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Lecture 3
Systems and Convolutions
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Administrative

A0 is due today. 
- It is ungraded
- Meant to help you with python and numpy basics
- Learn how to do homeworks and submit them on gradescope.

A1 is out
- It is graded
- Due Jan 24
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Recitations (2 options)

● Friday mornings 9:30-10:20am @ MGH 231

● Friday afternoons 12:30-1:20pm @ CSE2 G01

This week:
We will go over Python & Numpy basics

Administrative
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So far: 2D discrete system (filters)

S is the system operator, defined as a mapping or assignment 
of possible inputs f[n,m] to some possible outputs g[n,m].
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So far: Moving Average
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So far: Image Segmentation

● Use a simple pixel threshold:
255,

6
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● Amplitude properties:
○ Additivity

 
○ Homogeneity

So far: Properties of systems

7
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What we will learn today?

8

● Properties of filters (continued)
● Linear shift invariant systems
● Impulse functions
● LSI + impulse response



Ranjay Krishna, Jieyu Zhang January 14, 2025Lecture 3 -

● Properties of filters (continued)
● Linear shift invariant systems
● Impulse functions
● LSI + impulse response

What we will learn today?
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Properties of systems

10

● Amplitude properties:
○ Additivity

 
○ Homogeneity

○ Superposition

This is an important property. Make sure you know how to prove if 
any system has this property
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● Amplitude properties:
○ Stability

Properties of systems
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Q. Is the moving average filter stable?

● Amplitude properties:
○ Stability

Properties of systems
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Proof of stability
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Proof of stability
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Proof of stability

15

15



Ranjay Krishna, Jieyu Zhang January 14, 2025Lecture 3 -

Proof of stability
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Proof of stability
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Proof of stability
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Proof of stability
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● Amplitude properties:
○ Stability

○ Invertibility

Properties of systems
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● Amplitude properties:
○ Stability

○ Invertibility

Properties of systems
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Q. Is the 3x3 moving average filter invertible?
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Properties of systems
● Spatial properties

○ Causality

22
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Is the moving average filter causal? 

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
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HINT
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Properties of systems
● Spatial properties

○ Causality

○ Shift invariance:

24
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Original image

What does shifting an image look like?
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Shifted image
n

0
 = 1

m
0
 = 1

What does shifting an image look like?
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Is the moving average system is shift invariant? 

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
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Is the moving average system is shift invariant? 
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Is the moving average system is shift invariant? 
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Is the moving average system is shift invariant? 
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Is the moving average system is shift invariant? 
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Is the moving average system is shift invariant? 
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Is the moving average system is shift invariant? 
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What we will learn today?
● Properties of filters (continued)
● Linear shift invariant systems
● Impulse functions
● LSI + impulse response
● Convolutions and Cross-Correlation
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Linear Systems (filters)

• Linear filtering:
– Form a new image whose pixels are a weighted sum of 

original pixel values

–  Use the same set of weights at each point

• S is a linear system (function) iff it S satisfies

superposition property
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• Q. Is the moving average a linear system?

Linear Systems (filters)
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Linear Systems (filters)

• Q. Is the moving average a linear system?

• Q. Is thresholding a linear system?
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Linear Systems (filters)

• Q. Is the moving average a linear system?

• Q. Is thresholding a linear system?
○ Let f1[0,0] = f2[n,m] = 0.4
○ Let T = 0.5
○ So, S[f1[0,0]] = S[f2[0,0]] = 0
○ But S[f1[0,0] + f2[0,0]] = 1
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Linear shift invariant (LSI) systems

● Satisfies two properties:

 

• Superposition property

• Shift invariance:
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● We are going to use this as an example to dive into interesting properties 
about linear shift-invariant systems.

● Why are linear shift invariant systems important?

Our visual system is a 
linear shift invariant system

Moving average system is linear shift invariant (LSI)

40
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Human vision are scale and translation invariant

Participants were shown 
some target Korean 
character once and were 
tested on whether they 
can identify the targets 
from other distractors

41

Han et al. Scale and translation-invariance for novel objects in human vision. Nature 2020 [link]

. 

https://www.nature.com/articles/s41598-019-57261-6#:~:text=We%20found%20that%20humans%20have,and%20position%20of%20presented%20objects.
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Very high recognition accuracies

42

Han et al. Scale and translation-invariance for novel objects in human vision. Nature 2020 [link]

. 

