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Lines and Corners

Lecture 6
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Administrative
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A1 due Fri, Jan 24!!!
- You can use up to 2 late days

A2 is out
- Due Feb 7th
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Administrative
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- Recitation this Friday
- Geometric transformations
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So far: Sobel 
Filter

Step 1: Calculate the 
gradient magnitude at 
every pixel location.

Step 2: Threshold the 
values to generate a 
binary image
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So far: challenges multiple disconnected edges

Y-Derivative of Gaussian Gradient Magnitude
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So far: Canny edge detector
Use Sobel filters to find line estimates

x-direction y-direction
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So far: Non-maximum suppression
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[n2, m2] [n, m]

[n1, m1]
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So far: Hysteresis thresholding
Strong and weak edges

Source: S. Seitz

strong edge pixel weak but connected 
edge pixels

strong edge pixel
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So far: The Hough transform
● So: one point (xi,yi) gives a line in (a,b) space.
● Another point (xj,yj) will give rise to another line in (a,b)-space.
● Iterate over pairs of points, to vote for buckets of intersection in (a,b)-space 
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So far: RANSAC
● Sample seed points, calculate line, count # of inliers, repeat

“7 inlier points”
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● RANSAC
● Local Invariant Features
● Harris Corner Detector

Today’s agenda
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● RANSAC
● Local Invariant Features
● Harris Corner Detector

Today’s agenda

12



Ranjay Krishna January 23, 2025Lecture 6 -

Why is Hough transform inefficient?
● It’s not feasible to check all pairs of points to calculate possible lines. For 

example, Hough Transform algorithm runs in O(N2).

● Voting is a general technique where we let the each point vote for all 
models that are compatible with it.

○ Iterate through features, cast votes for parameters.
○ Filter parameters that receive a lot of votes.

● Problem: Noisy points will cast votes too, but typically their votes should 
be inconsistent with the majority of “good” edge points.
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Difficulty of voting for lines
● Noisy edge pixels cast inconsistent 

votes:
○ Can we identify false edge pixels  

without iterating over all pairs 
like we do in Hough transforms?

● Canny can predict false positive 
edge points:
○ Can we eliminate them without 

needing to compare this pixel 
with every other edge pixel?
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Intuition
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Intuition
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RANSAC [Fischler & Bolles 1981]

● RANdom SAmple Consensus 

● Approach: we want to avoid the impact of noisy outliers, so let’s look for 
“inliers”, and use only those.

● Intuition: if an outlier is chosen to compute the parameters (a,b) of a line, 
then the resulting line won’t have much support from rest of the points.
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RANSAC Line Fitting Example
● Task: Estimate the best line

○ Let’s randomly select a subset of points and calculate a line
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RANSAC Line Fitting Example
● Task: Estimate the best line

○ Let’s select only 2 points as an example

Sample two points
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RANSAC Line Fitting Example
● Task: Estimate the best line

○ Calculate the line parameters

Fit a line to them
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RANSAC Line Fitting Example
● Task: Estimate the best line

○ Edges can be noisy. To account for this, let’s say that the line is 
somewhere between the dashed lines
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RANSAC Line Fitting Example
● Task: Estimate the best line

○ Calculate the number of points that lie within the dashed lines

“7 inlier points”
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How do we calculate the inliers? 
We use the distance from the point to the line

“7 inlier points”

23

(x0, y0)
y = ax + b

d
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RANSAC Line Fitting Example
● Task: Estimate the best line

○ Repeat with two other randomly selected points
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This is a better fit!!!

RANSAC Line Fitting Example
● Task: Estimate the best line

○ This time we have 11 inliers

“11 inlier points”
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The RANSAC algorithm [Fischler & Bolles 1981]

RANSAC loop:
Repeat for k iterations:

1. Randomly select a seed subset of points on which to perform a model 
estimate (e.g., a group of edge points)

2. Compute parameters from seed group
3. Find inliers for these parameters
4. If the number of inliers is larger than the best so far, save these 

parameters and the inliers
If number of inliers in the best line is < m, return no line
Else re-calculate the final parameters with all the inliers

26
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The RANSAC algorithm [Fischler & Bolles 1981]

