Lecture 6 Lines and Corners

Administrative

A1 due Fri, Jan 24!!!

- You can use up to 2 late days

A2 is out

- Due Feb 7th

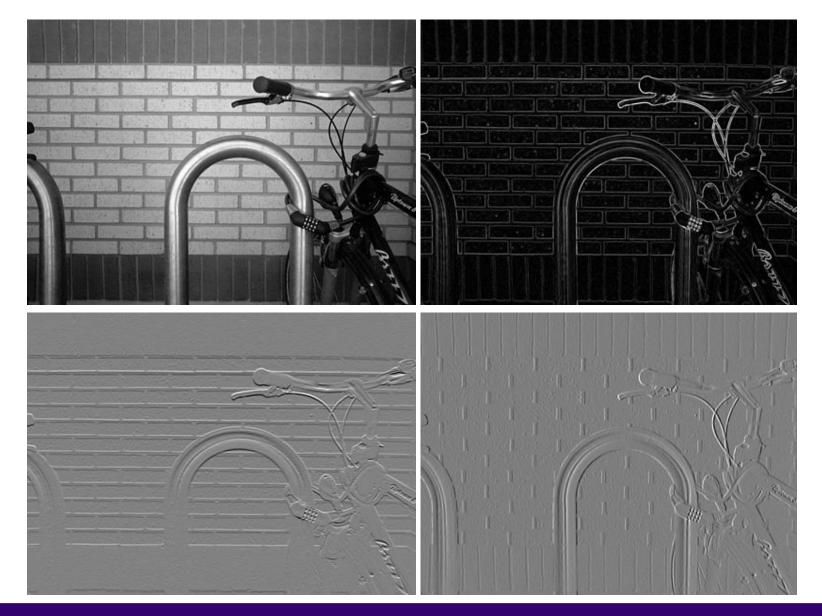
Administrative

- Recitation this Friday
- Geometric transformations

So far: Sobel Filter

Step 1: Calculate the gradient magnitude at every pixel location.

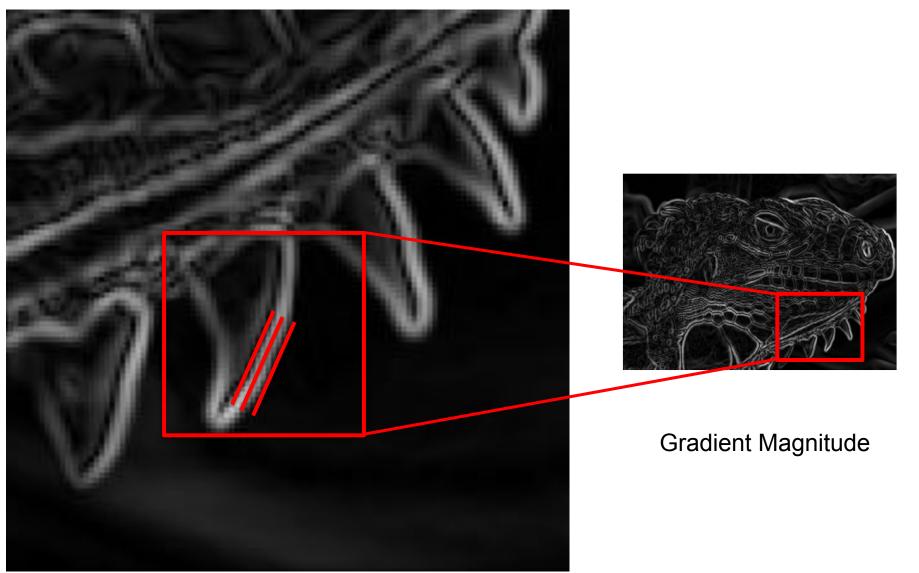
Step 2: Threshold the values to generate a binary image



Ranjay Krishna

Lecture 6 - 4

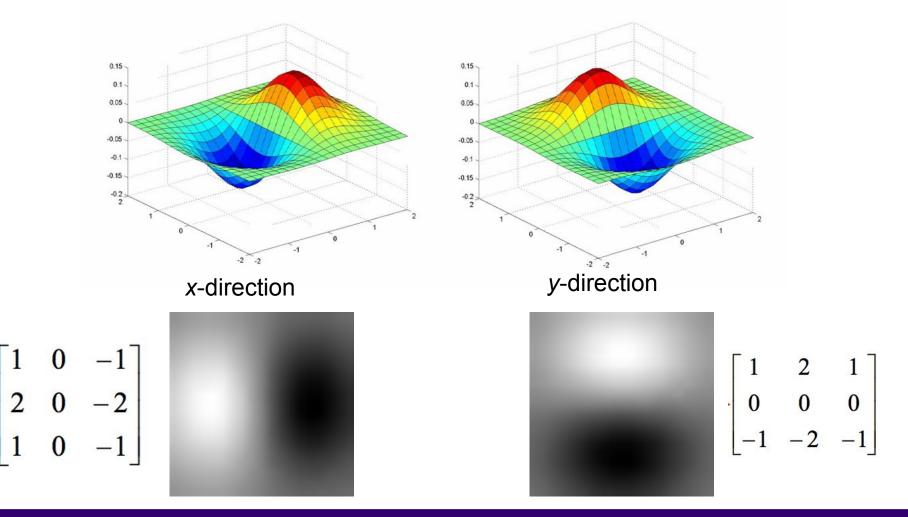
So far: challenges multiple disconnected edges



Ranjay Krishna

Lecture 6 - 5

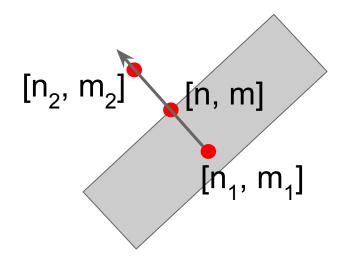
So far: Canny edge detector Use Sobel filters to find line estimates



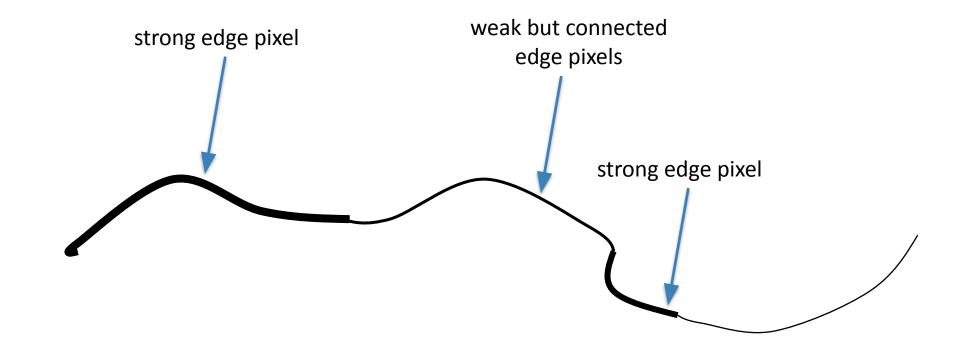
Ranjay Krishna

Lecture 6 - 6

So far: Non-maximum suppression



So far: Hysteresis thresholding Strong and weak edges



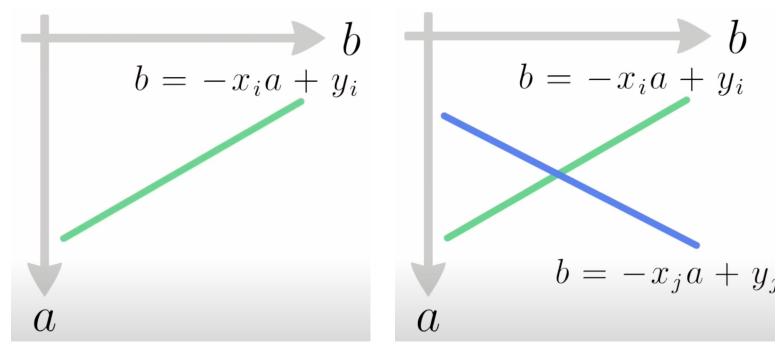
Source: S. Seitz

Ranjay Krishna

Lecture 6 - 8

So far: The Hough transform

- So: one point (x_i, y_i) gives a line in (a, b) space.
- Another point (x_i, y_i) will give rise to another line in (a,b)-space.
- Iterate over pairs of points, to vote for buckets of intersection in (a,b)-space

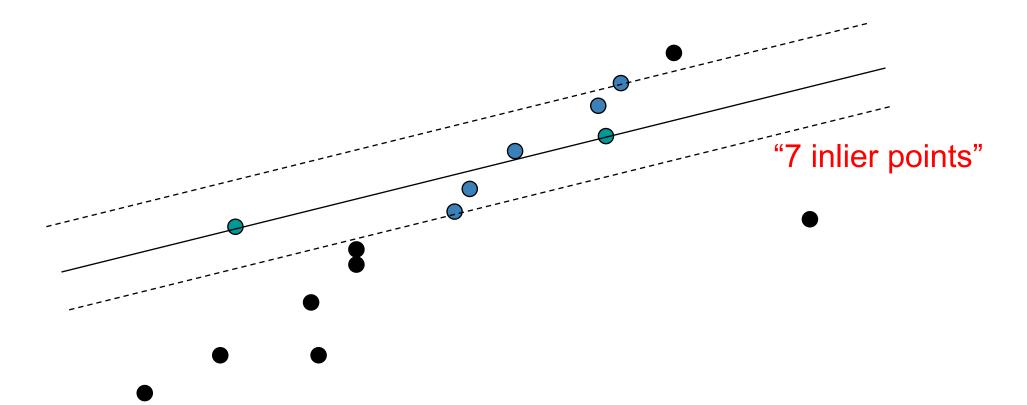


Ranjay Krishna

Lecture 6 - 9

So far: RANSAC

• Sample seed points, calculate line, count # of inliers, repeat



Ranjay Krishna

Lecture 6 - 10

Today's agenda

- RANSAC
- Local Invariant Features
- Harris Corner Detector

Today's agenda

- RANSAC
- Local Invariant Features
- Harris Corner Detector

Why is Hough transform inefficient?

