Lecture 2
Pixels and Filters
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Administrative

AO is out.

- It is ungraded

- Meant to help you with python and numpy basics

- Learn how to do homeworks and submit them on gradescope.
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Grading policy - Assignments

Ranjay Krishna Lecture 2 - 3

Assignment 0 (Using Colabs, Python basics)

o Recommended Due by Jan 14 (Ungraded)
Assignment 1 (Filters, Convolutions, Edges)

o Due Jan 24, 11:59 PST

Assignment 2 (Keypoints, Panaromas, Seam Carving)
o Due Feb 7, 11:59 PST

Assignment 3 (Cameras, Clustering, Segmentation)

o Due Feb 21, 11:59 PST

Assignment 4 (kNN, PCA, LDA, Detection)

o Due Mar 7, 11:59 PST

Assignment 5 (Optical Flow, Tracking, Machine Learning)
o Due Mar 15, 11:59 PST
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Grading policy - assignments

e Most assignments will have an extra credit worth 1% of your
total grade.

e Late policy
m 5 free late days — use them in your ways
m Maximum of 2 late days per assignment
m Afterwards, 25% off per day late

e Collaboration policy

m Read the student code book, understand what is ‘collaboration’ and what is
‘academic infraction’

m We have links to this on the course webpage
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Administrative

Recitations (2 options)
® Friday mornings 9:30-10:20am @ MGH 231

® Friday afternoons 12:30-1:20pm @ CSE2 GO1

This week:
We will go over Linear algebra basics
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So far: Computer vision extracts geometric 3D information
from 2D images

Input RGB-D 6D pose and size Per-frame 3D Prediction

TRI & GATech’s ShaPO (ECCV’22): https://zubair-irshad.github.io/projects/ShAPO.html
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So far: why is computer vision hard?

2D Image 3D Scene

Graphics
P

— It is an ill posed

Pixel Matrix Objects Material prObIem
13 54 ;1 121 139 Shape/Geometry ~ Motion

Semantics 3D Pose
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Today’s agenda

Color spaces

Image sampling and quantization
Image histograms

Images as functions

Filters

Properties of systems

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 7
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Today’s agenda

e Color spaces

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 7
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Linear color spaces

 Defined by a choice of three primaries

» The coordinates of a color are given by the weights of the primaries
used to match it

mixing two lights mixing three lights produces
produces colors that lie colors that lie within the
along a straight line in triangle they define in color

color space space
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How to compute the weights of the primaries to match any

Color signal
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spectral signal

Matching functions: the amount of each primary needed to match
a monochromatic light source at each wavelength
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Explaining Color - Simplified

INlumination Reflectance
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Foundations of Vision, by Brian Wandell, Sinauer Assoc.,
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The Physics of Light Sources _
Some examples of the spectra of light sources

A. Ruby Laser B. Gallium Phosphide Crystal

# Photons
# Photons
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Wavelength (nm.) Wavelength (nm.)

C. Tungsten Lightbulb D. Normal Daylight
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The Physics of Reflectance

Some examples of the reflectance spectra of surfaces
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Physiology of Human Vision

Three kinds of cones:

Cone mosaic
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Color is a psychological phenomenon

* The result of interaction between

physical light in the environment and our
visual system.

A psychological property of our visual
experiences when we look at objects and
lights, not a physical property of those
objects or lights.

VISION SCIENCE

Photons to Phenomenology

Stephen E. Palmer
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RGB space

Primaries are monochromatic lights (for monitors, they
correspond to the three types of phosphors)

RGB primaries

B =645.2nm
B P; = 525.3 nm
;= 444.4nm
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Linear color spaces: CIE XYZ

* Primaries (X, Y and Z) are imaginary
* X: Represents a mix of red and green.
* Y: Represents luminance (brightness).

e Z: Represents a mix of blue and green.

