64

February 6, 2025

dif

inlier-outlier linkage for Segmentation

- k/|C| sets the threshold by which the clusters need to be different from the internal pixels in a cluster.
- Effect of k:
 - If k is large, it causes a preference for larger objects.

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 65

Results

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 66

How to implement single-linkage efficiently

Euclidean Distance

Lecture 10 - 67

February 6, 2025

Distance Matrix

a

h

С

Ranjay Krishna, Jieyu Zhang

Conclusions: Agglomerative Clustering

Pros:

- Simple to implement, widespread application.
- Clusters have adaptive shapes.
- Provides a hierarchy of clusters.
- No need to specify number of clusters in advance.

Cons:

- May have imbalanced clusters.
- Still have to choose number of clusters eventually for an application

Lecture 10 - 68

February 6, 2025

- Does not scale well. Runtime of $O(n^3)$.
- Can get stuck at a local optima.

Ranjay Krishna, Jieyu Zhang

Today's agenda

- Introduction to segmentation and clustering
- Gestalt theory for perceptual grouping
- Graph-based oversegmentation
- Agglomerative clustering

Lecture 10 - 69

Next time

K-means and mean shift

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 70

Other Kernels

A kernel is a function that satisfies the following requirements :

1.
$$\int_{R^d} \phi(x) = 1$$

2. $\phi(x) \ge 0$

Some examples of kernels include :

1. Rectangular
$$\phi(x) = \begin{cases} 1 & a \leq x \leq b \\ 0 & else \end{cases}$$

2. Gaussian $\phi(x) = e^{-\frac{x^2}{2\sigma^2}}$

3. Epanechnikov
$$\phi(x) = \begin{cases} \frac{3}{4}(1-x^2) & if \ |x| \leq 1 \\ 0 & else \end{cases}$$

<u>source</u>

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 71

Technical Details

Taking the derivative of:
$$\hat{f}_{K} = \frac{1}{nh^{d}} \sum_{i=1}^{n} K\left(\frac{\mathbf{x} - \mathbf{x}_{i}}{h}\right)$$

$$\nabla \hat{f}(\mathbf{x}) = \underbrace{\frac{2c_{k,d}}{nh^{d+2}} \left[\sum_{i=1}^{n} g\left(\left\|\frac{\mathbf{x} - \mathbf{x}_{i}}{h}\right\|^{2}\right)\right]}_{\text{term 1}} \underbrace{\left[\frac{\sum_{i=1}^{n} \mathbf{x}_{i} g\left(\left\|\frac{\mathbf{x} - \mathbf{x}_{i}}{h}\right\|^{2}\right)}{\sum_{i=1}^{n} g\left(\left\|\frac{\mathbf{x} - \mathbf{x}_{i}}{h}\right\|^{2}\right) - \mathbf{x}\right]}_{\text{term 2}}, \quad (3)$$

where g(x) = -k'(x) denotes the derivative of the selected kernel profile.

- Term1: this is proportional to the density estimate at x (similar to equation 1 from two slides ago).
- Term2: this is the mean-shift vector that points towards the direction of maximum density.

Comaniciu & Meer, 2002

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 72
Technical Details

Finally, the mean shift procedure from a given point x_{t} is:

1. Compute the mean shift vector **m**:

$$\left[\frac{\sum\limits_{i=1}^{n}\mathbf{x}_{i}g\left(\left\|\frac{\mathbf{x}-\mathbf{x}_{i}}{h}\right\|^{2}\right)}{\sum\limits_{i=1}^{n}g\left(\left\|\frac{\mathbf{x}-\mathbf{x}_{i}}{h}\right\|^{2}\right)}-\mathbf{x}\right]$$

2. Translate the density window:

$$\mathbf{x}_i^{t+1} = \mathbf{x}_i^t + \mathbf{m}(\mathbf{x}_i^t).$$

3. Iterate steps 1 and 2 until convergence.

$$abla f(\mathbf{x}_i) = 0.$$

Comaniciu & Meer, 2002

February 6, 2025

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 73

Technical Details

Given n data points $\mathbf{x}_i \in \mathbb{R}^d$, the multivariate kernel density estimate using a radially symmetric kernel¹ (e.g., Epanechnikov and Gaussian kernels), $K(\mathbf{x})$, is given by,

$$\hat{f}_K = \frac{1}{nh^d} \sum_{i=1}^n K\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right),\tag{1}$$

where h (termed the *bandwidth* parameter) defines the radius of kernel. The radially symmetric kernel is defined as,

$$K(\mathbf{x}) = c_k k(\|\mathbf{x}\|^2), \tag{2}$$

where c_k represents a normalization constant.

Ranjay Krishna, Jieyu Zhang

Lecture 10 - 74

February 6,02025