Lecture 2 Pixels and Filters

Ranjay Krishna

Lecture 2 - 1

Administrative

A0 is out.

- It is ungraded
- Meant to help you with python and numpy basics
- Learn how to do homeworks and submit them on gradescope.

Grading policy - Assignments

- Assignment 0 (Using Colabs, Python basics)
 - Recommended Due by Jan 14 (Ungraded)
- Assignment 1 (Filters, Convolutions, Edges)
 - Due Jan 24, 11:59 PST
- Assignment 2 (Keypoints, Panaromas, Seam Carving)
 Due Feb 7, 11:59 PST
- Assignment 3 (Cameras, Clustering, Segmentation)
 Due Feb 21, 11:59 PST
- **Assignment 4** (kNN, PCA, LDA, Detection)
 - Due Mar 7, 11:59 PST
- **Assignment 5** (Optical Flow, Tracking, Machine Learning)
 - Due Mar 15, 11:59 PST

Ranjay Krishna

Lecture 2 - 3

Grading policy - assignments

- Most assignments will have an extra credit worth 1% of your total grade.
- Late policy
 - 5 free late days use them in your ways
 - Maximum of 2 late days per assignment
 - Afterwards, 25% off per day late
- Collaboration policy
 - Read the student code book, understand what is 'collaboration' and what is 'academic infraction'
 - We have links to this on the course webpage

Ranjay Krishna

Lecture 2 - 4

Administrative

Recitations (2 options)

- Friday mornings 9:30-10:20am @ MGH 231
- Friday afternoons 12:30-1:20pm @ CSE2 G01

This week: We will go over Linear algebra basics

So far: Computer vision extracts geometric 3D information from 2D images

Per-frame 3D Prediction

January 09, 2024

Input RGB-D

6D pose and size

TRI & GATech's ShaPO (ECCV'22): https://zubair-irshad.github.io/projects/ShAPO.html

Ranjay Krishna

So far: why is computer vision hard?

It is an ill posed problem

Ranjay Krishna

Lecture 2 - 8

Today's agenda

- Color spaces
- Image sampling and quantization
- Image histograms
- Images as functions
- Filters
- Properties of systems

Some background reading: Forsyth and Ponce, Computer Vision, Chapter 7

Ranjay Krishna

Lecture 2 - 9

Today's agenda

Color spaces

- Image sampling and quantization
- Image histograms
- Images as functions
- Filters
- Properties of systems

Some background reading: Forsyth and Ponce, Computer Vision, Chapter 7

Ranjay Krishna

Lecture 2 - 10

Linear color spaces

- Defined by a choice of three primaries
- The coordinates of a color are given by the weights of the primaries used to match it

Ranjay Krishna

Lecture 2 - 11

How to compute the weights of the primaries to match any spectral signal

Matching functions: the amount of each primary needed to match a monochromatic light source at each wavelength

Ranjay Krishna

January 09, 2024

Explaining Color - Simplified

Foundations of Vision, by Brian Wandell, Sinauer Assoc.,

The Physics of Light Sources

Some examples of the spectra of light sources

Ranjay Krishna

Lecture 2 - 14

The Physics of Reflectance

Some examples of the <u>reflectance</u> spectra of <u>surfaces</u>

Ranjay Krishna

Lecture 2 - 15

Physiology of Human Vision

Ranjay Krishna

Lecture 2 - 16

Color is a psychological phenomenon

- The result of interaction between physical light in the environment and our visual system.
- A psychological property of our visual experiences when we look at objects and lights, not a physical property of those objects or lights.

Ranjay Krishna

Lecture 2 - 17

RGB space

Primaries are monochromatic lights (for monitors, they correspond to the three types of phosphors)

RGB primaries

 $p_1 = 645.2 \text{ nm}$ $p_2 = 525.3 \text{ nm}$ $p_3 = 444.4 \text{ nm}$

Ranjay Krishna

Linear color spaces: CIE XYZ

- Primaries (X, Y and Z) are imaginary
- X: Represents a mix of red and green.
- Y: Represents luminance (brightness).
- Z: Represents a mix of blue and green.
- 2D visualization: draw (x,y), where
 x = X/(X+Y+Z), y = Y/(X+Y+Z)

January 09, 2024

http://en.wikipedia.org/wiki/CIE_1931_color_space

Ranjay Krishna

Nonlinear color spaces: HSV

Ranjay Krishna

• Perceptually meaningful dimensions: Hue, Saturation, Value (Intensity)