2D visualization: draw (x,y), where
X = X[(X+Y+2), y = Y/(X+Y+2)

http://en.wikipedia.org/wiki/CIE_1931 color_space
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http://en.wikipedia.org/wiki/CIE_1931_color_space

Nonlinear color spaces: HSV
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* Perceptually meaningful dimensions: Hue, Saturation, Value (Intensity)
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Nonlinear color spaces: HSV

40000
o0 « 0000

reeptealyme 00000000.0 e
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Today’s agenda

e Image sampling and quantization

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 7
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Image Formation

@ Light Source

Lens

Sensor
Plane

Physical
Object
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Camera sensors produce discrete outputs
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https://commons.wikimedia.org/wiki/File:Mirrorless_Camera_Sensor.jpg
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Types of Images

Grayscale
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Binary image representation

)

0: Black — [0]o]o ojo] |
1: White D
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Grayscale image representation
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10|5|9

100

Saturation

Q. If you used HSV to represent grayscale images, is
the slider representing hue? Or saturation? Or value™

SENEVANGE I E! Lecture 2 - 28 January 09, 2024




Color image representatlon

B channel ~ Gchannel R channel
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Color image - one channel

R channel
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Types of Images

Grayscale
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Digital Images
are sampled

What happens when we zoom
into the images we capture?
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Errors due to Sampling

N

- i
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Resolution

is a sampling parameter, defined in dots per inch (DPI) or
equivalent measures of spatial pixel density
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Images are Sampled and Quantized

* An image contains discrete number of pixels
—Pixel value:
*“grayscale”
(or “intensity”): [0,255]

148
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Images are Sampled and Quantized

* An image contains discrete number of pixels
—Pixel value: [90, 0, 53]
*“grayscale”
(or “intensity”): [0,255]
*“color”

—RGB: [R, G, B] [249, 215, 203]

[213, 60, 67]
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With this loss of information (from sampling and
guantization),

Can we still use images for useful tasks?
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Today’s agenda

e Image histograms

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 7
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Starting with grayscale images:

e Histogram captures the
distribution of gray levels in the
image.

e How frequently each gray level
occurs in the image 2000

2500

1500

1000

500

250
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Grayscale histograms in code

e Histogram of an image provides the frequency of the brightness
(intensity) value in the image.

Here is an efficient implementation of calculating histograms:

def histogram(im):
h = np.zeros(255)
for row in im.shape[O]:
for col in im.shape[1]:
val = im[row, col]
h[val] +=1
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Visualizing hl:]

2500

def histogram(im):
h = np.zeros(255)
for row in im.shape[O]:
for col in im.shape[1]:
val = im[row, col]
h[val] +=1

1500

500
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Visualizing Histograms for patches

Count: 10192 Min: 9
Mean: 133.711 Max: 255
StdDev: 55.391 Mode: 178 (180)

0 256
Count: 10192 Min: 11

Mean: 104.637 Max: 254
StdDev: 89.862 Mode: 23 (440)

Slide credit: Dr. Mubarak
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Histogram — use case

In emphysema, the inner walls of the lungs'
air sacs called alveoli are damaged, causing

them to eventually rupture.

You can take a picture of the lung with
special dye to mark the alveoli

0.10 4

0.05 4

n e— e althy Untreated
— =— =—Healthy Control
= = = EFmphysematous

Ranjay Krishna
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Histograms are a convenient representation to
extract information

Can we develop better transformations than histograms?
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Today’s agenda

e |mages as functions

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 7
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Images are a function!!!

This is a new formalism that will allow us to borrow ideas from signal
processing to extract meaningful information.

2D Image 3D Scene At every pixel
location, we get an
intensity value for that
pixel.

Graphics
/—-\

The world captured
by the image
continues beyond the

il confines of the image

Vision
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Images as discrete functions

* Digital images are usually discrete:
— Sample the 2D space on a regular grid

* Represented as a matrix of integer values o
pixel intensity

m
>
62 79 23 119 05 4 0
10 10 9 62 s 34 0
l 10 £8 197 46 46 0 0 48
N yi7e 135 5 188 191 68 0 49
2 i i 29 % 37 0 77
0 89 14d 147 187 102 62 208
255 | 252 0 166 123 62 0 31
166 |83 127 17 i 0 99 30
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Images as discrete function f

* The input to the image function is a pixel location, [n m]
e The output to the image function is the pixel intensity

/ pixel intensity
m

>
62 79 23 119 120 05 4 0
10 10 9 62 s 34 0
l 10 £8 197 46 46 0 0 48
N yi7e 135 5 188 191 68 0 49
2 i i 29 % 37 0 77
0 89 14d 147 187 102 62 208
255 | 252 0 166 123 62 0 31
166 |83 127 17 i 0 99 30
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Images as discrete function f

* The input to the image function is a pixel location, [n m]
e The output to the image function is the pixel intensity

Q1. What is f[0, 0]?

