Lecture 3

Systems and Convolutions

Ranjay Krishna, Jieyu Zhang

Administrative

A0 is due today.

- It is ungraded
- Meant to help you with python and numpy basics
- Learn how to do homeworks and submit them on gradescope.

A1 is out

- It is graded
- Due Jan 24

Ranjay Krishna, Jieyu Zhang

Administrative

Recitations (2 options)

- Friday mornings 9:30-10:20am @ MGH 231
- Friday afternoons 12:30-1:20pm @ CSE2 G01

This week: We will go over Python & Numpy basics

Ranjay Krishna, Jieyu Zhang

So far: 2D discrete system (filters)

S is the **system operator**, defined as a **mapping or assignment** of possible inputs f[n,m] to some possible outputs g[n,m].

$$f[n,m] \to \operatorname{System} \mathcal{S} \to g[n,m]$$

Ranjay Krishna, Jieyu Zhang

So far: Moving Average

$$g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$$

Original image

Smoothed image

Ranjay Krishna, Jieyu Zhang

Lecture 3 - 5

So far: Image Segmentation

• Use a simple pixel threshold: $g[n,m] = \begin{cases} 255, f[n,m] > 100\\ 0, & \text{otherwise.} \end{cases}$

Ranjay Krishna, Jieyu Zhang

Lecture 3 - 6

So far: Properties of systems

Amplitude properties:

• Additivity

 $\mathcal{S}[f_i[n,m] + f_j[n,m]] = \mathcal{S}[f_i[n,m]] + \mathcal{S}[f_j[n,m]]$

○ Homogeneity

$$\mathcal{S}[\alpha f[n,m]] = \alpha \mathcal{S}[f[n,m]]$$

Ranjay Krishna, Jieyu Zhang

What we will learn today?

- Properties of filters (continued)
- Linear shift invariant systems
- Impulse functions
- LSI + impulse response

Ranjay Krishna, Jieyu Zhang

Lecture 3 - 8

What we will learn today?

- Properties of filters (continued)
- Linear shift invariant systems
- Impulse functions
- LSI + impulse response

Ranjay Krishna, Jieyu Zhang

Lecture 3 - 9

• Amplitude properties:

• Additivity

$$\mathcal{S}[f_i[n,m] + f_j[n,m]] = \mathcal{S}[f_i[n,m]] + \mathcal{S}[f_j[n,m]]$$

○ Homogeneity

$$\mathcal{S}[\alpha f[n,m]] = \alpha \mathcal{S}[f[n,m]]$$

• Superposition

 $\mathcal{S}[\alpha f_i[n,m] + \beta f_j[n,m]] = \alpha \mathcal{S}[f_i[n,m]] + \beta \mathcal{S}[f_j[n,m]]$

This is an important property. Make sure you know how to prove if any system has this property

Ranjay Krishna, Jieyu Zhang

Lecture 3 - 10

- Amplitude properties:
 - Stability

If $\forall n, m, |f[n, m]| \leq k \implies |\mathcal{S}[f[n, m]]| \leq ck$ for some constant c and k

Ranjay Krishna, Jieyu Zhang

- Amplitude properties:
 - Stability

If $\forall n, m, |f[n, m]| \leq k \implies |\mathcal{S}[f[n, m]]| \leq ck$ for some constant c and k

Q. Is the moving average filter stable?

Ranjay Krishna, Jieyu Zhang

Lecture 3 - 12

Proof of stability

Let $\forall n, m, |f[n, m]| \leq k$

Ranjay Krishna, Jieyu Zhang

Let $\forall n, m, |f[n, m]| \leq k$

$$|\mathcal{S}f[n,m]| = |\frac{1}{9}\sum_{k=-1}^{1}\sum_{l=-1}^{1}f[n-k,m-l]|$$

Ranjay Krishna, Jieyu Zhang

Let $\forall n, m, |f[n, m]| \leq k$

$$\begin{aligned} |\mathcal{S}f[n,m]| &= \left|\frac{1}{9}\sum_{k=-1}^{1}\sum_{l=-1}^{1}f[n-k,m-l]\right| \\ &\leq \frac{1}{9}\sum_{k=-1}^{1}\sum_{l=-1}^{1}|f[n-k,m-l]| \end{aligned}$$