Human vision are scale and translation invariant

https://www.nature.com/articles/s41598-019-57261-6#:~:text=We%20found%20that%20humans%20have,and%20position%20of%20presented%20objects.
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What we will learn today?
● Properties of filters (continued)
● Linear shift invariant systems
● Impulse functions
● LSI + impulse response
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2D impulse function

● Let’s look at a special function
● 1 at the origin [0,0].
● 0 everywhere else
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2D impulse function as an image
● Let’s look at a special function
● 1 at the origin [0,0].
● 0 everywhere else
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0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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● The moving average filter equation again:

● By passing an impulse function into an LSI system, we get it’s impulse 
response.
○ We will use h[n, m] to refer to the impulse response

What happens when we pass an impulse 
function through a LSI systems

Pass in an impulse function Record its response
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What happens when we pass an impulse 
function through a LSI systems

Before we do this, let’s remember 
how we used the moving average 
filter last lecture
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0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
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Remember the Moving Average filter from last lecture
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0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
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Remember the Moving Average filter from last lecture
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0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
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Remember the Moving Average filter from last lecture
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0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
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Remember the Moving Average filter from last lecture
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Remember the Moving Average filter from last lecture

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
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0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
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Remember the Moving Average filter from last lecture
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Now let’s do the same thing with an 
impulse function

54

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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Now let’s do the same thing with an 
impulse function
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0 0 0 0 0 0 0
0 ? 0 0 0 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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Now let’s do the same thing with an 
impulse function

56

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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Now let’s do the same thing with an 
impulse function

57

0 0 0 0 0 0 0
0 0 ? 0 0 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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Now let’s do the same thing with an 
impulse function

58

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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Now let’s do the same thing with an 
impulse function

59

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 ? 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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Now let’s do the same thing with an 
impulse function
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0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 0 0 0 0 0
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0 0 0 0 0 0 0
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0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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Now let’s do the same thing with an 
impulse function

61

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 ? 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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Now let’s do the same thing with an 
impulse function

62

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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Now let’s do the same thing with an 
impulse function

63

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1/9 ? 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 0 0 0 0 0
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0 0 0 0 0 0 0
0 0 0 0 0 0 0
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0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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Now let’s do the same thing with an 
impulse function

64

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
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0 0 0 0 0 0 0

 

0 0 0 0 0 0 0
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0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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Now let’s do the same thing with an 
impulse function

65

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1/9 1/9 1/9 0 0
0 0 ? 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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Now let’s do the same thing with an 
impulse function

66
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Now let’s do the same thing with an 
impulse function

67

0 0 0 0 0 0 0
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0 0 1/9 1/9 1/9 0 0
0 0 1/9 ? 1/9 0 0
0 0 1/9 1/9 1/9 0 0
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Now let’s do the same thing with an 
impulse function

68

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 

0 0 0 0 0 0 0
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0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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Now let’s do the same thing with an 
impulse function

69

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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Impulse response of the 3 by 3 moving average filter
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71

1 11

1 11

1 11

Notice that any filter can be written as a summation 
of shifted delta functions
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72

1 11

1 11

1 11

Notice that any filter can be written as a summation 
of shifted delta functions
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73

1 11

1 11

1 11

Notice that any filter can be written as a summation 
of shifted delta functions

Q. For what values of n and m is h[,] not zero?
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74

1 11

1 11

1 11

Notice that any filter can be written as a summation 
of shifted delta functions

The general form for a moving 
average h[n,m]
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Q. Why is this the general form?

75

1 11

1 11

1 11

Notice that any filter can be written as a summation 
of shifted delta functions
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Q. Why is this the general form?
As long as n-1, n, or n+1 is 0, the value is 1/9
Same for m
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1 11

Notice that any filter can be written as a summation 
of shifted delta functions
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Q. What if we swap n-k for k-n. Does that also work?
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1 11

Notice that any filter can be written as a summation 
of shifted delta functions
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Yes because h is symmetric 
across the origin

Q. What if we swap n-k for k-n. Does that also work?
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Notice that any filter can be written as a summation 
of shifted delta functions
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Q. What if h was the filter on the right:

(A)

(B)
Is A correct?
Is B correct?
Are both correct?
Are both wrong?

h[:, -1] = 0
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Q. What if h was the filter on the right: h[:, -1] = 0
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Q. What if h was the filter on the right: h[:, -1] = 0

Because h is not symmetric, we need to invert 
the range if we invert m-l to l-m
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● Properties of filters (continued)
● Linear shift invariant systems
● Impulse functions
● LSI + impulse response

What we will learn today?
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Property of (LSI) systems
● An LSI system is completely specified by its impulse response.