I pixel intensity

>
82 79 23 119 120 05 4 0
10 10 9 62 s 34 0
l 10 58 197 48 46 0 0 48
Ny 135 5 188 191 68 0 49
5 i i 29 2% 37 0 77
0 89 14d 147 187 102 82 208
265 262 0 166 123 62 0 31
168 63 197 17 i 0 99 30
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Images as discrete function f

* The input to the image function is a pixel location, [n m]
e The output to the image function is the pixel intensity

Q2. What is [0, 4]? / pixel intensity

>
62 79 23 119 120 05 4 0
10 10 9 62 s 34 0
l 10 £8 197 46 46 0 0 48
N yi7e 135 5 188 191 68 0 49
2 i i 29 % 37 0 77
0 89 14d 147 187 102 62 208
255 | 252 0 166 123 62 0 31
166 |83 127 17 i 0 99 30
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Images as discrete function f

* The input to the image function is a pixel location, [n m]
e The output to the image function is the pixel intensity

Q2. What is f[O, -8]? / pixel intensity

>
62 79 23 119 120 05 4 0
10 10 9 62 s 34 0
l 10 £8 197 46 46 0 0 48
N yi7e 135 5 188 191 68 0 49
2 i i 29 % 37 0 77
0 89 14d 147 187 102 62 208
255 | 252 0 166 123 62 0 31
166 |83 127 17 i 0 99 30
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Images as coordinates

We can represent this function as f.
f[n, m] represents the pixel intensity at that value.

fl=t 1 f[—i._ 0] fl=1.1] Znayniorlmtngc:rn e
flnom]= | .. flo,-1]  f[0o,0]  f[0,1] ... E |
ven negative!!
T flL,-1]  f[1,0] f[1,1]
Notation for .

discrete
functions
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We don’t have the intensity values for
negative indices

n and m can be

fl=1. =1 f[_l 0] fl-L1 any integer
flnom]=||.. flo,-1] Ffl6;0]  f[0,1]

WD Even negative!!
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Images as functions

* An Image as a function f from R? to R®:
« if grayscale then C=1,
« if color then C=3
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Images as functions

* An Image as a function f from R? to R®:
- if grayscale, C=1,
« if color, C=3
« f [n, m] gives the intensity at position [n, m]
» Has values over a rectangle, with a finite range:
f. [0,H] x [0,W]—[0,255]

Y R
Domain support range
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Images as functions

* An Image as a function f from R? to R®:
- if grayscale, C=1,
« if color, C=3
« f [n, m] gives the intensity at position [n, m]
» Has values over a rectangle, with a finite range:
f. [0,H] x [0,W]—[0,255]

R —— ——

Domain ;{upport range
e Doesn’t have values outside of the image rectangle

f. [-inf,inf] x [-inf,inf] —-[0,2595]
e we assume that f[n, m] = 0 outside of the image
rectangle

Lecture 2 - 56 January 09, 2024
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Images as functions

e An Image as a function f from R? to R®:

 f [n, m] gives the intensity at position [n, m]
* Defined over a rectangle, with a finite range:
fila,b] X [¢,d }+{0,255]

Y
Domain support range
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Histograms are also a type of function

2500

2000

1500

1000

500

250
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Today’s agenda

e Filters

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 7
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Applications of filters

De-noising Super-resolution
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Systems and Filters

Filtering:
— Forming a new image whose pixel values are
transformed from original pixel values

Goals of filters:
e Goal is to extract useful information from images,
or transform images into another domain where

we can modify/enhance image properties
* Features (edges, corners, blobs...)
e super-resolution; in-painting; de-noising

Ranjay Krishna Lecture 2 - 61 January 09, 2024



Intuition behind systems

e We will view systems as a sequence of filters applied to an image
e For example, multiplying by a constant leaves the semantic content intact
o but can reveal interesting patterns
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As an aside - we will go into detail later in the course:

e Neural networks and specifically convolutional neural networks are a
sequence of filters (except they are a non-linear system) that contains
multiple individual linear sub-systems.