Ranjay Krishna, Jieyu Zhang

Let $\forall n, m, |f[n, m]| \leq k$

$$\begin{aligned} |\mathcal{S}f[n,m]| &= \left|\frac{1}{9}\sum_{k=-1}^{1}\sum_{l=-1}^{1}f[n-k,m-l]\right| \\ &\leq \frac{1}{9}\sum_{k=-1}^{1}\sum_{l=-1}^{1}|f[n-k,m-l]| \\ &\leq \frac{1}{9}\sum_{k=-1}^{1}\sum_{l=-1}^{1}k \end{aligned}$$

Ranjay Krishna, Jieyu Zhang

Lecture 3 - 16

Let $\forall n, m, |f[n, m]| \leq k$

$$\begin{aligned} |\mathcal{S}f[n,m]| &= |\frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]| \\ &\leq \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} |f[n-k,m-l]| \\ &\leq \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} k \\ &\leq \frac{1}{9} (3)(3)k \end{aligned}$$

Ranjay Krishna, Jieyu Zhang

Lecture 3 - 17

Let $\forall n, m, |f[n, m]| \leq k$

$$\begin{split} |\mathcal{S}f[n,m]| &= |\frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]| \\ &\leq \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} |f[n-k,m-l]| \\ &\leq \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} k \\ &\leq \frac{1}{9} (3)(3)k \\ &< k \end{split}$$

Ranjay Krishna, Jieyu Zhang

Lecture 3 - 18

Let $\forall n, m, |f[n, m]| \leq k$

$$\begin{split} |\mathcal{S}f[n,m]| &= |\frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]| \\ &\leq \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} |f[n-k,m-l]| \\ &\leq \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} k \\ &\leq \frac{1}{9} (3)(3)k \\ &\leq k \\ &\leq ck, \text{ where } c = 1 \end{split}$$

Ranjay Krishna, Jieyu Zhang

Lecture 3 - 19

- Amplitude properties:
 - Stability

If $\forall n, m, |f[n, m]| \leq k \implies |\mathcal{S}[f[n, m]]| \leq ck$ for some constant c and k

• Invertibility

$$\mathcal{S}^{-1}\mathcal{S}[f[n,m]] = f[n,m]$$

Ranjay Krishna, Jieyu Zhang

• Amplitude properties:

• Stability

If $\forall n, m, |f[n, m]| \leq k \implies |\mathcal{S}[f[n, m]]| \leq ck$ for some constant c and k

Lecture 3 - 21

January 14, 2025

• Invertibility

$$\mathcal{S}^{-1}\mathcal{S}[f[n,m]] = f[n,m]$$

Q. Is the 3x3 moving average filter invertible?

Ranjay Krishna, Jieyu Zhang

- Spatial properties
 - \circ Causality

for $n < n_0, m < m_0$, if $f[n, m] = 0 \implies g[n, m] = 0$

Ranjay Krishna, Jieyu Zhang

Lecture 3 - 22

Is the moving average filter causal?

January 14, 2025

f[n,m]

8[11,111]										
	0	10	20	30	30	30	20	10		
	0	20	40	60	60	60	40	20		
	0	30	60	90	90	90	60	30		
	0	30	50	80	80	90	60	30		
	0	30	50	80	80	90	60	30		
	0	20	30	50	50	60	40	20		
	10	20	30	30	30	30	20	10		
	10	10	10	0	0	0	0	0		

Lecture 3 - 23

 $\sigma[n m]$

- Spatial properties
 - Causality

for
$$n < n_0, m < m_0$$
, if $f[n, m] = 0 \implies g[n, m] = 0$

• Shift invariance:

$$f[n-n_0, m-m_0] \xrightarrow{\mathcal{S}} g[n-n_0, m-m_0]$$

Ranjay Krishna, Jieyu Zhang

What does shifting an image look like?