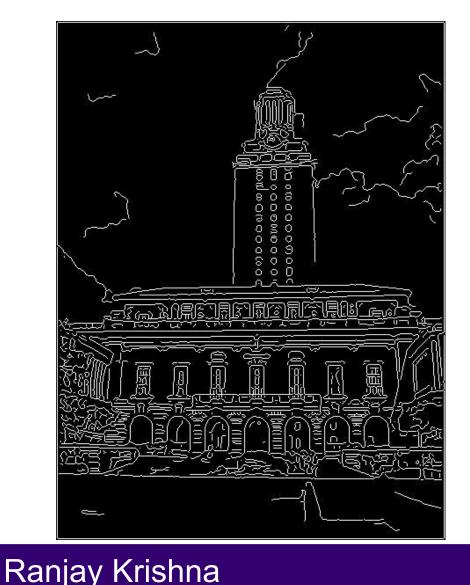
- It's not feasible to check all pairs of points to calculate possible lines. For example, Hough Transform algorithm runs in O(N²).
- Voting is a general technique where we let the each point vote for all models that are compatible with it.
 - Iterate through features, cast votes for parameters.
 - Filter parameters that receive a lot of votes.

Ranjay Krishna

• **Problem:** Noisy points will cast votes too, *but* typically their votes should be inconsistent with the majority of "good" edge points.

Lecture 6 - 13

Difficulty of voting for lines

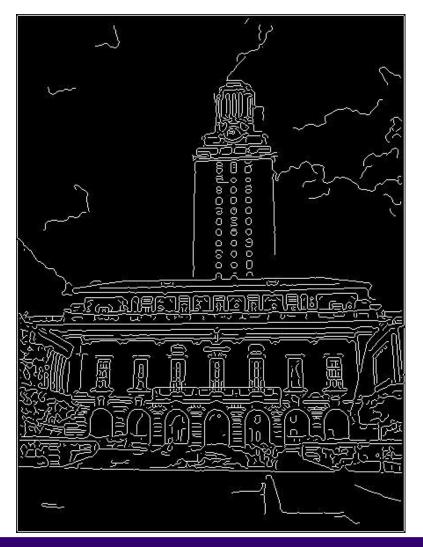


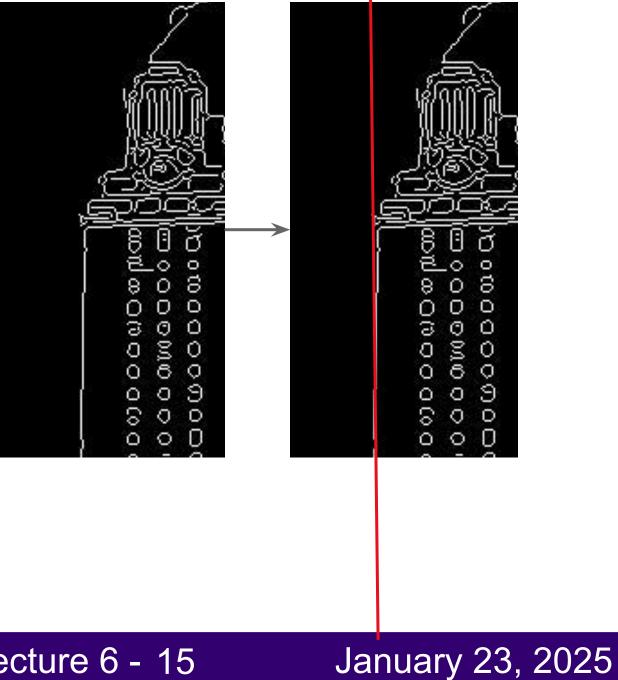
- Noisy edge pixels cast inconsistent votes:
 - Can we identify false edge pixels without iterating over all pairs like we do in Hough transforms?

- Canny can predict false positive edge points:
 - Can we eliminate them without needing to compare this pixel with every other edge pixel?

Lecture 6 - 14

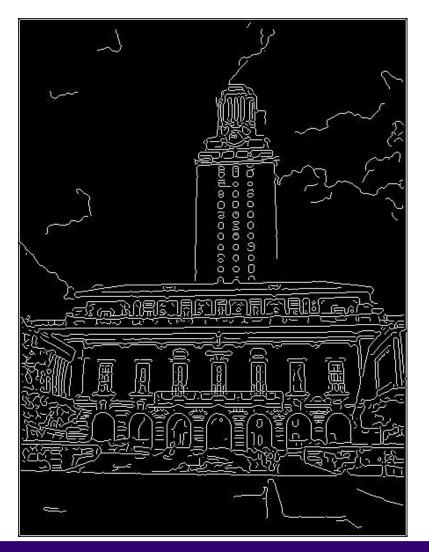
Intuition

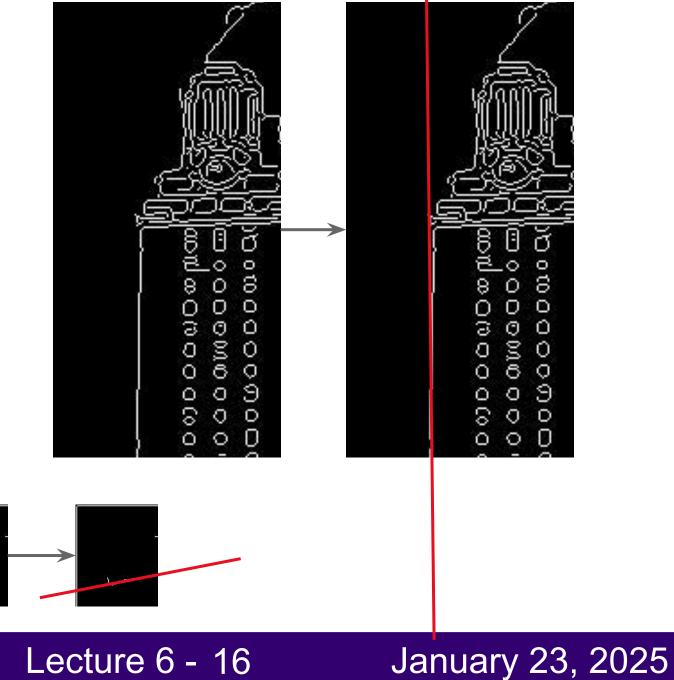




Ranjay Krishna

Intuition



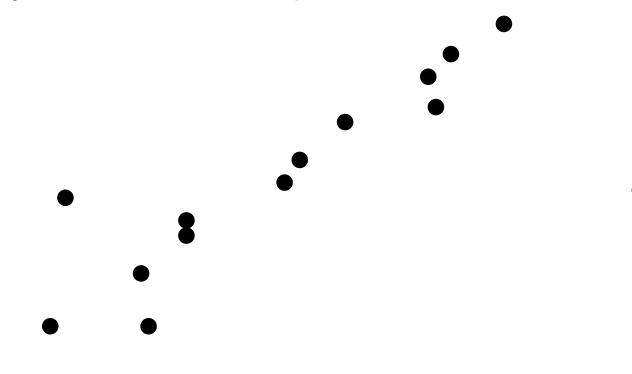


Ranjay Krishna

RANSAC [Fischler & Bolles 1981]

- RANdom SAmple Consensus
- **Approach**: we want to avoid the impact of noisy outliers, so let's look for "inliers", and use only those.
- Intuition: if an outlier is chosen to compute the parameters (a,b) of a line, then the resulting line won't have much support from rest of the points.

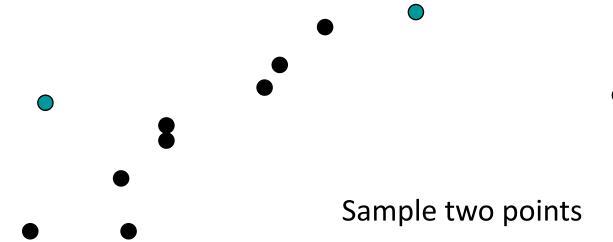
- Task: Estimate the best line
 - Let's randomly select a subset of points and calculate a line



Ranjay Krishna

Lecture 6 - 18

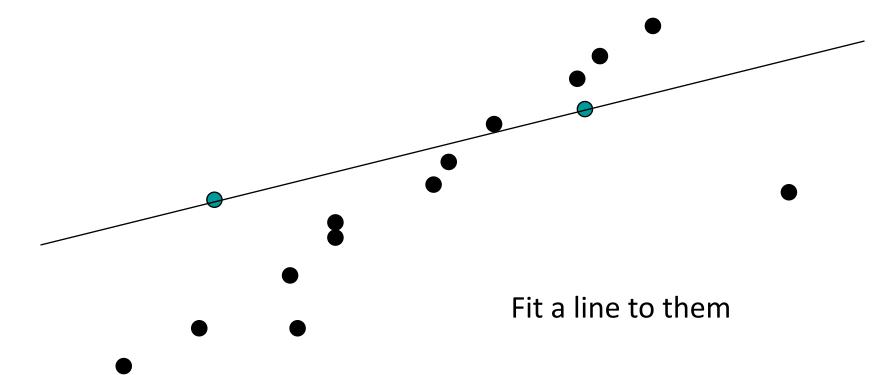
- Task: Estimate the best line
 - Let's select only 2 points as an example



Ranjay Krishna

Lecture 6 - 19

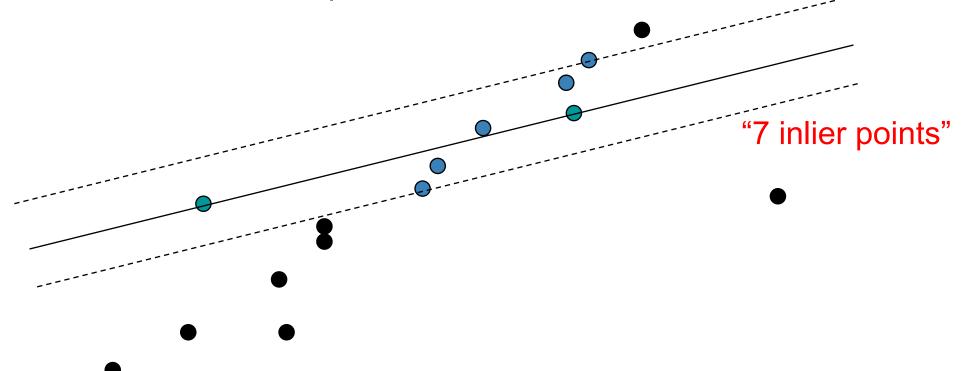
- Task: Estimate the best line
 - Calculate the line parameters