RANSAC loop:
Repeat for k iterations:

1. Randomly select a seed subset of points on which to perform a model 
estimate (e.g., a group of edge points)

2. Compute parameters (a, b) from seed group
3. Find inliers for these parameters
4. If the number of inliers is larger than the best so far, save these 

parameters and the inliers
If number of inliers in the best line is < m, return no line
Else re-calculate the final parameters with all the inliers
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The RANSAC algorithm [Fischler & Bolles 1981]

RANSAC loop:
Repeat for k iterations:

1. Randomly select a seed subset of points on which to perform a model 
estimate (e.g., a group of edge points)

2. Compute parameters (a, b) from seed group
3. Find inliers for these parameters
4. If the number of inliers is larger than the best so far, save these 

parameters and the inliers
If number of inliers in the best line is < m, return no line
Else re-calculate the final parameters with all the inliers
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The RANSAC algorithm [Fischler & Bolles 1981]

RANSAC loop:
Repeat for k iterations:

1. Randomly select a seed subset of points on which to perform a model 
estimate (e.g., a group of edge points)

2. Compute parameters (a, b) from seed group
3. Find inliers for these parameters
4. If the number of inliers is larger than the best so far, save these 

parameters and the inliers
If number of inliers in the best line is < m, return no line
Else re-calculate the final parameters with all the inliers
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The RANSAC algorithm [Fischler & Bolles 1981]

RANSAC loop:
Repeat for k iterations:

1. Randomly select a seed subset of points on which to perform a model 
estimate (e.g., a group of edge points)

2. Compute parameters (a, b) from seed group
3. Find inliers for these parameters
4. If the number of inliers is larger than the best so far, save these 

parameters and the inliers
If number of inliers in the best line is < m, return no line
Else re-calculate the final parameters with all the inliers
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The RANSAC algorithm [Fischler & Bolles 1981]

RANSAC loop:
Repeat for k iterations:

1. Randomly select a seed subset of points on which to perform a model 
estimate (e.g., a group of edge points)

2. Compute parameters (a, b) from seed group
3. Find inliers for these parameters
4. If the number of inliers is larger than the best so far, save these 

parameters and the inliers
If number of inliers in the best line is < m, return no line
Else re-calculate the final parameters with all the inliers
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Final step: Refining the parameters
● The best parameters were computed using a seed set of n 

points. 
● We use these points to find the inliers.
● We can improve the parameters by estimating over all inliers 

(e.g. with standard least-squares minimization).
● But this may change the inliers, so repeat this last step until 

there is no change in inliers.
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How do you calculate the line from many 
points?
(xi, yi) is a set of points we are going to use to estimate (a, b)

Lear squares method:

33
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The RANSAC algorithm [Fischler & Bolles 1981]

RANSAC loop:
Repeat for k iterations:

1. Randomly select a seed subset of points on which to perform a model 
estimate (e.g., a group of edge points)

2. Compute parameters (a, b) from seed group
3. Find inliers for these parameters
4. If the number of inliers is larger than the best so far, save these 

parameters and the inliers
If number of inliers in the best line is < m, return no line
Else re-calculate the final parameters with all the inliers
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1. How many points to sample in the seed set?
a. We used 2 in the example above

The hyperparameters

35
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1. How many points to sample in the seed set?
a. We used 2 in the example above

2. How many times should we repeat?
a. More repetitions increase computation but increase chances of finding 

best line

The hyperparameters

36
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1. How many points to sample in the seed set?
a. We used 2 in the example above

2. How many times should we repeat?
a. More repetitions increase computation but increase chances of finding 

best line
3. The threshold for the dashed lines

a. Larger the gap between dashed lines, the more false positive inliers
b. Smaller the gap, the more false negatives outliers

The hyperparameters

37
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1. How many points to sample in the seed set?
a. We used 2 in the example above

2. How many times should we repeat?
a. More repetitions increase computation but increase chances of finding 

best line
3. The threshold for the dashed lines

a. Larger the gap between dashed lines, the more false positive inliers
b. Smaller the gap, the more false negatives outliers

4. The minimum number of inliers to confidently claim there is a line
a. Smaller the number, the more false negative lines
b. Larger the number, the fewer lines we will find