 $f[n-n_0, m-m_0] \xrightarrow{\mathcal{S}} g[n-n_0, m-m_0]$

$$f[n,m] = \begin{bmatrix} \ddots & \vdots & & \\ f[-1,-1] & f[-1,0] & f[-1,1] \\ \dots & f[0,-1] & & \\ f[1,-1] & & f[1,0] & f[1,1] \\ \vdots & & \ddots \end{bmatrix}$$
Original image

Ranjay Krishna, Jieyu Zhang

Lecture 3 - 25

What does shifting an image look like?

 $f[n-n_0, m-m_0] \xrightarrow{\mathcal{S}} g[n-n_0, m-m_0]$

$$f[n,m] = \begin{bmatrix} \ddots & \vdots \\ f[-1,-1] & f[-1,0] & f[-1,1] \\ \dots & f[0,-1] & \underline{f[0,0]} & f[0,1] \\ f[1,-1] & f[1,0] & f[1,1] \\ \vdots & \ddots \end{bmatrix}$$

Ranjay Krishna, Jieyu Zhang

Lecture 3 - 26

Is the moving average system is shift invariant?

$$g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$$

f[<i>n</i> ,	m]
---------------	----

g[<i>n</i> , <i>m</i>]	g	[<i>n</i> ,	m]
--------------------------	---	--------------	----

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

Ranjay Krishna, Jieyu Zhang

Lecture 3 - 27

$$f[n-n_0, m-m_0] \xrightarrow{\mathcal{S}} g[n-n_0, m-m_0]$$

Is the moving average system is shift invariant?

$$g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$$

Ranjay Krishna, Jieyu Zhang

$$f[n-n_0, m-m_0] \xrightarrow{\mathcal{S}} g[n-n_0, m-m_0]$$

Is the moving average system is shift invariant?

$$g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$$
Let $n' = n - n_0$ and $m' = m - m_0$

Ranjay Krishna, Jieyu Zhang

$$f[n-n_0, m-m_0] \xrightarrow{\mathcal{S}} g[n-n_0, m-m_0]$$

Is the moving average system is shift invariant?

$$g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$$
Let $n' = n - n_0$ and $m' = m - m_0$

$$g[n - n_0, m - m_0] = g[n',m']$$

Ranjay Krishna, Jieyu Zhang

Lecture 3 - 30

$$f[n-n_0, m-m_0] \xrightarrow{\mathcal{S}} g[n-n_0, m-m_0]$$

January 14, 2025

Is the moving average system is shift invariant?

$$g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$$
Let $n' = n - n_0$ and $m' = m - m_0$

$$g[n - n_0, m - m_0] = g[n',m']$$

$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n'-k,m'-l]$$

Ranjay Krishna, Jieyu Zhang

$$f[n-n_0, m-m_0] \xrightarrow{\mathcal{S}} g[n-n_0, m-m_0]$$

January 14, 2025

Is the moving average system is shift invariant?

$$g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$$
Let $n' = n - n_0$ and $m' = m - m_0$

$$g[n - n_0, m - m_0] = g[n',m']$$

$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n'-k,m'-l]$$

$$= S[f[n',m']]$$

Ranjay Krishna, Jieyu Zhang

$$f[n-n_0, m-m_0] \xrightarrow{\mathcal{S}} g[n-n_0, m-m_0]$$

Is the moving average system is shift invariant?

$$g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$$
Let $n' = n - n_0$ and $m' = m - m_0$

$$g[n - n_0, m - m_0] = g[n',m']$$

$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n'-k,m'-l]$$

$$= S[f[n',m']]$$

$$= S[f[n-n_0,m-m_0]]$$

Ranjay Krishna, Jieyu Zhang

Lecture 3 - 33

What we will learn today?

- Properties of filters (continued)
- Linear shift invariant systems
- Impulse functions
- LSI + impulse response
- Convolutions and Cross-Correlation

Ranjay Krishna, Jieyu Zhang

Lecture 3 - 34

Linear Systems (filters)

$$f[n,m] \to \operatorname{System} \mathcal{S} \to g[n,m]$$

- Linear filtering:
 - Form a new image whose pixels are a weighted sum of original pixel values
 - Use the same set of weights at each point
- **S** is a linear system (function) iff it *S* satisfies