○ For any input f, we can compute g using only the impulse response h.
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Property of (LSI) systems
● An LSI system is completely specified by its impulse response.

○ For any input f, we can compute g using only the impulse response h.

○ Let’s derive an expression for g in terms of h. 
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Recall the 3 properties about LSI systems:

  

1. We know what happens when we send a delta function through an LSI 
system:
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Recall the 3 properties about LSI systems:
1. We know what happens when we send a delta function through an LSI 

system:

2. We also know that LSI systems shift the output if the input is shifted:
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Recall the 3 properties about LSI systems:
1. We know what happens when we send a delta function through an LSI 

system:

2. We also know that LSI systems shift the output if the input is shifted:

3. Finally, the superposition principle:
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Key idea: write down f as a sum of impulses

f[2,2]f[2,1]f[2,0]

f[1,2]f[1,1]f[1,0]

f[1,1]f[0,1]f[0,0]

Let’s say our input f is a 3x3 image:

000

000

00f[0,0]

000

000

0f[0,1]0

f[2,2]00

000

000

= + + … +
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Key idea: write down f as a sum of impulses

f[2,2]f[2,1]f[2,0]

f[1,2]f[1,1]f[1,0]

f[1,1]f[0,1]f[0,0]

Let’s say our input f is a 3x3 image:

000

000

00f[0,0]

000

000

0f[0,1]0

f[2,2]00

000

000

= + + … +

000

000

001

000

000

010

100

000

000
=    f[0,0]
✕

 +     f[0,1]
✕

+   …     + f[2,2]✕
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Key idea: write down f as a sum of impulses

f[2,2]f[2,1]f[2,0]

f[1,2]f[1,1]f[1,0]

f[1,1]f[0,1]f[0,0]

Let’s say our input f is a 3x3 image:

000

000

00f[0,0]

000

000

0f[0,1]0

f[2,2]00

000

000

= + + … +

000

000

001

000

000

010

100

000

000
=    f[0,0]
✕

 +     f[0,1]
✕

+   …     + f[2,2]✕

90



Ranjay Krishna, Jieyu Zhang January 14, 2025Lecture 3 -

Key idea: write down f as a sum of impulses
● More generally:
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Key idea: write down f as a sum of impulses
● More generally:

● We can now use superposition to see what the output g is:
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Key idea: write down f as a sum of impulses
● More generally:

● We can now use superposition to see what the output g is:

For given k, l, 
this is a constant
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This is a function 
of n, m

Key idea: write down f as a sum of impulses
● More generally:

● We can now use superposition to see what the output g is:

For given k, l, 
this is a constant
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This is a function 
of n, m

Key idea: write down f as a sum of impulses
● Superposition

● We can now use superposition to see what the output g is:

For given k, l, 
this is a constant
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This is a function 
of n, m

Key idea: write down f as a sum of impulses
● Superposition

● We can now use superposition to see what the output g is:

For given k, l, 
this is a constant
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Key idea: write down f as a sum of impulses
● Superposition:

● We can now use superposition to see what the output g is:
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Key idea: write down f as a sum of impulses
● Superposition:

● We can now use superposition to see what the output g is:
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Key idea: write down f as a sum of impulses

● From previous slide:

● Using shift invariance, we get a shifted impulse response:
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We can write g as a function of h
● We have:

● Which means:
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Linear Shift Invariant (LSI) systems
● An LSI system is completely specified by its impulse response.

○ For any input f, we can compute the output g in terms of the impulse response 
h.

Discrete Convolution
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Linear Shift Invariant (LSI) systems
● An LSI system is completely specified by its impulse response.
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● Linear shift invariant systems
● Impulse functions
● LSI + impulse response

What we will learn today?
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Next time:

Edges and lines
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