Lecture 6 - 20

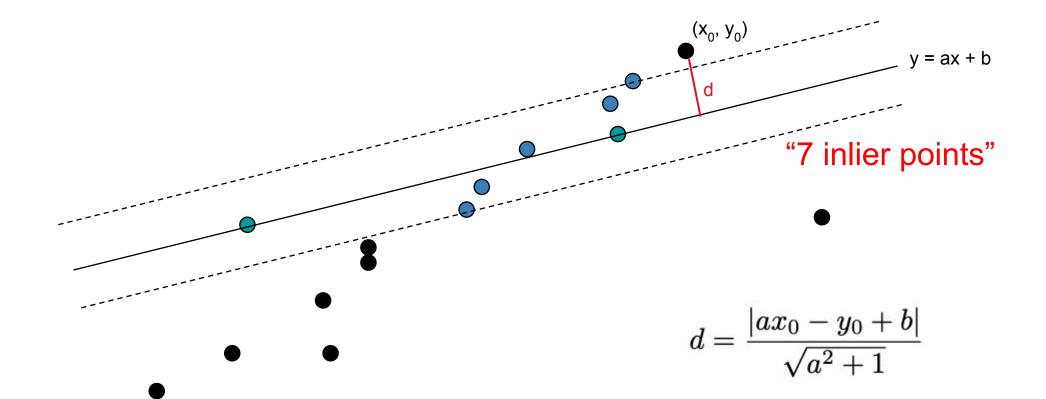
- Task: Estimate the best line
 - Edges can be noisy. To account for this, let's say that the line is somewhere between the dashed lines

- Task: Estimate the best line
 - Calculate the number of points that lie within the dashed lines



Ranjay Krishna

How do we calculate the inliers? We use the distance from the point to the line

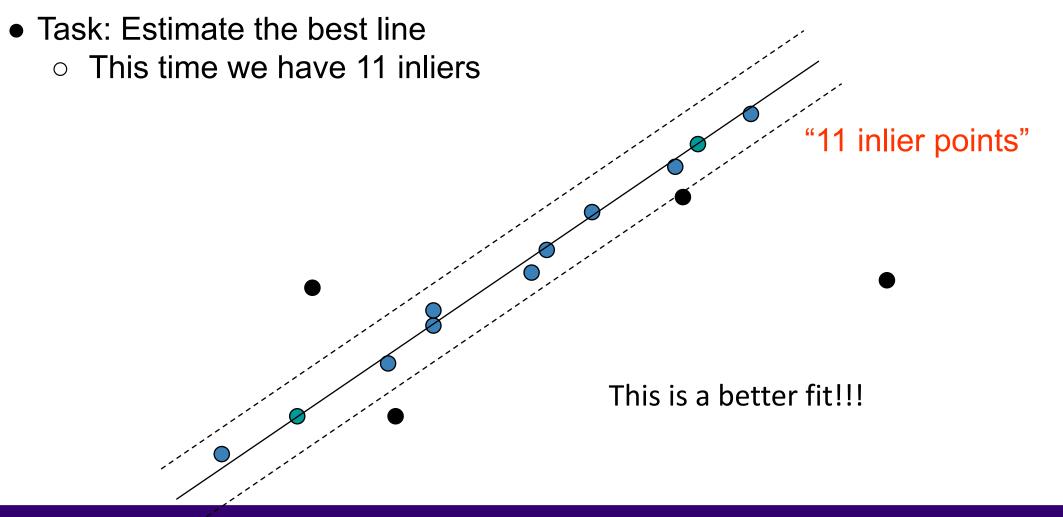


January 23, 2025

Lecture 6 - 23

Ranjay Krishna

- Task: Estimate the best line
 - Repeat with two other randomly selected points'



Ranjay Krishna

Lecture 6 - 25

RANSAC loop:

Repeat for *k* iterations:

1. Randomly select a *seed* subset of points on which to perform a model estimate (e.g., a group of edge points)

RANSAC loop:

Repeat for *k* iterations:

1. Randomly select a *seed* subset of points on which to perform a model estimate (e.g., a group of edge points)

Lecture 6 - 27

January 23, 2025

2. Compute parameters (a, b) from seed group

RANSAC loop:

Repeat for *k* iterations:

1. Randomly select a *seed* subset of points on which to perform a model estimate (e.g., a group of edge points)

Lecture 6 - 28

- 2. Compute parameters (a, b) from seed group
- 3. Find inliers for these parameters

RANSAC loop:

Repeat for *k* iterations:

- 1. Randomly select a *seed* subset of points on which to perform a model estimate (e.g., a group of edge points)
- 2. Compute parameters (a, b) from seed group
- 3. Find inliers for these parameters
- 4. If the number of inliers is larger than the best so far, save these parameters and the inliers

Ranjay Krishna

Lecture 6 - 29

RANSAC loop:

Repeat for *k* iterations:

- 1. Randomly select a *seed* subset of points on which to perform a model estimate (e.g., a group of edge points)
- 2. Compute parameters (a, b) from seed group
- 3. Find inliers for these parameters
- 4. If the number of inliers is larger than the best so far, save these parameters and the inliers

If number of inliers in the best line is < m, return no line

Ranjay Krishna

Lecture 6 - 30

RANSAC loop:

Repeat for *k* iterations:

- 1. Randomly select a *seed* subset of points on which to perform a model estimate (e.g., a group of edge points)
- 2. Compute parameters (a, b) from seed group
- 3. Find inliers for these parameters
- 4. If the number of inliers is larger than the best so far, save these parameters and the inliers

If number of inliers in the best line is < m, return no line

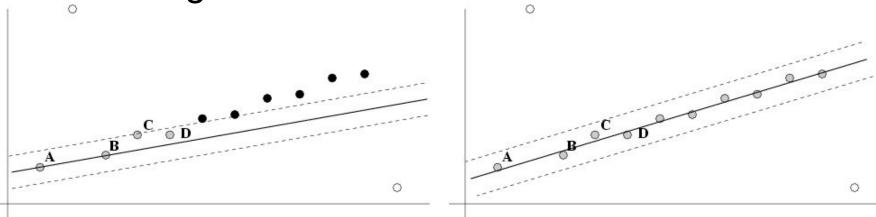
Else re-calculate the final parameters with all the inliers

Ranjay Krishna

Lecture 6 - 31

Final step: Refining the parameters

- The best parameters were computed using a seed set of *n* points.
- We use these points to find the inliers.
- We can improve the parameters by estimating over all inliers (e.g. with standard least-squares minimization).
- But this may change the inliers, so repeat this last step until there is no change in inliers.



Ranjay Krishna

Lecture 6 - 32

How do you calculate the line from many points?

 (x_i, y_i) is a set of points we are going to use to estimate (a, b)

Lear squares method:

 $b = y_i - ax_i$

$$a = \frac{(\sum_{i} x_{i} - \bar{x})(\sum_{i} y_{i} - \bar{y})}{(\sum_{i} x_{i} - \bar{x})^{2}}$$

Ranjay Krishna

Lecture 6 - 33

RANSAC loop:

Repeat for *k* iterations:

- 1. Randomly select a *seed* subset of points on which to perform a model estimate (e.g., a group of edge points)
- 2. Compute parameters (a, b) from seed group
- 3. Find inliers for these parameters
- 4. If the number of inliers is larger than the best so far, save these parameters and the inliers

If number of inliers in the best line is < m, return no line

Else re-calculate the final parameters with all the inliers

Ranjay Krishna

Lecture 6 - 34

The hyperparameters

- 1. How many points to sample in the seed set?
 - a. We used 2 in the example above

The hyperparameters

- 1. How many points to sample in the seed set?
 - a. We used 2 in the example above
- 2. How many times should we repeat?
 - a. More repetitions increase computation but increase chances of finding best line

The hyperparameters

- 1. How many points to sample in the seed set?
 - a. We used 2 in the example above
- 2. How many times should we repeat?
 - a. More repetitions increase computation but increase chances of finding best line
- 3. The threshold for the dashed lines
 - a. Larger the gap between dashed lines, the more false positive inliers
 - b. Smaller the gap, the more false negatives outliers

The hyperparameters

- 1. How many points to sample in the seed set?
 - a. We used 2 in the example above
- 2. How many times should we repeat?
 - a. More repetitions increase computation but increase chances of finding best line
- 3. The threshold for the dashed lines
 - a. Larger the gap between dashed lines, the more false positive inliers
 - b. Smaller the gap, the more false negatives outliers
- 4. The minimum number of inliers to confidently claim there is a line
 - a. Smaller the number, the more false negative lines
 - b. Larger the number, the fewer lines we will find

Ranjay Krishna

Lecture 6 - 38

RANSAC: Computed *k* (p=0.99)

Sample size	Proportion of outliers						
n	5%	10%	20%	25%	30%	40%	50%
2	2	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	1177

Ranjay Krishna

Lecture 6 - 39

RANSAC: How many iterations "k"?

- How many samples are needed?
 - -Suppose *w* is fraction of inliers (points from line).
 - n points needed to define hypothesis (2 for lines)
 - k samples chosen.
- Prob. that a single sample of *n* points is correct: *wⁿ*
- Prob. that a single sample of n points fails: $1 w^n$
- Prob. that all k samples fail is: $(1 w^n)^k$
- Prob. that at least one of the k samples is correct: $1 (1 w^n)^k$

Lecture 6 - 40

January 23, 2025

 \Rightarrow Choose k high enough to keep this below desired failure rate.