The hyperparameters

38
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RANSAC: Computed k (p=0.99)
Sample 

size

n

Proportion of outliers 

5% 10% 20% 25% 30% 40% 50%

2 2 3 5 6 7 11 17
3 3 4 7 9 11 19 35
4 3 5 9 13 17 34 72
5 4 6 12 17 26 57 146
6 4 7 16 24 37 97 293
7 4 8 20 33 54 163 588
8 5 9 26 44 78 272 1177
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RANSAC: How many iterations “k”?
●  

40
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RANSAC: Pros and Cons
● Pros:

○ General method suited for a wide range of parameter fitting problems
○ Easy to implement and easy to calculate its failure rate

● Cons:
○ Only handles a moderate percentage of outliers without cost blowing up
○ Many real problems have high rate of outliers (but sometimes selective 

choice of random subsets can help)
● A voting strategy, The Hough transform, can handle high percentage of 

outliers

41
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Today’s agenda

42

● RANSAC
● Local Invariant Features
● Harris Corner Detector
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Image matching: a challenging problem

Template

43

Q1. Will cross-correlation 
work?

Q2. Can we use match 
the lines?
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Q. How would you build a system that can 
detect this movie in the pile?

44
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by Diva Sian

by swashford

Challenge: Perspective / viewpoint changes

45

http://www.flickr.com/photos/diaphanus/136915456/
http://www.flickr.com/photos/swashford/428567562/
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Challenge: partial observability

by scgbtby Diva Sian
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http://www.flickr.com/photos/scpgt/328570837/
http://www.flickr.com/photos/diaphanus/136915456/
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Challenge even for us

NASA Mars Rover images

47
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Answer Below (Look for tiny colored squares)

NASA Mars Rover images with SIFT feature matches
(Figure by Noah Snavely)
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- Find matching patches
- Check to make sure enough patches

Intuition behind how to match images

49
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Intuition behind how to match images
- Find matching patches
- Check to make sure enough patches

What do we need?
- We need to identify patches
- We need to learn to a way to describe each patch
- We need an algorithm to match the description between two patches

50
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Motivation for using local features

● Matching large patches have major 
challenges (mentioned in previous 
slides)

● Instead, let’s describe and match only 
local image patches

● Smaller, local patches are more likely to 
find an object even if it is partially 
occluded (covered)

○ Articulation

○ Intra-category variations 

51
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General Approach
N

 p
ix

el
s

N pixels

Similarity 
measure

e.g. color e.g. color

1. Find a set of distinctive 
key-points 

3. Normalize the region 
content  

2. Define a region/patch 
around each keypoint   

4. Compute a local descriptor 
from the normalized region

5. Match local descriptors

A
1

A
2 A

3

B 1

B 2

B 3
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Common Requirements

● Problem 1: How should we choose the key-points?
○ We want to detect the same points independently in both images

No chance to match if the key-points 
aren’t the same 

We need a repeatable detector!

53
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Common Requirements

● Problem 1: How should we choose the key-points?
○ Detect the same point independently in both images

● Problem 2: How should we describe each patch?
○ For each point correctly recognize the corresponding one

We need a reliable and distinctive descriptor!

?

54
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Descriptions should be invariant to rotation and 
translation

55
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Descriptions should be invariant to photometric 
transformations

● Often modeled as a linear transformation:
○ Scaling + Offset

Slide credit: Tinne Tuytelaars
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Levels of geometric transformations

57
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Requirements for Local Features
● Patch selection needs to be repeatable and accurate

○ Invariant to translation, rotation, scale changes
○ Robust to out-of-plane (≈affine) transformations
○ Robust to lighting variations, noise, blur, quantization

● Locality: Features are local, therefore robust to occlusion and clutter.

● Quantity: We need a sufficient number of regions to cover the object.

● Distinctiveness: The regions should contain “unique” structure.

● Efficiency: Close to real-time performance.
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What are good patches?
Q. Is this a good patch for 
image matching?