 $S[\alpha f_i[n,m] + \beta f_j[k,l]] = \alpha S[f_i[n,m]] + \beta S[f_j[k,l]]$

superposition property

Ranjay Krishna, Jieyu Zhang

Lecture 3 - 35

Linear Systems (filters)

$$f[n,m] \to \operatorname{System} \mathcal{S} \to g[n,m]$$

• Q. Is the moving average a linear system?

$$g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$$

Ranjay Krishna, Jieyu Zhang

Lecture 3 - 36
Linear Systems (filters)

$$f[n,m] \to \operatorname{System} \mathcal{S} \to g[n,m]$$

• Q. Is the moving average a linear system?

$$g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$$

• Q. Is thresholding a linear system?

$$g[n,m] = \begin{cases} 1, & f[n,m] > 100\\ 0, & \text{otherwise.} \end{cases}$$

Ranjay Krishna, Jieyu Zhang

Lecture 3 - 37

Linear Systems (filters)

$$f[n,m] \to \mathbb{S}$$
ystem $\mathcal{S} \to g[n,m]$

• Q. Is the moving average a linear system?

$$g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$$

- Q. Is thresholding a linear system?
 - Let f1[0,0] = f2[n,m] = 0.4
 - Let T = 0.5

$$g[n,m] = \begin{cases} 1, & f[n,m] > 100\\ 0, & \text{otherwise.} \end{cases}$$

January 14, 2025

- So, S[f1[0,0]] = S[f2[0,0]] = 0
- But S[f1[0,0] + f2[0,0]] = 1

Ranjay Krishna, Jieyu Zhang

Linear shift invariant (LSI) systems

- Satisfies two properties:
- Superposition property

 $S[\alpha f_i[n,m] + \beta f_j[k,l]] = \alpha S[f_i[n,m]] + \beta S[f_j[k,l]]$

Lecture 3 - 39

January 14, 2025

• Shift invariance:

$$f[n - n_0, m - m_0] \xrightarrow{\mathcal{S}} g[n - n_0, m - m_0]$$

Ranjay Krishna, Jieyu Zhang

Moving average system is linear shift invariant (LSI)

- We are going to use this as an example to dive into interesting properties about linear shift-invariant systems.
- Why are linear shift invariant systems important?

Our visual system is a linear shift invariant system

Ranjay Krishna, Jieyu Zhang

Lecture 3 - 40

Human vision are scale and translation invariant

 Target
 아 드 피 뤄 춘 선 머 르 타 예 간 방 우 시 켜

 Distractor
 마 므 티 뢔 훈 건 다 브 뎌 메 산 랑 은 지 려

(A)

Participants were shown some target Korean character once and were tested on whether they can identify the targets from other distractors

January 14, 2025

Han et al. Scale and translation-invariance for novel objects in human vision. Nature 2020 [link]

Ranjay Krishna, Jieyu Zhang

Human vision are scale and translation invariant

Very high recognition accuracies

Han et al. Scale and translation-invariance for novel objects in human vision. Nature 2020 [link]

Ranjay Krishna, Jieyu Zhang

Lecture 3 - 42

What we will learn today?

Lecture 3 - 43

January 14, 2025

- Properties of filters (continued)
- Linear shift invariant systems
- Impulse functions
- LSI + impulse response

Ranjay Krishna, Jieyu Zhang

2D impulse function

- Let's look at a special function
- 1 at the origin [0,0].
- 0 everywhere else

Ranjay Krishna, Jieyu Zhang

Lecture 3 - 44

2D impulse function as an image

- Let's look at a special function
- 1 at the origin [0,0].
- 0 everywhere else

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	1	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	

January 14, 2025

Ranjay Krishna, Jieyu Zhang

What happens when we pass an impulse function through a LSI systems

• The moving average filter equation again: g[n,m] =

$$h] = \frac{1}{9} \sum_{k=-1}^{n} \sum_{l=-1}^{n} f[n-k, m-l]$$

January 14, 2025

• By passing an impulse function into an LSI system, we get it's impulse response.