Ranjay Krishna

RANSAC: Pros and Cons

• <u>Pros</u>:

- General method suited for a wide range of parameter fitting problems
- Easy to implement and easy to calculate its failure rate

• <u>Cons</u>:

- Only handles a moderate percentage of outliers without cost blowing up
- Many real problems have high rate of outliers (but sometimes selective choice of random subsets can help)
- A voting strategy, The Hough transform, can handle high percentage of outliers

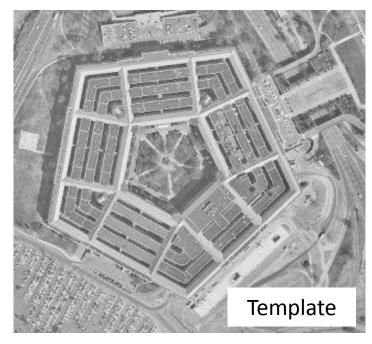
Ranjay Krishna

Lecture 6 - 41

Today's agenda

- RANSAC
- Local Invariant Features
- Harris Corner Detector

Image matching: a challenging problem



Q1. Will cross-correlation work?

Q2. Can we use match the lines?

Ranjay Krishna

Lecture 6 - 43

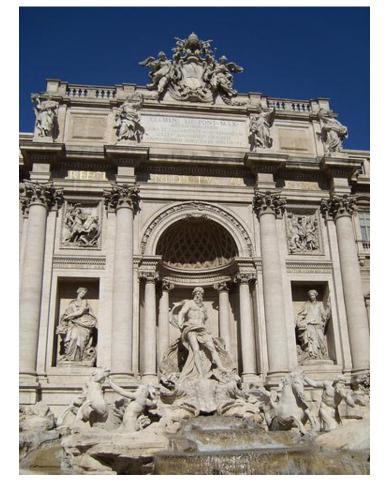
Q. How would you build a system that can detect this movie in the pile?

Ranjay Krishna

Lecture 6 - 44

Challenge: Perspective / viewpoint changes

by <u>Diva Sian</u>



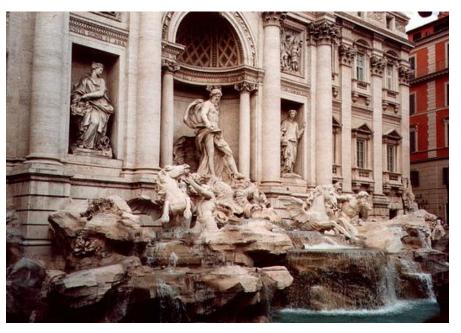
by <u>swashford</u>

Ranjay Krishna

Lecture 6 - 45

Challenge: partial observability

by <u>Diva Sian</u>



by <u>scgbt</u>

Ranjay Krishna

Lecture 6 - 46

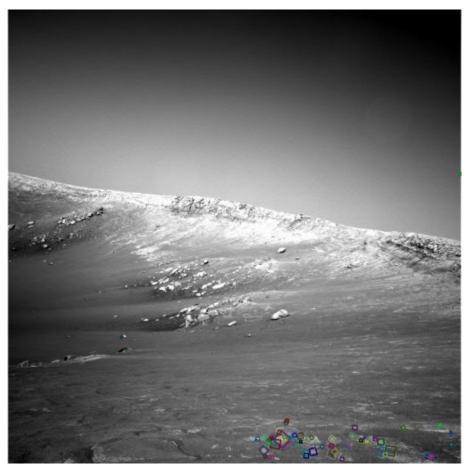
Challenge even for us

NASA Mars Rover images

Ranjay Krishna

Lecture 6 - 47

Answer Below (Look for tiny colored squares)



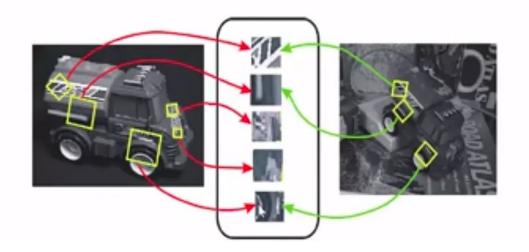
NASA Mars Rover images with SIFT feature matches (Figure by Noah Snavely)

Ranjay Krishna

Lecture 6 - 48

Intuition behind how to match images

- Find matching patches
- Check to make sure enough patches



Intuition behind how to match images

- Find matching patches
- Check to make sure enough patches

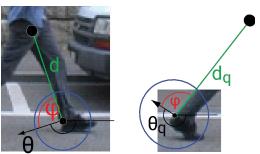
What do we need?

- We need to identify patches
- We need to learn to a way to describe each patch
- We need an algorithm to match the description between two patches

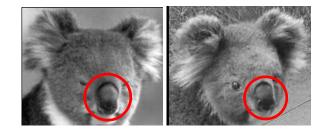
Ranjay Krishna

Motivation for using local features

- Matching large patches have major challenges (mentioned in previous slides)
- Instead, let's describe and match only local image patches
- Smaller, local patches are more likely to find an object even if it is partially occluded (covered)



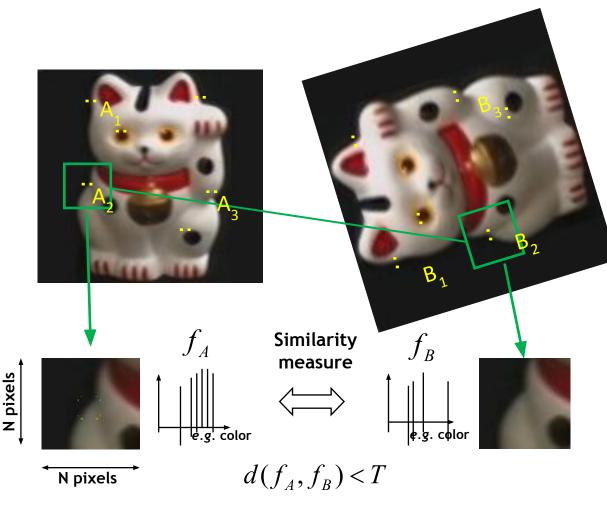
• Intra-category variations



Ranjay Krishna

Lecture 6 - 51

General Approach



1. Find a set of distinctive key-points

2. Define a region/patch around each keypoint

3. Normalize the region content

4. Compute a local descriptor from the normalized region

5. Match local descriptors

Ranjay Krishna

Lecture 6 - 52

Common Requirements

- Problem 1: How should we choose the key-points?
 - We want to detect the same points independently in both images

No chance to match if the key-points aren't the same

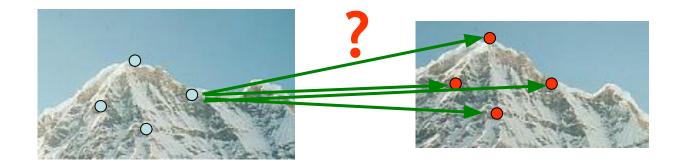
We need a repeatable detector!

Ranjay Krishna

Lecture 6 - 53

Common Requirements

- Problem 1: How should we choose the key-points?
 Detect the same point independently in both images
- Problem 2: How should we describe each patch?
 o For each point correctly recognize the corresponding one

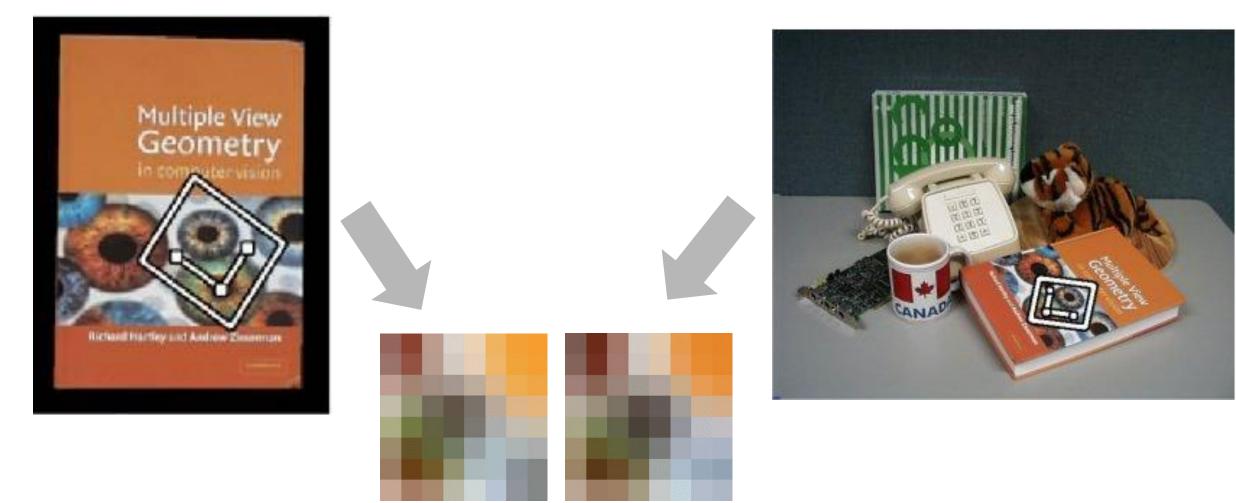


We need a reliable and distinctive descriptor!