59
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What are good patches?
Q. What about this one?
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What are good patches?
Q. Let’s try another one?
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Many existing feature detectors available
● Hessian & Harris [Beaudet ‘78], [Harris ‘88]
● Laplacian, DoG [Lindeberg ‘98], [Lowe ‘99]
● Harris-/Hessian-Laplace [Mikolajczyk & Schmid ‘01]
● Harris-/Hessian-Affine [Mikolajczyk & Schmid ‘04]
● EBR and IBR [Tuytelaars & Van Gool ‘04] 
● MSER [Matas ‘02]
● Salient Regions [Kadir & Brady ‘01] 
● Neural networks [Krichevsky ‘12]

● Those detectors have become a basic building block for many applications 
in Computer Vision.
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Today’s agenda
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● Local Invariant Features
● Harris Corner Detector
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Keypoint Localization

● Goals: 
○ Repeatable detection
○ Precise localization
○ Interesting content

intuition⇒ Look for 2D signal changes (LSI systems strike again)

64



Ranjay Krishna January 23, 2025Lecture 6 -

Finding Corners

How do we find corners using LSI systems? 
○ The image gradient around a corner has two or more dominant 

directions
Corners are repeatable and distinctive

C.Harris and M.Stephens. "A Combined Corner and Edge Detector.“ 
Proceedings of the 4th Alvey Vision Conference, 1988.  

65

http://www.csse.uwa.edu.au/~pk/research/matlabfns/Spatial/Docs/Harris/A_Combined_Corner_and_Edge_Detector.pdf
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Corners are distinctive key-points
○ We should easily recognize the corner point by looking through a small 

image patch (locality)
○ Shifting the window in any direction should give a large change in intensity 

(good localization)

“edge”:
no change along 
the edge direction

“corner”:
significant change 
in all directions

“flat” region:
no change in 
all directions

Slide credit: Alyosha Efros
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Flat patches have small image gradients

Small

Small
Flat
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Edges have high gradient in one direction

Small

Large
Edge

Small

Small
Flat
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Corners versus edges
Large

Large
Corner

Small

Large
Edge

Small

Small
Flat

69



Ranjay Krishna January 23, 2025Lecture 6 -

Generalizing to corners in any direction
??

??
Corner
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Harris Detector Formulation
● Find patches that result in large change of pixel values when shifted in any 

direction.
● When we shift by [u, v], the intensity change at the center pixel is:

“corner”:
significant change 
in all directions
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Harris Detector Formulation
●  

or 

Gaussian1 in window, 0 outside

Slide credit: Rick Szeliski

Shifted 
intensity

Intensity

Intensity 
change

Window 
function

Sum over 
window
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Change in intensity function

We can rewrite the shifted intensity using Taylor’s expansion:

Substituting it back into E(u, v):
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Re-writing E:
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Re-writing E:
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Re-writing E:
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Re-writing E:
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Re-writing E:

78

where:
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Simplifying M for a second:

79

where:
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Change in intensity in a patch
● So, using Taylor’s expansion, the change in intensity in an image patch:

where M is a 2×2 matrix computed from image derivatives:

Sum over image region – the area we are 
checking for corner

Gradient with 
respect to x, 
times gradient 
with respect to y

80
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Re-writing E:

81

Does anyone know what this 
part of the equation is?
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Harris Detector Formulation

where M is a 2×2 matrix computed from image derivatives:

IxImage I IxIyIy

M  

Sum over image region – the area we are 
checking for corner

Gradient with 
respect to x, 
times gradient 
with respect to y

82
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It’s the equation of an ellipse

83

v

u
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Remember what we said about the gradients 
for these edges

If only     , 

84

Large

Small

Large
Edge

Q. What is the matrix M going 
to look like?



Ranjay Krishna January 23, 2025Lecture 6 -

Remember what we said about the gradients 
for these edges

If only     , 

85

Large

Small

Large
Edge

Q. What is the matrix M going 
to look like?

Large Small

SmallSmall



Ranjay Krishna January 23, 2025Lecture 6 -

Remember what we said about the gradients 
for these corners

If only     , Q. what kind of ellipse would you expect to see?

86

Large

Small

Large
Edge

Large Small

SmallSmall
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Remember what we said about the gradients 
for these corners

If only     , Q. what kind of ellipse would you expect to see?