Lecture 2 - 20

Nonlinear color spaces: HSV

Ranjay Krishna

Lecture 2 - 21

Today's agenda

- Color spaces
- Image sampling and quantization
- Image histograms
- Images as functions
- Filters
- Properties of systems

Some background reading: Forsyth and Ponce, Computer Vision, Chapter 7

Ranjay Krishna

Lecture 2 - 22

Ranjay Krishna

Camera sensors produce discrete outputs

https://commons.wikimedia.org/wiki/File:Mirrorless_Camera_Sensor.jpg

15	7 153	174	168	150	152	129	151	172	161	155	155	157	153	174	168	150	152	129	151	172	161	155	156
15	6 182	163	74		62	33	17	110	210	180	154	155	182	163	74	75	62	33	17	110	210	180	154
18	0 180	50	14	34		10	33	48	105	159	181	180	180	50	14	34	6	10	33	48	106	159	181
20	6 100	5	124	131	111	120	204	166	15	56	180	206	109	6	124	131	111	120	204	166	15	56	180
19	4 68	137	251	237	239	239	228	227	87		201	194	68	137	251	237	239	239	228	227	87	71	201
17	2 106	207	233	233	214	220	239	228	98		206	172	105	207	233	233	214	220	239	228	98	74	206
14	8	179	209	185	215	211	158	139		20	169	188	88	179	209	185	215	211	158	139	76	20	169
14	9 97	165	84	10	168	134	11	31	62	22	148	189	97	165	84	10	168	134	11	31	62	22	148
13	9 168	191	193	158	227	178	143	182	105	35	190	199	168	191	193	158	227	178	143	182	106	36	190
25	6 174	155	252	236	231	149	178	228	43		234	205	174	155	252	236	231	149	178	228	43	95	234
19	0 216	116	149	236	187	85	150		38	218	241	190	216	116	149	236	187	86	150	79	38	218	241
19	0 224	147	108	227	210	127	102	36	101	255	224	190	224	147	108	227	210	127	102	36	101	255	224
15	0 214	173	66	103	143	95	50		109	249	215	190	214	173	66	103	143	96	50	2	109	249	215
	7 196	235	75	1	81		٥	6	217	255	211	187	196	235	75	1	81	47	0	6	217	255	211
14	3 202	237	145	0		12	108	200	138	243	236	183	202	237	145	0	0	12	108	200	138	243	236
15	6 206	123	207	177	121	123	200	175	13	96	218	195	206	123	207	177	121	123	200	175	13	96	218
	le.			- 1 -	4	£	I	l	Tour			1	la /1			- 1	1:						-

https://ai.stanford.edu/~syyeung/cvweb/Pictures1/imagematrix.png

January 09, 2024

Ranjay Krishna

Types of Images

Ranjay Krishna

Lecture 2 - 25

Binary image representation

Ranjay Krishna

Lecture 2 - 26

Grayscale image representation

Ranjay Krishna

Lecture 2 - 27

Q. If you used HSV to represent grayscale images, is the slider representing hue? Or saturation? Or value?

Ranjay Krishna

Lecture 2 - 28

Color image representation

Color image - one channel

R channel

Ranjay Krishna

Lecture 2 - 30

Types of Images

Ranjay Krishna

Lecture 2 - 31

Digital Images are sampled

What happens when we zoom into the images we capture?

Ranjay Krishna

Lecture 2 - 32

Errors due to Sampling

Ranjay Krishna

Lecture 2 - 33

Resolution

is a **sampling** parameter, defined in dots per inch (DPI) or equivalent measures of spatial pixel density

Ranjay Krishna

Lecture 2 - 34

Images are Sampled and Quantized

- An image contains discrete number of pixels
 - -Pixel value:
 - •"grayscale"

(or "intensity"): [0,255]

Images are Sampled and Quantized

- An image contains discrete number of pixels
 - –Pixel value:
 - •"grayscale"
 - (or "intensity"): [0,255]
 - •"color"
 - -RGB: [R, G, B]

[90, 0, 53]

[249, 215, 203]

January 09, 2024

[213, 60, 67]

Lecture 2 - 36

Ranjay Krishna
With this loss of information (from sampling and quantization),

Can we still use images for useful tasks?