Lecture 3 - 46

• We will use h[n, m] to refer to the impulse response

Ranjay Krishna, Jieyu Zhang

What happens when we pass an impulse function through a LSI systems

Before we do this, let's remember how we used the moving average filter last lecture

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	1	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	

January 14, 2025

Ranjay Krishna, Jieyu Zhang

	'['', ''']													
0	0	0	0	0	0	0	0	0	0					
0	0	0	0	0	0	0	0	0	0					
0	0	0	90	90	90	90	90	0	0					
0	0	0	90	90	90	90	90	0	0					
0	0	0	90	90	90	90	90	0	0					
0	0	0	90	0	90	90	90	0	0					
0	0	0	90	90	90	90	90	0	0					
0	0	0	0	0	0	0	0	0	0					
0	0	90	0	0	0	0	0	0	0					
0	0	0	0	0	0	0	0	0	0					

Courtesy of S. Seitz

Ranjay Krishna, Jieyu Zhang

Lecture 3 - 48

			L	•	-			_	
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Ranjay Krishna, Jieyu Zhang

Lecture 3 - 49

			L		-				
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

f[n,m]

January 14, 2025

Ranjay Krishna, Jieyu Zhang

		_	L		-	3			
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

f[n,m]

Ranjay Krishna, Jieyu Zhang

Lecture 3 - 51

			L		-		_		
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

f[n,m]

January 14, 2025

Ranjay Krishna, Jieyu Zhang

					-				
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

f[*n*, *m*]

g[n,m]

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

Ranjay Krishna, Jieyu Zhang

Lecture 3 - 53

		_		_			
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	1	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	

f[n,m]

Ranjay Krishna, Jieyu Zhang

 		_		_			
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	1	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	

f[n,m]

Ranjay Krishna, Jieyu Zhang

Lecture 3 - 55

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	1	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	

f[n,m]

Ranjay Krishna, Jieyu Zhang

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	1	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	

f[n,m]

Ranjay Krishna, Jieyu Zhang

		_		_			
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	1	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	

f[n,m]

h[n,m]

Ranjay Krishna, Jieyu Zhang

		_					
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	1	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	

f[*n*, *m*]

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	?.						

Ranjay Krishna, Jieyu Zhang

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	1	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	

f[*n*, *m*]

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0						

January 14, 2025

Ranjay Krishna, Jieyu Zhang

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	1	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	

f[*n*, *m*]

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	?					

Ranjay Krishna, Jieyu Zhang

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	1	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	

f[*n*, *m*]

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	1/9					

Ranjay Krishna, Jieyu Zhang

_								
	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	
	0	0	0	1	0	0	0	
	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	

f[n,m]

						_	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	1/9	?				

Ranjay Krishna, Jieyu Zhang

Lecture 3 - 63

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	1	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	

f[*n*, *m*]

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	1/9	1/9				

Ranjay Krishna, Jieyu Zhang

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	1	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	

f[*n*, *m*]

h[n,m]

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	1/9	1/9	1/9	0	0	
0	0	?					

Ranjay Krishna, Jieyu Zhang

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	1	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	

f[*n*, *m*]

h[n,m]

 	-						
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	1/9	1/9	1/9	0	0	
0	0	1/9					

Ranjay Krishna, Jieyu Zhang

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	1	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	

f[*n*, *m*]

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	1/9	1/9	1/9	0	0	
0	0	1/9	?				

Ranjay Krishna, Jieyu Zhang

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	1	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	

f[*n*, *m*]

 	_						
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	1/9	1/9	1/9	0	0	
0	0	1/9	1/9				

Ranjay Krishna, Jieyu Zhang

Lecture 3 - 68

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	1	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	

f[*n*, *m*]

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	1/9	1/9	1/9	0	0	
0	0	1/9	1/9	1/9	0	0	
0	0	1/9	1/9	1/9	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	

January 14, 2025

Ranjay Krishna, Jieyu Zhang

Impulse response of the 3 by 3 moving average filter

$$h[n,m] = \begin{bmatrix} 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \end{bmatrix}$$