Convolution Pooling Convolution Pooling Fully Fully
Connected Connected

Output

Input Image Feature maps Pooled Feature maps Pooled Dog (0.1)
Feature Maps Feature Maps ' Cat(0.4)
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Systems use Filters

e we define a system as a unit that converts an input function f[n,m]
into an output (or response) function g[n,m]
o where (n,m) index into the function
o In the case for images, (n,m) represents the spatial position in
the image.

n,m| — ystem — gmn,m
f S S
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Images produce a 2D matrix with pixel intensities at
every location

fl=L-1  flo,—1] f[L-1]
fln,m] =1 .. f[—1,0 0,01 f[1,0]
T fl=1,1] NG L]
Notation for .
discrete - -
functions
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2D discrete system
(system is a sequence of filters)

S is the system operator, defined as a mapping or assignment
of possible inputs f[n,m] to some possible outputs g[n,m].

fln,m| — | System S | — g[n, m|
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2D discrete system

S is the system operator, defined as a mapping or assignment
of possible inputs f[n,m] to some possible outputs g[n,m].

fln,m| — | System S | — g[n, m|

Other notations:

g=S|f], gn,m]=S8{f[n,m]}

fln, m] =, gln,m|
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Filter example #1: Moving Average

Original image

Q. What do you think will happen to the
photo if we use a moving average
filter?

Assume that the moving average
replaces each pixel with an average
value of itself and all its neighboring
pixels.

soertLl
Tsata
------
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Filter example #1: Moving Average

Original image Smoothed image
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Visualizing what happens with a moving average filter

f[?’l, m] g[n, m]

The red box is
the h matrix

Courtesy of S. Seitz
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Visualizing what happens with a moving average filter

f[?’l, m] g[n, m]
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Visualizing what happens with a moving average filter

g[n, m]
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Visualizing what happens with a moving average filter

f[?’l, m] g[n, m]

0 10 20 i
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Visualizing what happens with a moving average filter

f[?’l, m] g[n, m]

0 10 20 | 30 ||
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Visualizing what happens with a moving average filter

f[?’l, m] g[n) m]
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Visual interpretation of moving average

A moving average over a 3 x 3 neighborhood window

h is a 3x3 matrix with values 1/9 everywhere.

f[n, m] hl-,- ]

90 | 90§90 | 90 | 90

90190]90|90 |90

O+

90190]90|90 |90

90 90|90 | 90 1 1 1

90190]90|90 |90

90
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Visual interpretation of moving average

A moving average over a 3 x 3 neighborhood window

h is a 3x3 matrix with values 1/9 everywhere.

Q. Why are the values 1/9?

O+
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Filter example #1: Moving Average

In summary:

e This filter “Replaces” each hl-,- ]
pixel with an average of its 11| 1
neighborhood.

O+

e Achieve smoothing effect
(remove sharp features)
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Mathematical interpretation of moving average

How do we represent applying this filter mathematically?

fln,m] — | System S | — g[n, m| A, ]

O+
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Mathematical interpretation of moving average

How do we represent applying this filter mathematically?

fln,m] — | System S | — g[n, m| A, ]

O+
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Mathematical

fln,m| — | System S | — g[n, m] interpretation of
moving average

f[07 O] g[O, O]
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Mathematical
fln,m| — | System S | — g[n, m] interpretation of
moving average
9[07 0] — f[_17 _1] + f[—l,O] + f[_17 1]

+ ...

f[07 O] Q[O, O]

Ranjay Krishna _ Jarwary 09, 2024



Mathematical

fln,m| — | System S | — g[n, m] interpretation of
moving average

9[07 0] — f[_17 _1] + f[—l,O] + f[_17 1]
+H f[0, —1] + f[0,0] + f[0, 1]
+ ..

£10,0] 910, 0]
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Mathematical

fln,m| — | System S | — g[n, m] interpretation of
moving average

9[07 0] — f[_17 _1] + f[—l,O] T f[_17 1]
+ f[0, —1] + f[0,0] + f[0, 1]
+f[17_1]+f[170]+f[171]

£10,0] 910, 0]
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Lastly, divide by 1/9

610,00 = 5[f[=1, 1]+ f1=1,0] + f[-1,1]

+f[07_1] +f[070] +f[07 1]
+ f[17 _1] + f[170] + f[lv 1]]
710,0] g[0, 0]

Ranjay Krishna _ Jarwary 09, 2024



Now, instead of [0, 0], let's do [n, m]

fn, m] gln, m]
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Now, instead of [0, 0], let's do [n, m]

gln,m|] = ..

fn, m] gln, m]
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Now, instead of [0, 0], let's do [n, m]
gln,m] =|fln —1,m — 1]_|—|—

f[n> m] g[n’ m]
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Now, instead of [0, 0], let's do [n, m]
gln,m|=fln—1,m—1]+ ..

f[na m] g[n’ m]
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Now, instead of [0, 0], let's do [n, m]
gln,m| = fln—1,m — 1] +fln — 1,m]|+ ..