Ranjay Krishna

Lecture 6 - 54

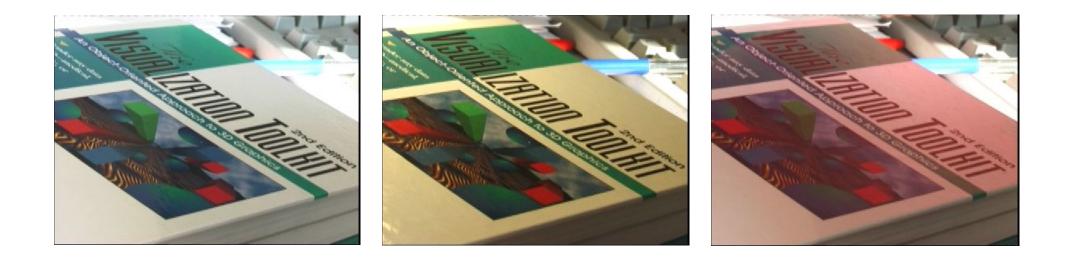
Descriptions should be invariant to rotation and translation



Ranjay Krishna

Lecture 6 - 55

Descriptions should be invariant to photometric transformations

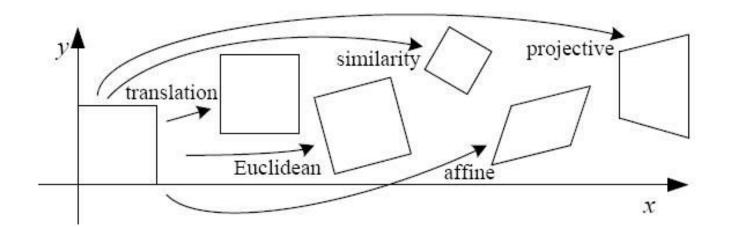


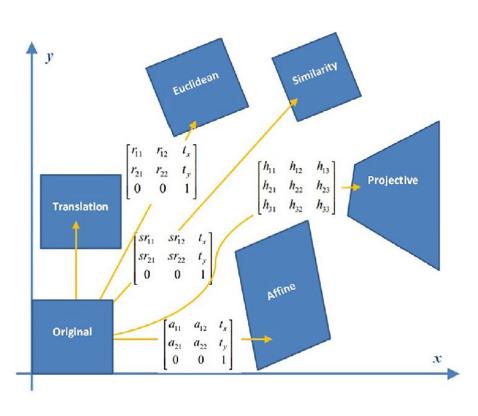
- Often modeled as a linear transformation:
 - Scaling + Offset

Ranjay Krishna

Slide credit: Tinne Tuytelaars

Levels of geometric transformations





January 23, 2025

Lecture 6 - 57

Ranjay Krishna

Requirements for Local Features

- Patch selection needs to be repeatable and accurate
 Invariant to translation, rotation, scale changes
 Robust to out-of-plane (≈affine) transformations
 Robust to lighting variations, noise, blur, quantization
- Locality: Features are local, therefore robust to occlusion and clutter.
- Quantity: We need a sufficient number of regions to cover the object.
- **Distinctiveness**: The regions should contain "unique" structure.
- Efficiency: Close to real-time performance.

Ranjay Krishna

Lecture 6 - 58

What are good patches?

Q. Is this a good patch for image matching?

Ranjay Krishna

Lecture 6 - 59

What are good patches?

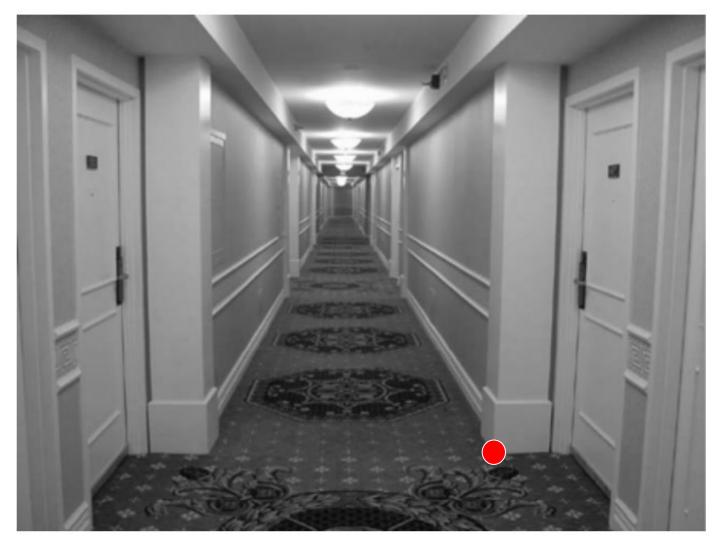
Q. What about this one?

Ranjay Krishna

Lecture 6 - 60

What are good patches?

Q. Let's try another one?



Ranjay Krishna

Lecture 6 - 61

Many existing feature detectors available

- Hessian & Harris
- Laplacian, DoG

- [Beaudet '78], [Harris '88]
 - [Lindeberg '98], [Lowe '99]
- Harris-/Hessian-Laplace [Mikolajczyk & Schmid '01]
- Harris-/Hessian-Affine
- EBR and IBR
- MSER

Ranjay Krishna

- Salient Regions
- Neural networks

[Mikolajczyk & Schmid '04] [Tuytelaars & Van Gool '04] [Matas '02] [Kadir & Brady '01] [Krichevsky '12]

Lecture 6 - 62

January 23, 2025

• Those detectors have become a basic building block for many applications in Computer Vision.

Today's agenda

- Local Invariant Features
- Harris Corner Detector

Keypoint Localization



• Goals:

• Repeatable detection

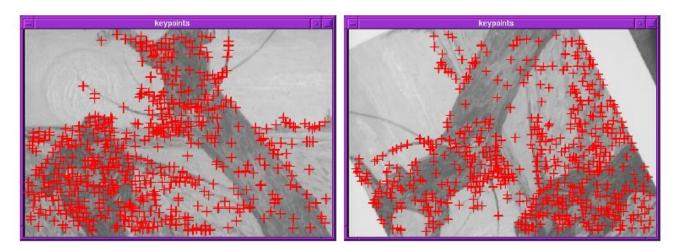
- Precise localization
- Interesting content

intuition ⇒ Look for 2D signal changes (LSI systems strike again)

Ranjay Krishna

Lecture 6 - 64

Finding Corners



How do we find corners using LSI systems?

The image gradient around a corner has two or more dominant directions

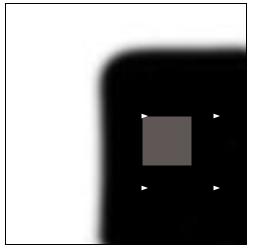
Corners are **repeatable** and **distinctive**

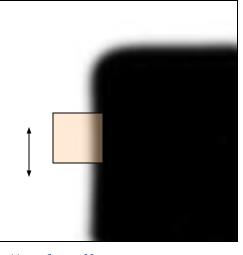
C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u> *Proceedings of the 4th Alvey Vision Conference*, 1988.

Ranjay Krishna

Corners are distinctive key-points

- We should easily recognize the corner point by looking through a small image patch (*locality*)
- Shifting the window in any direction should give a large change in intensity (good localization)





"flat" region: no change in all directions

"edge": no change along the edge direction

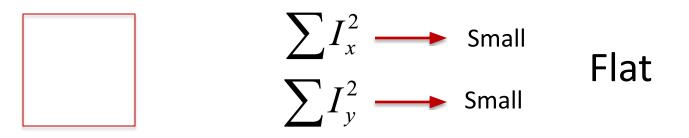
"corner": significant change in all directions

Slide credit: Alyosha Efros

January 23, 2025

Ranjay Krishna

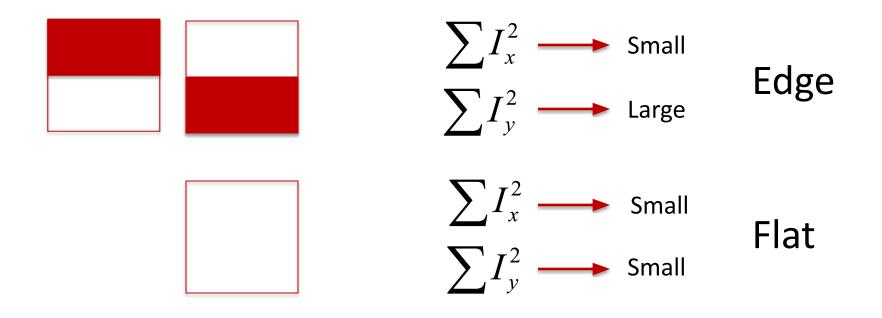
Flat patches have small image gradients



Ranjay Krishna

Lecture 6 - 67

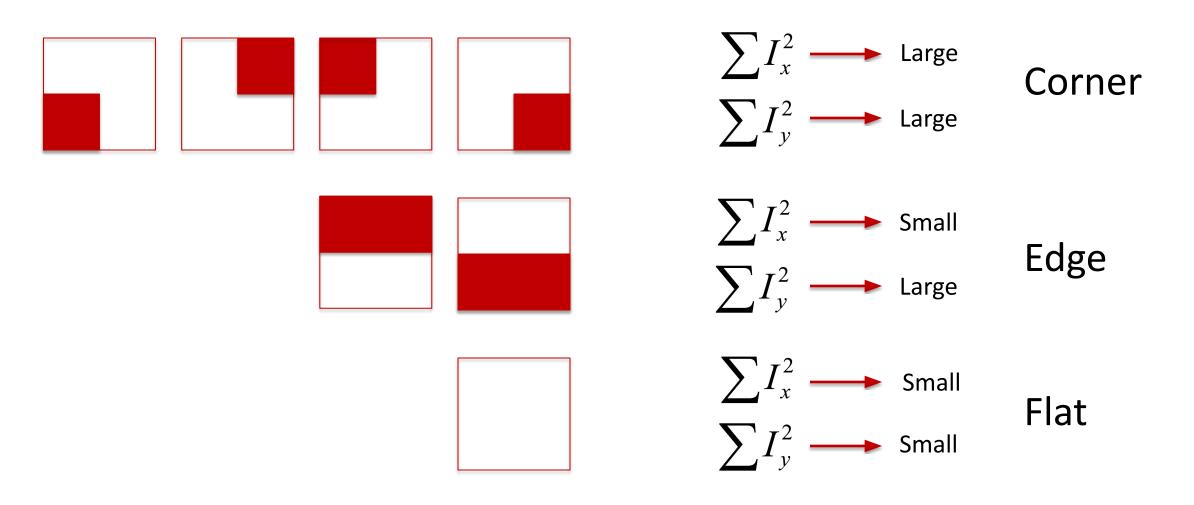
Edges have high gradient in one direction



Ranjay Krishna

Lecture 6 - 68

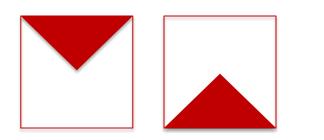
Corners versus edges

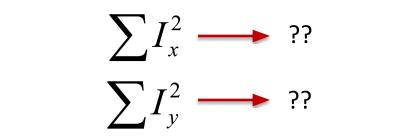


Ranjay Krishna

Lecture 6 - 69

Generalizing to corners in any direction





Corner

Harris Detector Formulation

- Find patches that result in large change of pixel values when shifted in *any direction*.
- When we shift by [*u*, *v*], the intensity change at the center pixel is:

[u, v] I(x + u, y + v)I(x, y)

"corner": significant change in all directions

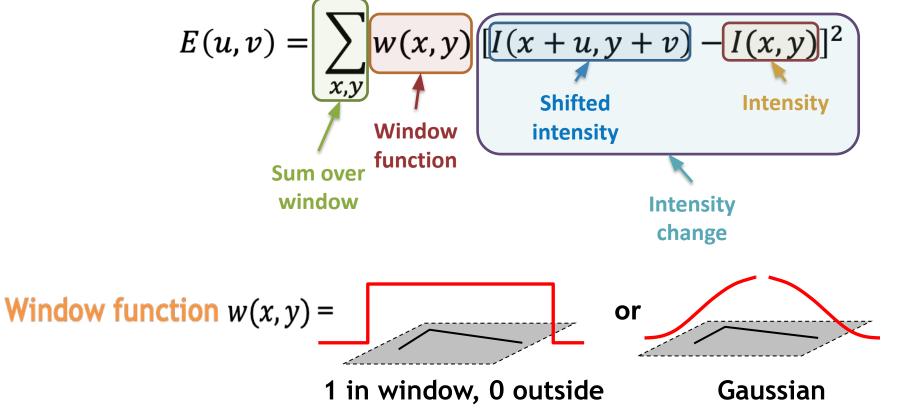
Ranjay Krishna

- Measure change as intensity difference:
 (I(x + u, y + v) I(x, y))
- That's for a single point, but we have to accumulate over the patch or "small window" around that point...

Lecture 6 - 71

Harris Detector Formulation

• When we shift by [u, v], the change in intensity for the "small window" is:



Ranjay Krishna

Lecture 6 - 72

Change in intensity function

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^2$$

We can rewrite the shifted intensity using Taylor's expansion:

$$I(x+u, y+v) \approx I(x, y) + I_x u + I_y v$$

Substituting it back into E(u, v):

$$E(u,v) = \sum_{x,y} w(x,y) [I_x u + I_y v]^2$$

Ranjay Krishna

Lecture 6 - 73

 $E(u,v) = \sum w(x,y)[I_x u + I_y v]^2$ $_{x,y}$

Ranjay Krishna

$$E(u, v) = \sum_{x,y} w(x, y) [I_x u + I_y v]^2$$
$$= \sum_{x,y} w(x, y) (I_x^2 u^2 + 2I_x I_y u v + I_y^2 v^2)$$

$$\begin{split} E(u,v) &= \sum_{x,y} w(x,y) [I_x u + I_y v]^2 \\ &= \sum_{x,y} w(x,y) (I_x^2 u^2 + 2I_x I_y u v + I_y^2 v^2) \\ &= (\sum_{x,y} w I_x^2) u^2 + 2(\sum_{x,y} w I_x I_y) u v + (\sum_{x,y} w I_y^2) v^2 \end{split}$$

Ranjay Krishna

Lecture 6 - 76

$$\begin{split} E(u,v) &= \sum_{x,y} w(x,y) [I_x u + I_y v]^2 \\ &= \sum_{x,y} w(x,y) (I_x^2 u^2 + 2I_x I_y u v + I_y^2 v^2) \\ &= (\sum_{x,y} w I_x^2) u^2 + 2 (\sum_{x,y} w I_x I_y) u v + (\sum_{x,y} w I_y^2) v^2 \\ &= \begin{bmatrix} u & v \end{bmatrix} \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} \end{split}$$

January 23, 2025

Ranjay Krishna

$$\begin{split} E(u,v) &= \sum_{x,y} w(x,y) [I_x u + I_y v]^2 \\ &= \sum_{x,y} w(x,y) (I_x^2 u^2 + 2I_x I_y u v + I_y^2 v^2) \\ &= (\sum_{x,y} w I_x^2) u^2 + 2(\sum_{x,y} w I_x I_y) u v + (\sum_{x,y} w I_y^2) v^2 \\ &= [u \quad v] \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} \\ &= [u \quad v] M \begin{bmatrix} u \\ v \end{bmatrix} \end{split}$$

January 23, 2025

where:

$$M = \sum_{x,y} w(x,y) egin{bmatrix} I_x^2 & I_x I_y \ I_x I_y & I_y^2 \end{bmatrix}$$

Ranjay Krishna

Simplifying M for a second:

Assuming w(x, y) = 1 $M = \begin{bmatrix} \sum_{x,y} I_x^2 & \sum_{x,y} I_x I_y \\ \sum_{x,y} I_x I_y & \sum_{x,y} I_y^2 \end{bmatrix}$

where:

$$M = \sum_{x,y} w(x,y) egin{bmatrix} I_x^2 & I_x I_y \ I_x I_y & I_y^2 \end{bmatrix}$$

Ranjay Krishna

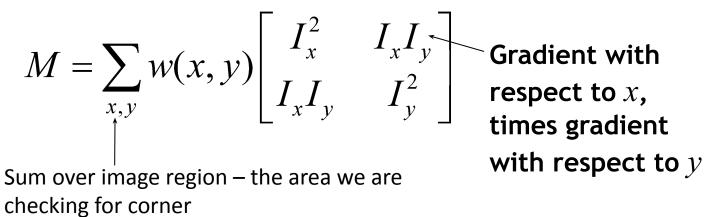
Lecture 6 - 79

Change in intensity in a patch

• So, using Taylor's expansion, the change in intensity in an image patch:

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$

where M is a 2×2 matrix computed from image derivatives:



Ranjay Krishna

Lecture 6 - 80

$$E(u,v) = egin{bmatrix} u & v \end{bmatrix} M egin{bmatrix} u \\ v \end{bmatrix}$$

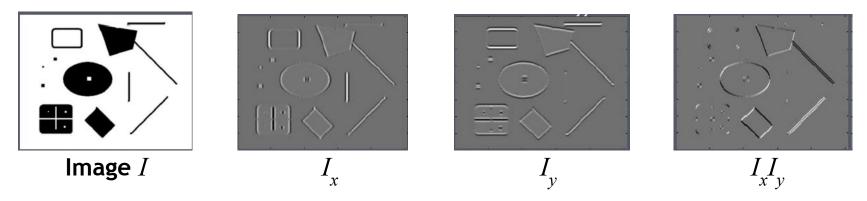
Does anyone know what this part of the equation is?

$$M = \begin{bmatrix} \sum_{x,y} I_x^2 & \sum_{x,y} I_x I_y \\ \sum_{x,y} I_x I_y & \sum_{x,y} I_y^2 \end{bmatrix}$$

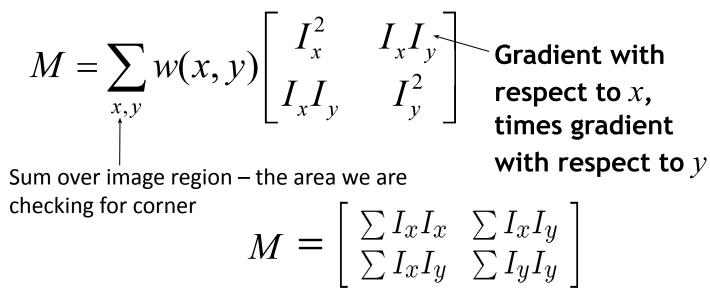
Ranjay Krishna

Lecture 6 - 81

Harris Detector Formulation



where *M* is a 2×2 matrix computed from image derivatives:

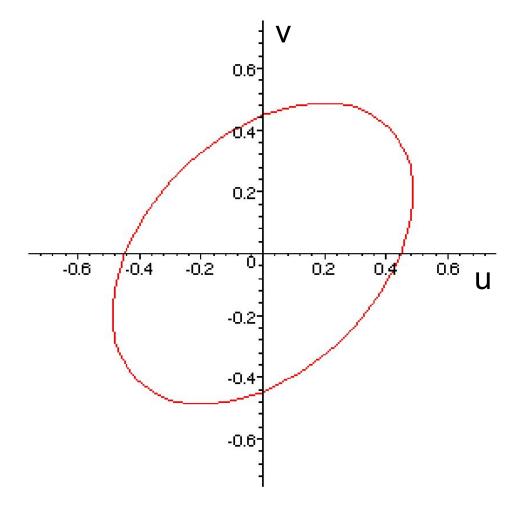


Ranjay Krishna

Lecture 6 - 82

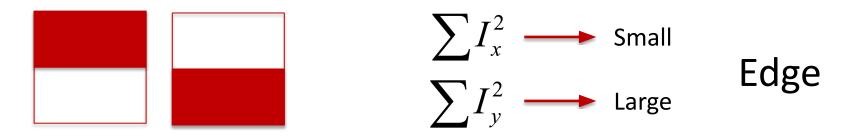
It's the equation of an ellipse

$$5u^{2} - 4uv + 5v^{2} = 1$$
$$\begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$
$$M = \begin{bmatrix} 5 & -2 \\ -2 & 5 \end{bmatrix}$$



Ranjay Krishna

Lecture 6 - 83



If only
$$\sum I_x^2 \longrightarrow$$
 Large ,

Q. What is the matrix M going to look like?

$$M = \begin{bmatrix} \sum_{x,y} I_x^2 & \sum_{x,y} I_x I_y \\ \sum_{x,y} I_x I_y & \sum_{x,y} I_y^2 \end{bmatrix}$$

Ranjay Krishna

Lecture 6 - 84

If only
$$\sum I_x^2 \longrightarrow$$
 Large ,

Q. What is the matrix M going $M = \begin{bmatrix} M \\ M \end{bmatrix}$

$$M = \begin{bmatrix} \sum_{x,y} I_x^2 & \sum_{x,y} I_x I_y \\ \sum_{x,y} I_x I_y & \sum_{x,y} I_x^2 \end{bmatrix}$$
$$M = \begin{bmatrix} & \text{Large} & \text{Small} & \prime \\ & & \text{Small} & \text{Small} \end{bmatrix}$$

Ranjay Krishna

Lecture 6 - 85



If only $\sum I_x^2 \longrightarrow$ Large , Q. what kind of ellipse would you expect to see?