87

Large

Small

Large
Edge

Large Small

SmallSmall
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Remember what we said about the gradients 
for these corners

If only     , Q. what kind of ellipse would you expect to see?

88

Large

Small

Large
Edge

Small Small

LargeSmall
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Remember what we said about the gradients 
for these corners

If only     , Q. what kind of ellipse would you expect to see?
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Large

Small

Large
Edge

Small Small

LargeSmall
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Remember what we said about the gradients 
for these corners

90

Large

Large
Corner

??? ???

??????

Q. What is the matrix M going 
to look like?
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Remember what we said about the gradients 
for these corners

91

Large

Large
Corner

Large small

Largesmall

Q. What is the matrix M going 
to look like?
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Q. What is the ellipse going to 
look like?

Remember what we said about the gradients 
for these corners

92

Large

Large
Corner

Large small

Largesmall
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But what about these ones?

93

Q. What would the matrix and ellipses look like?

??

??
Corner

Hint:
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What Does This Matrix Reveal?
●  
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M defines an ellipse in the direction (u, v)
 

Direction of the 
slowest change

Direction of the 
fastest change

(λmax)
-1/2

(λmin)
-1/2

(Eigenvalue decomposition)

• A rotated corner would 
produce the same 
eigenvalues as its 
non-rotated version.

95
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Interpreting the Eigenvalues
● Classification of image points using eigenvalues of M:

λ1

      “Corner”
λ1 and λ2 are large,  λ1 ~ λ2;
E increases in all directions

λ1 and λ2 are small;
E is almost constant in 
all directions “Edge” 

λ1 >> λ2

“Edge” 
λ2 >> λ1

“Flat” 
region

Slide credit: Kristen Grauman

λ2

96



Ranjay Krishna January 23, 2025Lecture 6 -

But calculating eigenvalues is expensive. 
Solution: Corner Response Function

● Fast approximation
○ Avoid computing the

eigenvalues
○ α: constant

(0.04 to 0.06)

λ2

“Corner”
 θ > 0

“Edge” 
 θ < 0

“Edge” 
 θ < 0

“Flat” 
region

λ1

Slide credit: Kristen Grauman97
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Window Function w(x,y)

● Option 1: uniform window
○ Sum over square window

○ Problem: not rotation invariant

● Option 2: Smooth with Gaussian
○ Gaussian already performs weighted sum

○ Result is rotation invariant

1 in window, 0 outside

Gaussi
an

98
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Summary: Harris Detector [Harris88] 
● Compute second moment matrix

(autocorrelation matrix) 1. Image 
    derivatives

Ix Iy

2. Square of    
    derivatives

Ix
2 Iy

2 IxIy

3. Gaussian 
    filter g(σI) g(Ix

2) g(Iy
2) g(IxIy)

R

4. Cornerness function – two strong eigenvalues

5. Perform non-maximum suppression
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Harris Detector: Example
● Input Image

100
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● Input Image
● Compute corner 

response function 
θ

Harris Detector: Example

101
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Harris Detector: Example
● Input Image
● Compute corner 

response function θ
● Take only the local 

maxima of θ,
where θ > threshold

102
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Harris Detector: Example
● Input Image
● Compute corner 

response function θ
● Take only the local 

maxima of θ,
where θ > threshold

103
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Harris Detector – Responses [Harris88]

Effect: A very precise 
corner detector.

104
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Harris Detector – Responses [Harris88]

Slide credit: Krystian Mikolajczyk105
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Harris Detector – Responses [Harris88]

● Results are great for finding correspondences matches between images

Slide credit: Kristen Grauman106
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Summary

107

● Local Invariant Features
● Harris Corner Detector
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Harris Detector: Properties
● Translation invariance?

108
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Harris Detector: Properties
● Translation invariance
● Rotation invariance?

Ellipse rotates but its shape (i.e. 
eigenvalues) remains the same

It is invariant to image rotation
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Harris Detector: Properties
● Translation invariance
● Rotation invariance
● Scale invariance?

Not invariant to image scale!

All points will be 
classified as edges!

Corner

Slide credit: Kristen Grauman110
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Next time
Detectors and Descriptors