fn, m] gln, m|
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Now, instead of [0, 0], let's do [n, m]
gln,ml=fln—1,m—1]+ fln—1,m] + ..

fn, m] gln, m|
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Now, instead of [0, 0], let's do [n, m]
gln,m|=fln—1,m—1]+ fln—1,m] +|f[n — 1,m + 1]

fn, m] gln, m]
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Now, instead of [0, 0], let's do [n, m]

g[nam] :f[n_17m_1]+f[n_17m]+f[n_17m+1]
+ fln,m — 1] + fln,m] + f[n, m +1]]

fn, m] gln, m]
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Now, instead of [0, 0], let's do [n, m]
gln,m|=fln—1,m—1]+ fln—1,m|]+ fi[n — 1,m + 1]
+f[nam_1]+f[n7m]+f[n7m+1]

+ fln+1,m—1]+ f[n+1,m] + fln+1,m + 1]

fn, m] gln, m]
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Lastly, divide by 1/9

gln,m] = 5fln—Lm 1]+ fln — Lm] + ffn — 1L,m + 1]

+ fln+1,m -1+ fl[n+1,m|+ fln+1,m + 1]]

fn, m] gln, m|
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Mathematical interpretation of moving average

We can re-write the equation using summations

—
—
—

A
g[n7m] — § >4 >4f[k7l]

k=771=77 L L

Q. What values will k take?
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Mathematical interpretation of moving average

How do we represent applying this filter mathematically?

n—+1 ey

gln,m| = Y Y flk, 1

knll‘” 111 | 1

O+

k goes from n-1 to n+1
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Mathematical interpretation of moving average

How do we represent applying this filter mathematically?

n+1 ?7?

g[n,m] :% Sj ij[kvl]

k=n—11=77 1 1 1

O+

Q. What values will | take?
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Mathematical interpretation of moving average

How do we represent applying this filter mathematically?

h[a]
1 1 1
n—+1 m—+1 1
— | 1 1 1
gln,m| = Z Z flk,] 9
k n—1Il=m-—1 1 1 1

| goes from m-1 to m+1
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Math formula for the moving average filter

A moving average over a 3 x 3 neighborhood window

We can write this operation mathematically:

n—+1 m—+1

7[n, m] Z kal N

A n—1Il=m-—1

O+
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Rewriting this formula

We are almost done. Let’'s rewrite this formula a little bit
Let k,’l = N — k

n—+1 m—+1

7[n, m] Z kal RN

A n—1Il=m-—1

O+
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Rewriting this formula

We are almost done. Let’'s rewrite this formula a little bit
Let k/ — n — k
therefore, kb — n, — L’

n—+1 m—+1

gln,m| Z kal RN

A n—1Il=m-—1

O+

Now we can replace k in the equation above
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Rewriting this formula

We are almost done. Let’'s rewrite this formula a little bit
Let k,’l — n — k
therefore, kb — n, — L’

n—+1 m—+1

7[n, m] Z kal RN

A n—1Il=m-—1

O+

n—k'=n+1 m+1

dnml=5 S Y fln- K.l

n—k/'=n—11l=m-—1

Ranjay Krishna Lecture 2 - 103 January 09, 2024



Rewriting this formula

So now we have this;:
1 n—k'=n+1 m+1

gln,m] = 3 o Y fln-K,] -]

n—k/'=n—1[=m—1

O+
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Rewriting this formula

So now we have this;:
1 n—k'=n+1 m+1

gln,m] = 3 o Y fln-K,] -]

n—k/'=n—1[=m—1

We can simplify the equations in red: l 111 | 1
k =—1 m+1 9 1 1 1
gln,m| = Z Z fln—K,I]
k'=1 [l=m—1
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Rewriting this formula

So now we have this;:

=—1 m+1
Z Z f n-— k, h[ > ]
k'=1 [=m-—1

Remember that summations are just for-loops!!

O+
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Rewriting this formula

So now we have this;:

=—1 m+1
Z Z f n-— k, h[ > ]
k'=1 [=m-—1

Remember that summations are just for-loops!!