Ranjay Krishna, Jieyu Zhang

Lecture 3 - 70

Notice that any filter can be written as a summation of shifted delta functions

$$h[n,m] = \begin{bmatrix} 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \end{bmatrix}$$

$$h[0,0] = \frac{1}{9}\delta_2[0,0]$$

January 14, 2025

Ranjay Krishna, Jieyu Zhang

Notice that any filter can be written as a summation of shifted delta functions

$$h[n,m] = \begin{bmatrix} 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \end{bmatrix}$$

$$h[0,0] = \frac{1}{9}\delta_2[0,0]$$
$$h[0,1] = \frac{1}{9}\delta_2[0,0]$$

Ranjay Krishna, Jieyu Zhang

$$h[n,m] = \begin{bmatrix} 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \end{bmatrix}$$

$$h[0,0] = \frac{1}{9}\delta_2[0,0]$$
$$h[0,1] = \frac{1}{9}\delta_2[0,0]$$

Ranjay Krishna, Jieyu Zhang

Q. For what values of **n** and **m** is h[,] **not** zero?

$$h[n,m] = \begin{bmatrix} 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \end{bmatrix}$$

$$=\frac{1}{9}\sum_{k=-1}^{1}\sum_{l=-1}^{1}\delta_{2}[n-k,m-l]$$

January 14, 2025

The general form for a moving average h[n,m]

Ranjay Krishna, Jieyu Zhang

$$h[n,m] = \begin{bmatrix} 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \end{bmatrix}$$

$$=\frac{1}{9}\sum_{k=-1}^{1}\sum_{l=-1}^{1}\delta_{2}[n-k,m-l]$$

Q. Why is this the general form?

Ranjay Krishna, Jieyu Zhang

Lecture 3 - 75

$$h[n,m] = \begin{bmatrix} 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \end{bmatrix}$$

$$=\frac{1}{9}\sum_{k=-1}^{1}\sum_{l=-1}^{1}\delta_{2}[n-k,m-l]$$

January 14, 2025

Q. Why is this the general form? As long as n-1, n, or n+1 is 0, the value is 1/9 Same for m

Ranjay Krishna, Jieyu Zhang

$$h[n,m] = \begin{bmatrix} 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \end{bmatrix}$$

1

$$=\frac{1}{9}\sum_{k=-1}^{1}\sum_{l=-1}^{1}\delta_{2}[n-k,m-l]$$

Q. What if we swap n-k for k-n. Does that also work?

$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} \delta_2[k-n, l-m]$$

Ranjay Krishna, Jieyu Zhang

Lecture 3 - 77

$$h[n,m] = \begin{bmatrix} 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \\ 1/9 & 1/9 & 1/9 \end{bmatrix}$$

$$=\frac{1}{9}\sum_{k=-1}^{1}\sum_{l=-1}^{1}\delta_{2}[n-k,m-l]$$

January 14, 2025

Q. What if we swap n-k for k-n. Does that also work?

 $= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} \delta_2[k-n, l-m]$ Yes because h is symmetric across the origin

Ranjay Krishna, Jieyu Zhang

Q. What if h was the filter on the right:

h[:, -1] = 0

h[n,m]

(A)
$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} \delta_2[n-k,m-l]$$

(B) =
$$\frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} \delta_2[k-n, l-m]$$

Is A correct? Is B correct? Are both correct? Are both wrong?

Ranjay Krishna, Jieyu Zhang

Lecture 3 - 79

Q. What if h was the filter on the right:

h[:, -1] = 0

$$h[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=0}^{1} \delta_2[n-k,m-l]$$

Ranjay Krishna, Jieyu Zhang

Lecture 3 - 80

Q. What if h was the filter on the right:

January 14, 2025

Because h is not symmetric, we need to invert the range if we invert m-l to l-m

Ranjay Krishna, Jieyu Zhang

What we will learn today?

- Properties of filters (continued)
- Linear shift invariant systems
- Impulse functions
- LSI + impulse response

Ranjay Krishna, Jieyu Zhang

Lecture 3 - 82

Property of (LSI) systems

- An LSI system is completely specified by its impulse response.
 - \circ For any input f, we can compute g using only the impulse response h. $f[n,m] \xrightarrow{S} g[n,m]$

Property of (LSI) systems

- An LSI system is completely specified by its impulse response.
 - \circ For any input f, we can compute g using only the impulse response h. $f[n,m] \xrightarrow{S} g[n,m]$

Lecture 3 - 84

January 14, 2025

 \circ Let's derive an expression for g in terms of h.