$$M = \begin{bmatrix} \sum_{x,y} I_x^2 & \sum_{x,y} I_x I_y \\ \sum_{x,y} I_x I_y & \sum_{x,y} I_y^2 \end{bmatrix}$$
$$M = \begin{bmatrix} & \text{Large} & \text{Small} & ' \\ & \text{Small} & \text{Small} \end{bmatrix}$$

January 23, 2025

Ranjay Krishna

Ranjay Krishna

If only $\sum I_x^2 \longrightarrow$ Large , Q. what kind of ellipse would you expect to see? $M = \begin{bmatrix} \sum_{x,y} I_x^2 & \sum_{x,y} I_x I_y \\ \sum_{x,y} I_x I_y & \sum_{x,y} I_y^2 \end{bmatrix}$ $M = \begin{bmatrix} \text{Large Small '} \\ \text{Small Small '} \end{bmatrix}$

Lecture 6 - 87



If only $\sum I_y^2 \longrightarrow$ Large , Q. what kind of ellipse would you expect to see?

$$M = \begin{bmatrix} \sum_{x,y} I_x^2 & \sum_{x,y} I_x I_y \\ \sum_{x,y} I_x I_y & \sum_{x,y} I_y^2 \end{bmatrix}$$
$$M = \begin{bmatrix} & \mathsf{Small} & \mathsf{Small} & \prime \\ & & \mathsf{Small} & \mathsf{Large} \end{bmatrix}$$

January 23, 2025

Lecture 6 - 88

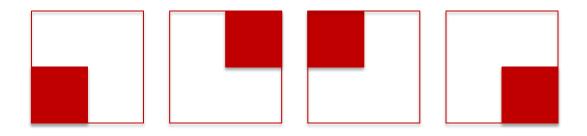


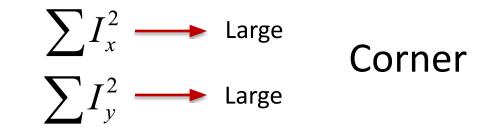
If only $\sum I_y^2 \longrightarrow$ Large , Q. what kind of ellipse would you expect to see?

$$M = \begin{bmatrix} \sum_{x,y} I_x^2 & \sum_{x,y} I_x I_y \\ \sum_{x,y} I_x I_y & \sum_{x,y} I_y^2 \end{bmatrix}$$
$$M = \begin{bmatrix} & \mathsf{Small} & \mathsf{Small} & \prime \\ & & \mathsf{Small} & \mathsf{Large} \end{bmatrix}$$

January 23, 2025

Lecture 6 - 89



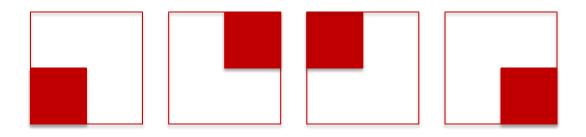


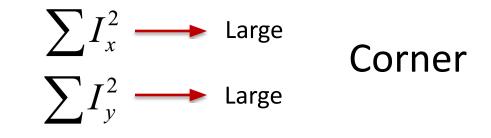
Q. What is the matrix M going $M = \begin{bmatrix} \sum_{x,y} I_x^2 & \sum_{x,y} I_x I_y \\ \sum_{x,y} I_x I_y & \sum_{x,y} I_y^2 \end{bmatrix}$

$$M = \begin{bmatrix} ??? & ??? \\ ??? & ??? \\ ??? & ??? \end{bmatrix}$$

January 23, 2025

Lecture 6 - 90



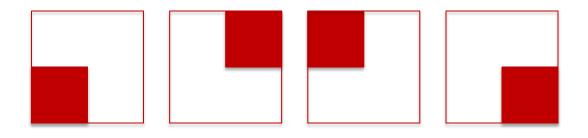


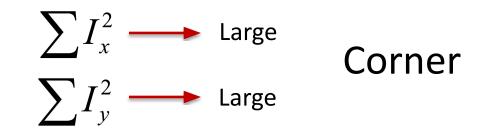
Q. What is the matrix M going $M = \begin{bmatrix} \sum_{x,y} I_x^2 & \sum_{x,y} I_x I_y \\ \sum_{x,y} I_x I_y & \sum_{x,y} I_y^2 \end{bmatrix}$

$$M = \begin{bmatrix} Large & small \\ small & Large \end{bmatrix}$$

January 23, 2025

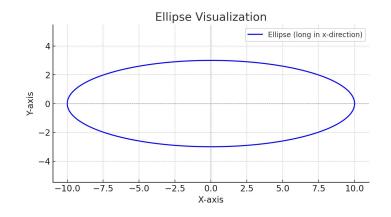
Lecture 6 - 91





Q. What is the ellipse going to look like?

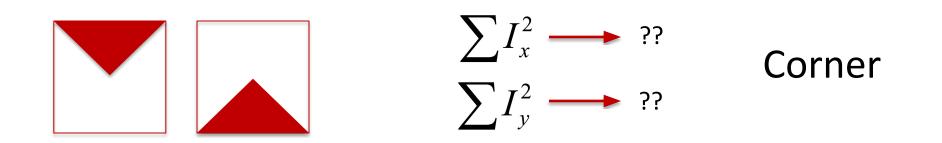
Ranjay Krishna



$$M = \begin{bmatrix} \sum_{x,y} I_x^2 & \sum_{x,y} I_x I_y \\ \sum_{x,y} I_x I_y & \sum_{x,y} I_y^2 \end{bmatrix}$$
$$M = \begin{bmatrix} & \text{Large} & \text{small} & \prime \\ & \text{small} & \text{Large} \end{bmatrix}$$

Lecture 6 - 92

But what about these ones?



Q. What would the matrix and ellipses look like?

$$5u^{2} - 4uv + 5v^{2} = 1$$

$$\begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$

$$M = \begin{bmatrix} \sum_{x,y} I_{x}^{2} & \sum_{x,y} I_{x}I_{y} \\ \sum_{x,y} I_{x}I_{y} & \sum_{x,y} I_{y}^{2} \end{bmatrix}$$

$$M = \begin{bmatrix} 5 & -2 \\ -2 & 5 \end{bmatrix}$$

Ranjay Krishna

Lecture 6 - 93

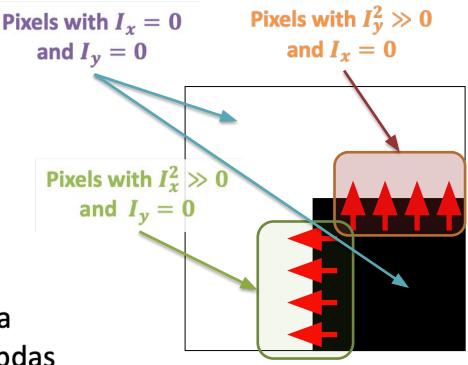
What Does This Matrix Reveal?

- First, let's consider an axis-aligned corner.
- In that case, the dominant gradient directions align with the x or the y axis

•
$$M = \begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

Ranjay Krishna

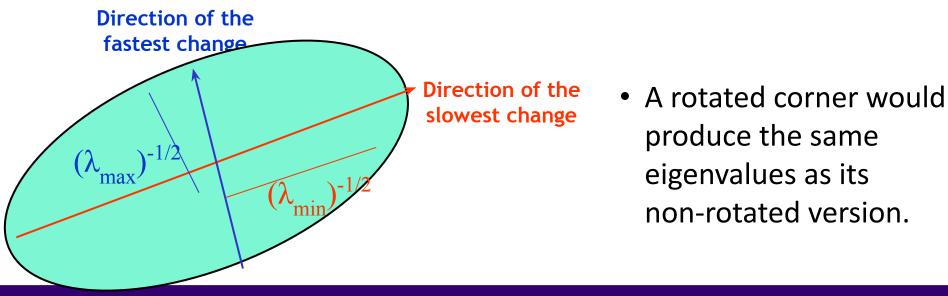
- This means: if either λ is close to 0, then this is not a corner, so look for image windows where both lambdas are large.
- What if we have a corner that is not aligned with the image axes?



Lecture 6 - 94

• Since $M = \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$ is symmetric, we can re-rewrite $M = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$ (Eigenvalue decomposition)

 We can think of M as an ellipse with its axis lengths determined by the eigenvalues λ₁ and λ₂; and its orientation determined by R

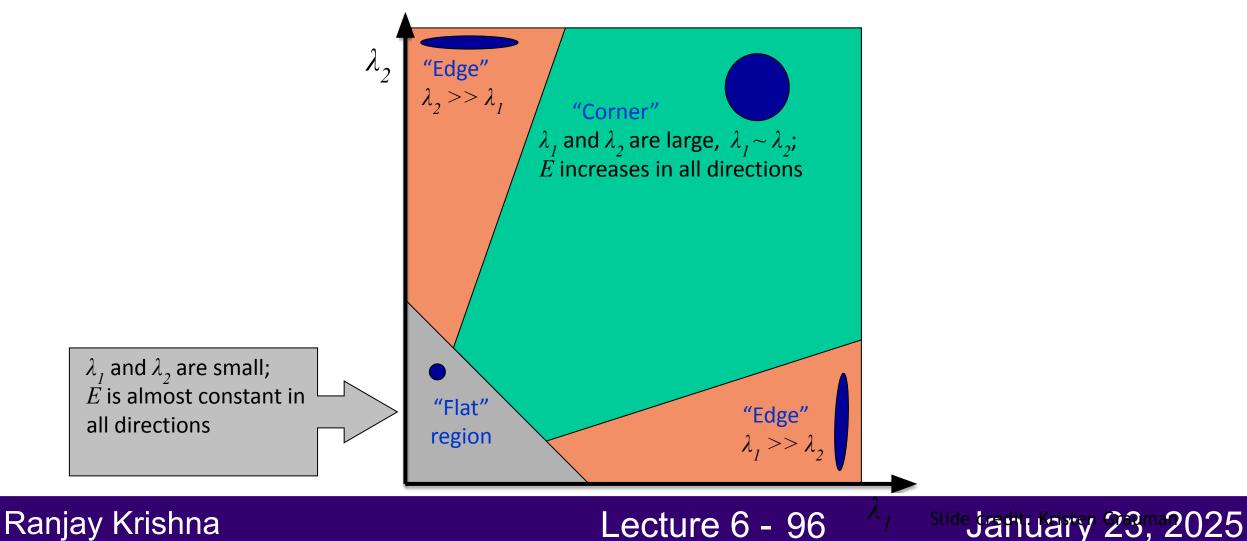


Ranjay Krishna

Lecture 6 - 95

Interpreting the Eigenvalues

• Classification of image points using eigenvalues of *M*:



But calculating eigenvalues is expensive. **Solution: Corner Response Function** $\theta = \det(M) - \alpha \operatorname{trace}(M)^2 = \lambda_1 \lambda_2 - \alpha (\lambda_1 + \lambda_2)^2$

l, Edge" $\theta \leq 0$ "Corner" $\theta > 0$ "Flat" "Edge" region $\theta < 0$ λ_{i}

- Fast approximation

 Avoid computing the eigenvalues
 α: constant
 - (0.04 to 0.06)

Ranjay Krishna

Lecture 6 - 97

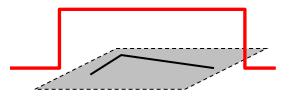
slide Jahurary 28, 2025

Window Function *w*(*x*,*y*)

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

- Option 1: uniform window
 - Sum over square window

$$M = \sum_{x,y} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$



• Problem: not rotation invariant

1 in window, 0 outside

- Option 2: Smooth with Gaussian
 - Gaussian already performs weighted sum

$$M = g(\sigma) * \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

• Result is rotation invariant
an

Ranjay Krishna

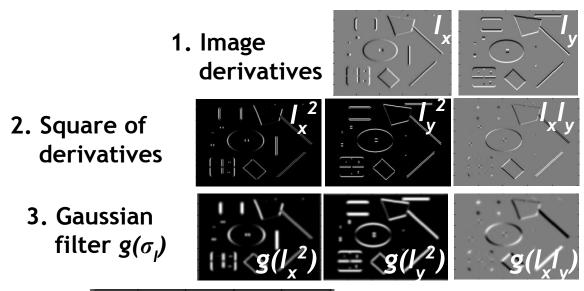
Lecture 6 - 98

Summary: Harris Detector [Harris88]

• Compute second moment matrix (autocorrelation matrix)

 $M(\sigma_{I},\sigma_{D}) = g(\sigma_{I}) * \begin{bmatrix} I_{x}^{2}(\sigma_{D}) & I_{x}I_{y}(\sigma_{D}) \\ I_{x}I_{y}(\sigma_{D}) & I_{y}^{2}(\sigma_{D}) \end{bmatrix}$

 σ_D : for Gaussian in the derivative calculation σ_I : for Gaussian in the windowing function



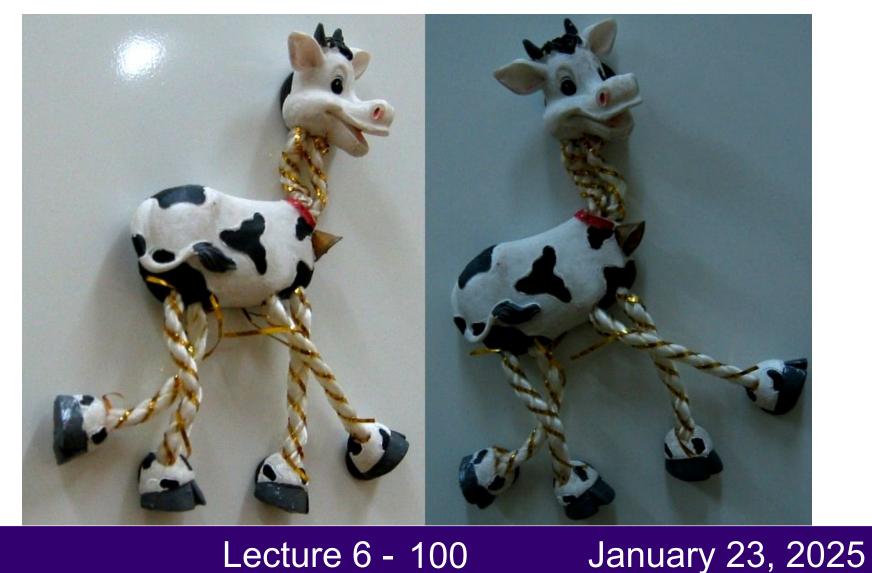
4. Cornerness function - two strong eigenvalues

 $\theta = \det[M(\sigma_{I}, \sigma_{D})] - \alpha[\operatorname{trace}(M(\sigma_{I}, \sigma_{D}))]^{2}$ = $g(I_{x}^{2})g(I_{y}^{2}) - [g(I_{x}I_{y})]^{2} - \alpha[g(I_{x}^{2}) + g(I_{y}^{2})]^{2}$

5. Perform non-maximum suppression

Lecture 6 - 99

• Input Image

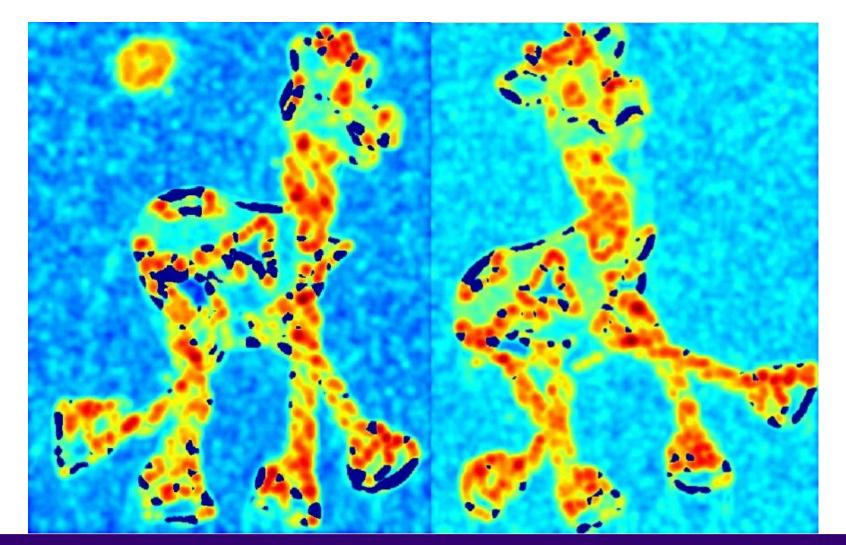


Ranjay Krishna

• Input Image

Ranjay Krishna

• Compute corner response function θ



Lecture 6^{slide}101^{red from Daya} January 23, 2025

- Input Image
- Compute corner response function θ
- Take only the local maxima of θ,
 where θ > threshold

Ranjay Krishna

Lecture 6 - 102

- Input Image
- Compute corner response function θ
- Take only the local maxima of θ,
 where θ > threshold

Ranjay Krishna

Lecture 6 - 103

Harris Detector – Responses [Harris88]

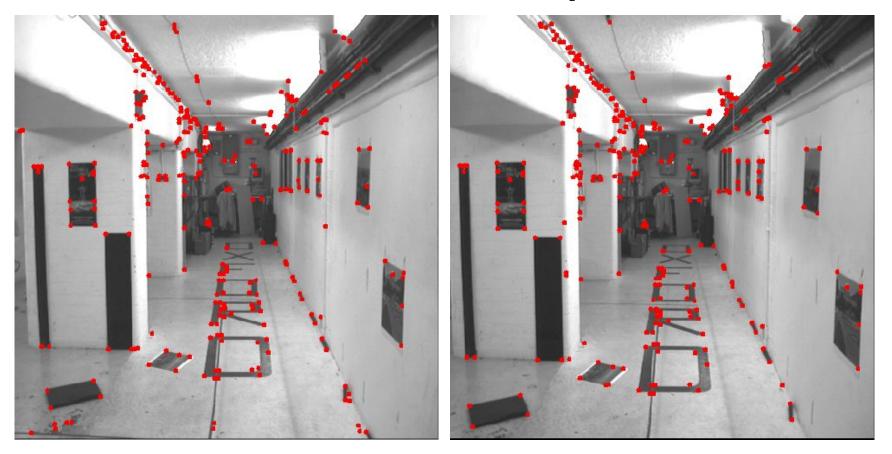


Effect: A very precise corner detector.

Ranjay Krishna

Harris Detector – Responses [Harris88]

Harris Detector – Responses [Harris88]



• Results are great for finding correspondences matches between images

Ranjay Krishna

Summary

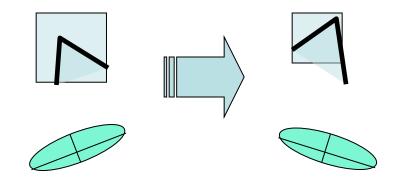
- Local Invariant Features
- Harris Corner Detector

Harris Detector: Properties

• Translation invariance?

Harris Detector: Properties

- Translation invariance
- Rotation invariance?



Ellipse rotates but its shape (i.e. eigenvalues) remains the same

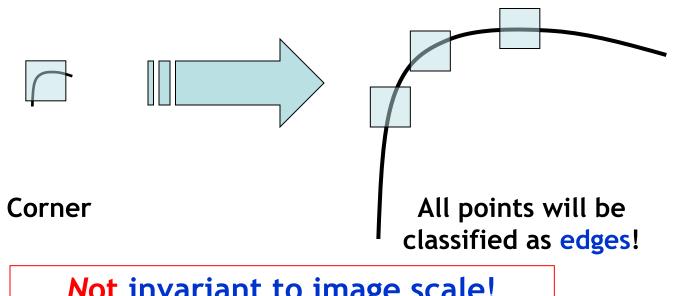
It is invariant to image rotation

Ranjay Krishna

Lecture 6 - 109

Harris Detector: Properties

- Translation invariance
- Rotation invariance
- Scale invariance?



Not invariant to image scale!

Ranjay Krishna

Lecture 6 - 110

Slide Stide Stide Stide Stide Stide Stide Stide Stide State State

Next time

Detectors and Descriptors