O+

1 m—+1

dnml =3 3 3 fln— K0

k'=—11=m—1
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Rewriting this formula

One last change: since there are no more k and only k’,
let’s just write k' as k

m—+1 h[ - ]

gln,m| = Z an—k'l] T,

k’——ll m—1 1
— 1 1 1 1
9
1 1 1 1
1
-1 5 kg
k=—1l=m—1
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Mathematical interpretation of moving average

Let’s repeat for |, just like we did for k

n—+1 m—+1

7[n, m] ;Z kal RN

k=n—1[l=m-—1

O+

1 1

:% S: S:f[n—k,m—l]

k=-—1[l=-1
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Filter example #1: Moving Average

Original image Smoothed image
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Filter example #2: Image Segmentation

Q. How would you use pixel values to design a filter to segment an image so that
you only keep around the edges?
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Filter example #2: Image Segmentation

255, fln,m] > 100

e Use a simple pixel threshold: g[n 772,] — { :
’ 0, otherwise.
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Summary so far

- Discrete systems convert input discrete signals and convert them into

something more meaningful.
- There are an infinite number of possible filters we can design.

- What are ways we can category the space of possible systems?
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Today’s agenda

e Properties of systems
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Properties of systems

e Amplitude properties:

o Additivity S[fi[n,m] + f;[n,m]] = S[f[n, m]] + S[f;[n, m]]
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Example question:

Q. Is the moving average filter additive?

Slfiln,m| + filn, m|| = S|filn, m|] + S[f;[n, m]]

O+

How would you prove it?

1

olnml =5 3 " fln—km—1

k=—11=-1
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Example question: NEIREE
S| filn, m] + f;ln, m]] = S|fi[n, m|] + S[f;[n, m]] 5 T
Let f'[n,m] = fi[n,m] + f;[n,m] 1 (1] 1
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Example question: NEIREE
S| filn, m] + f;ln, m]] = S|fi[n, m|] + S[f;[n, m]] 5 T
Let f'[n,m] = fi[n,m] + f;[n,m] 1 (1] 1

S[filn, m] + filn, m]] = S[f'[n, m]]
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Example question: NEIREE
S| filn, m] + f;ln, m]] = S|fi[n, m|] + S[f;[n, m]] 5 T
Let f'[n,m] = fi[n,m] + f;[n,m] 1 (1] 1

Slfiln,m] + fi[n, ml] = S[f'[n, m]] olnym] = Z an km 1

=% Z Zf’[n—k,m—l]

k=—11=—1
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Example question: NEIREE
S| filn, m] + f;ln, m]] = S|fi[n, m|] + S[f;[n, m]] 5 T
Let f'[n,m] = fi[n,m] + f;[n,m] 1 (1] 1

S[filn, m] + filn, m]] = S[f'[n, m]]

=% Z Zf’[n—k,m—l]

k=-1il=-1

:% Z Z[fi[n—k,m—l]+fj[n—k,m—l]]

k=—11=—1
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Example question: NEIREE
S| filn, m] + f;ln, m]] = S|fi[n, m|] + S[f;[n, m]] 5 T
Let f'[n,m] = fi[n,m] + f;[n,m] 1 (1] 1

S[filn, m] + filn, m]] = S[f'[n, m]]
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Example question: NEIREE
S| filn, m] + f;ln, m]] = S|fi[n, m|] + S[f;[n, m]] 5 T
Let f'[n,m] = fi[n,m] + f;[n,m] 1 (1] 1

S[filn, m] + filn, m]] = S[f'[n, m]]

f'ln—k,m—1]

-
MH

li=-1
1 1

(]

[filn —k,m —1]+ fj[n — k,m —1]]
=1 f=1

:% 3 Zf,-[n—k,m—l]—l—% Yo filn—km -1

k=—11=-1 k=—11=-1

= S[filn, m]] + S|fj[n, m]]
RENEVAGE I E Lecture 2 - 122 January 09, 2024




Properties of systems

e Amplitude properties:

o Additivity S[fi[n,m] + f;[n,m]] = S[f[n, m]] + S[f;[n, m]]
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Properties of systems

e Amplitude properties:

o Additivity S[fi[n,m] + f;[n,m]] = S[f[n, m]] + S[f;[n, m]]

o Homogeneity
Slafn, m]] = aS|f[n, m]]
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Another question:

Q. Is the moving average filter homogeneous?

Slafn, m]] = aS[f[n, m]]

1
— 1 1 1 1
O
Practice proving it at home using: T 1|1
LR
g[n,m] = 5 k;1 l_z_:lf[n —k,m —1]
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What we covered today

Color spaces

Image sampling and quantization
Image histograms

Images as functions

Filters

Properties of systems

Ranjay Krishna Lecture 2 - 126 January 09, 2024



Next time:

Linear systems and convolutions
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