Recall the 3 properties about LSI systems:

1. We know what happens when we send a delta function through an LSI system: δ [m m] \rightarrow [System S] \rightarrow h[m m]

$$S_2[n,m] \rightarrow | \text{System } \mathcal{S} | \rightarrow h[n,m]$$

Ranjay Krishna, Jieyu Zhang

Recall the 3 properties about LSI systems:

1. We know what happens when we send a delta function through an LSI system: $\delta_2[n,m] \rightarrow [\text{System } S] \rightarrow h[n,m]$

2. We also know that LSI systems shift the output if the input is shifted:

$$\delta_2[n-k,m-l] \rightarrow \text{System } \mathcal{S} \rightarrow h[n-k,m-l]$$

Lecture 3 - 86

January 14, 2025

Ranjay Krishna, Jieyu Zhang

Recall the 3 properties about LSI systems:

1. We know what happens when we send a delta function through an LSI system: $\delta_2[n,m] \rightarrow [\text{System } S] \rightarrow h[n,m]$

2. We also know that LSI systems shift the output if the input is shifted:

$$\delta_2[n-k,m-l] \rightarrow \text{System } \mathcal{S} \rightarrow h[n-k,m-l]$$

3. Finally, the superposition principle:

$$S\{lpha f_1[n,m]+eta f_2[n,m]\}=lpha S\{f_1[n,m]\}+eta S\{f_2[n,m]\}$$

Ranjay Krishna, Jieyu Zhang

Lecture 3 - 87

Let's say our input *f* is a 3x3 image:

f[0,0]	f[0,1]	f[1,1]		f[0,0]	0	0		0	f[0,1]	0	_	0	0	0
f[1,0]	f[1,1]	f[1,2]	=	0	0	0	+	0	0	0	++	0	0	0
	([2,4]	([2, 2]	_	0	0	0		0	0	0	_	0	0	f[2,2]
f[2,0]	f[2,1]	f[2,2]	_				F		1		F			1

Ranjay Krishna, Jieyu Zhang

Let's say our input *f* is a 3x3 image:

Ranjay Krishna, Jieyu Zhang

Lecture 3 - 89

Let's say our input *f* is a 3x3 image:

 $= f[0,0] \cdot \delta_2[n,m] + f[0,1] \cdot \delta_2[n,m-1] + \ldots + f[2,2] \cdot \delta_2[n-2,m-2]$

January 14, 2025

Ranjay Krishna, Jieyu Zhang

• More generally:

$$f[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot \delta_2[n-k,m-l]$$

Ranjay Krishna, Jieyu Zhang

• More generally:

$$f[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot \delta_2[n-k,m-l]$$

• We can now use superposition to see what the output g is:

$$f[n,m] \xrightarrow{S} g[n,m]$$

$$f[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot \delta_2[n-k,m-l]$$

Ranjay Krishna, Jieyu Zhang

• More generally:

$$f[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot \delta_2[n-k,m-l]$$

• We can now use superposition to see what the output g is:

$$f[n,m] \xrightarrow{S} g[n,m]$$

$$f[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \frac{f[k,l]}{\delta_2[n-k,m-l]}$$

For given k, l, this is a constant

Ranjay Krishna, Jieyu Zhang

Lecture 3 - 93

• More generally:

$$f[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot \delta_2[n-k,m-l]$$

• We can now use superposition to see what the output g is:

$$f[n,m] \xrightarrow{S} g[n,m]$$

$$f[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \frac{f[k,l]}{\delta_2[n-k,m-l]}$$

For given k, I,This is a functionthis is a constantof n, m

Ranjay Krishna, Jieyu Zhang

Lecture 3 - 94

• Superposition

$$S\{lpha f_1[n,m]+eta f_2[n,m]\}=lpha S\{f_1[n,m]\}+eta S\{f_2[n,m]\}$$

• We can now use superposition to see what the output g is:

$$f[n,m] \xrightarrow{S} g[n,m]$$

$$f[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \frac{f[k,l]}{\delta_2[n-k,m-l]}$$