Today's agenda

- Color spaces
- Image sampling and quantization
- Image histograms
- Images as functions
- Filters
- Properties of systems

Some background reading: Forsyth and Ponce, Computer Vision, Chapter 7

Ranjay Krishna

Lecture 2 - 38

Starting with grayscale images:

- Histogram captures the distribution of gray levels in the image.
- How frequently each gray level occurs in the image

January 09, 2024

Ranjay Krishna

Grayscale histograms in code

• Histogram of an image provides the frequency of the brightness (intensity) value in the image.

Here is an efficient implementation of calculating histograms:

def histogram(im): h = np.zeros(255) for row in im.shape[0]: for col in im.shape[1]: val = im[row, col] h[val] += 1

Ranjay Krishna

Lecture 2 - 40

Visualizing h[:]

Ranjay Krishna

Lecture 2 - 41

Visualizing Histograms for patches

Lecture 2 - 42

Slide credit: Dr. Mubarak

January 09, 2024

Ranjay Krishna

Histogram – use case

In emphysema, the inner walls of the lungs' air sacs called alveoli are damaged, causing them to eventually rupture.

You can take a picture of the lung with special dye to mark the alveoli

January 09, 2024

Ranjay Krishna

Histograms are a convenient representation to extract information

Can we develop better transformations than histograms?

Lecture 2 - 44

Today's agenda

- Color spaces
- Image sampling and quantization
- Image histograms
- Images as functions
- Filters
- Properties of systems

Some background reading: Forsyth and Ponce, Computer Vision, Chapter 7

Ranjay Krishna

Lecture 2 - 45

Images are a function!!!

This is a new formalism that will allow us to borrow ideas from signal processing to extract meaningful information.

At every pixel location, we get an intensity value for that pixel.

The world captured by the image continues beyond the confines of the image

Ranjay Krishna

Lecture 2 - 46

- Digital images are usually discrete:
 - Sample the 2D space on a regular grid
- Represented as a matrix of integer values

pixel intensity

		m			_			
	62	79	23	119	120	05	4	0
	10	10	9	62	12	78	34	0
n 🖡	10	58	197	46	46	0	0	48
	176	135	5	188	191	68	0	49
	2	1	1	29	26	37	0	77
	0	89	144	147	187	102	62	208
	255	252	0	166	123	62	0	31
	166	63	127	17	1	0	99	30

Ranjay Krishna

Lecture 2 - 47

- The input to the image function is a pixel location, [n m]
- The output to the image function is the pixel intensity

Ranjay Krishna

Lecture 2 - 48

- The input to the image function is a pixel location, [n m]
- The output to the image function is the pixel intensity

Ranjay Krishna

Lecture 2 - 49

- The input to the image function is a pixel location, [n m]
- The output to the image function is the pixel intensity

Ranjay Krishna

Lecture 2 - 50

- The input to the image function is a pixel location, [n m]
- The output to the image function is the pixel intensity

Ranjay Krishna

Lecture 2 - 51

Images as coordinates

We can represent this function as f. f[n, m] represents the pixel intensity at that value.

$$f[n,m] = \begin{bmatrix} \ddots & \vdots & & \\ f[-1,-1] & f[-1,0] & f[-1,1] \\ \dots & f[0,-1] & \underline{f[0,0]} & f[0,1] & \dots \\ f[1,-1] & f[1,0] & f[1,1] \\ \vdots & \ddots \end{bmatrix}$$
 Even negative!! Even negative!!

Ranjay Krishna

Lecture 2 - 52

We don't have the intensity values for negative indices

$$f[n,m] = \begin{bmatrix} \ddots & \vdots & & \\ f[-1,-1] & f[-1,0] & f[-1,1] & \\ \dots & f[0,-1] & \frac{f[0,0]}{f[1,0]} & f[0,1] & \dots & \\ f[1,-1] & \frac{f[0,0]}{f[1,0]} & f[1,1] & \\ \vdots & \ddots & \end{bmatrix}$$
 Even negative!!