For given k, I,This is a functionthis is a constantof n, m

Ranjay Krishna, Jieyu Zhang

Lecture 3 - 95

• Superposition

$$S\{lpha f_1[n,m]+eta f_2[n,m]\}=lpha S\{f_1[n,m]\}+eta S\{f_2[n,m]\}$$

$$\mathcal{S}[\sum_{i} \alpha_{i} f_{i}[n, m]] = \sum_{i} \alpha_{i} \mathcal{S}[f_{i}[n, m]]$$

• We can now use superposition to see what the output g is:

$$f[n,m] \xrightarrow{S} g[n,m]$$

$$f[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \frac{f[k,l]}{\delta_2[n-k,m-l]}$$

For given k, I,This is a functionthis is a constantof n, m

Ranjay Krishna, Jieyu Zhang

Lecture 3 - 96

• Superposition:

$$S\{lpha f_1[n,m]+eta f_2[n,m]\}=lpha S\{f_1[n,m]\}+eta S\{f_2[n,m]\}$$

$$\mathcal{S}[\sum_{i} \alpha_{i} f_{i}[n, m]] = \sum_{i} \alpha_{i} \mathcal{S}[f_{i}[n, m]]$$

• We can now use superposition to see what the output g is:

$$\begin{split} f[n,m] &\xrightarrow{S} g[n,m] \\ f[n,m] &= \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot \delta_2[n-k,m-l] \\ & \overbrace{S}{\longrightarrow} \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot S\{\delta_2[n-k,m-l]\} \end{split}$$

Ranjay Krishna, Jieyu Zhang

Lecture 3 - 97

l]}

• Superposition:

 $S\{lpha f_1[n,m]+eta f_2[n,m]\}=lpha S\{f_1[n,m]\}+eta S\{f_2[n,m]\}$

$$\mathcal{S}[\sum_{i} \alpha_{i} f_{i}[n, m]] = \sum_{i} \alpha_{i} \mathcal{S}[f_{i}[n, m]]$$

• We can now use superposition to see what the output g is:

$$\begin{split} f[n,m] &\xrightarrow{S} g[n,m] \\ f[n,m] &= \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot \delta_2[n-k,m-l] \\ &\xrightarrow{S} \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot S\{\delta_2[n-k,m-l]\} \end{split}$$

Ranjay Krishna, Jieyu Zhang

Lecture 3 - 98

• From previous slide:

$$f[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot \delta_2[n-k,m-l]$$
$$\xrightarrow{S} \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot S\{\delta_2[n-k,m-l]$$

• Using shift invariance, we get a shifted impulse response:

$$S\{\delta_2[n-k, m-l]\} = h[n-k, m-l]$$

Ranjay Krishna, Jieyu Zhang

Lecture 3 - 99

We can write g as a function of h

• We have:

$$f[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot \delta_2[n-k,m-l]$$
$$\xrightarrow{S}{\rightarrow} \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot S\{\delta_2[n-k,m-l]$$

• Which means:

$$f[n,m] \xrightarrow{S} \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot h[n-k,m-l]$$

Ranjay Krishna, Jieyu Zhang

Lecture 3 - 100

Linear Shift Invariant (LSI) systems

- An LSI system is completely specified by its impulse response.
 - \circ For any input f, we can compute the output g in terms of the impulse response h. $f[n,m] \xrightarrow{S} q[n,m]$ $f[n,m] \xrightarrow{S} \sum f[k,l] \cdot h[n-k,m-l]$ $k = -\infty l = -\infty$ **Discrete Convolution** ∞ ∞ $f[n,m] * h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot h[n-k,m-l]$

Lecture 3 - 101

January 14, 2025

Ranjay Krishna, Jieyu Zhang

Linear Shift Invariant (LSI) systems

• An LSI system is completely specified by its impulse response.

$$\begin{split} f[n,m] &\stackrel{S}{\to} g[n,m] \\ g[n,m] &= f[n,m] * h[n,m] \\ f[n,m] & * h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot h[n-k,m-l] \end{split}$$

Ranjay Krishna, Jieyu Zhang

Lecture 3 - 102

What we will learn today?

Lecture 3 - 103

January 14, 2025

- Linear shift invariant systems
- Impulse functions
- LSI + impulse response

Ranjay Krishna, Jieyu Zhang

Next time:

Edges and lines

Ranjay Krishna, Jieyu Zhang