Ranjay Krishna

Lecture 2 - 53

- An Image as a function f from \mathbb{R}^2 to $\mathbb{R}^{\mathbb{C}}$:
 - if grayscale then C=1,
 - if color then C=3

Ranjay Krishna

Lecture 2 - 54

- **An Image** as a function *f* from R² to R^C:
 - if grayscale, C=1,
 - if color, C=3

Ranjay Krishna

- f [n, m] gives the intensity at position [n, m]
- Has values over a rectangle, with a finite range:

Domain support range

Lecture 2 - 55

- An Image as a function *f* from R² to R^C:
 - if grayscale, C=1,
 - if color, C=3
 - f [n, m] gives the intensity at position [n, m]
 - Has values over a rectangle, with a finite range:

Domain support range

- Doesn't have values outside of the image rectangle
 f: [-*inf*,*inf*] x [-*inf*,*inf*] → [0,255]
- we assume that f[n, m] = 0 outside of the image rectangle

Ranjay Krishna

Lecture 2 - 56

- An Image as a function f from \mathbb{R}^2 to $\mathbb{R}^{\mathbb{C}}$:
 - f [n, m] gives the intensity at position [n, m]
 - Defined over a rectangle, with a finite range:
 - $f: [a,b] \times [c,d] \rightarrow [0,255]$

Domain support range

Histograms are also a type of function

Ranjay Krishna

Lecture 2 - 58

Today's agenda

- Color spaces
- Image sampling and quantization
- Image histograms
- Images as functions
- Filters
- Properties of systems

Some background reading: Forsyth and Ponce, Computer Vision, Chapter 7

Ranjay Krishna

Lecture 2 - 59

Applications of filters

De-noising

Salt and pepper noise

In-painting

Ranjay Krishna

Lecture 2 - 60

Systems and Filters

Filtering:

 Forming a new image whose pixel values are transformed from original pixel values

Goals of filters:

- Goal is to extract useful information from images, or transform images into another domain where we can modify/enhance image properties
 - Features (edges, corners, blobs...)
 - super-resolution; in-painting; de-noising

Ranjay Krishna

Lecture 2 - 61

Intuition behind systems

- We will view systems as a sequence of filters applied to an image
- For example, multiplying by a constant leaves the semantic content intact
 but can reveal interesting patterns

Ranjay Krishna

Lecture 2 - 62

As an aside - we will go into detail later in the course:

• Neural networks and specifically **convolutional** neural networks are a sequence of filters (except they are a non-linear system) that contains multiple individual linear sub-systems.

Systems use Filters

- we define a system as a unit that converts an input function f[n,m] into an output (or response) function g[n,m]
 - \circ where (n,m) index into the function
 - In the case for images, (n,m) represents the spatial position in the image.

$$f[n,m] \to \texttt{System } \mathcal{S} \to g[n,m]$$

Ranjay Krishna

Lecture 2 - 64

Images produce a 2D matrix with pixel intensities at every location

$$f[n,m] = \begin{bmatrix} \ddots & \vdots & \\ f[-1,-1] & f[0,-1] & f[1,-1] \\ \dots & f[-1,0] & \\ f[-1,1] & f[0,0] & f[1,0] & \dots \\ f[0,1] & f[1,1] & \\ \vdots & \ddots \end{bmatrix}$$
Notation for discrete functions

Ranjay Krishna

Lecture 2 - 65

2D discrete system (system is a sequence of filters) S is the system operator, defined as a mapping or assignment

of possible inputs f[n,m] to some possible outputs g[n,m].

$$f[n,m] \to \boxed{\text{System } \mathcal{S}} \to g[n,m]$$

2D discrete system

S is the **system operator**, defined as a mapping or assignment of possible inputs f[n,m] to some possible outputs g[n,m].

$$f[n,m] \to \texttt{System } \mathcal{S} \to g[n,m]$$

Other notations:

$$g = \mathcal{S}[f], \quad g[n,m] = \mathcal{S}\{f[n,m]\}$$
$$f[n,m] \xrightarrow{\mathcal{S}} g[n,m]$$

Ranjay Krishna

Lecture 2 - 67

Filter example #1: Moving Average

Original image

Q. What do you think will happen to the photo if we use a moving average filter?

Assume that the moving average replaces each pixel with an average value of itself and all its neighboring pixels.

January 09, 2024

Ranjay Krishna

Filter example #1: Moving Average

Original image

Ranjay Krishna

Lecture 2 - 69

Smoothed image

Visualizing what happens with a moving average filter

The red box is the **h** matrix

· [· · , · · ·]										
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	0	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	90	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	

f[n,m]

Courtesy of S. Seitz

January 09, 2024

Ranjay Krishna

Visualizing what happens with a moving average filter

			L		-				
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

f[n,m]

January 09, 2024

Ranjay Krishna

Visualizing what happens with a moving average filter

			L		-				_
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

f[n,m]

January 09, 2024

Ranjay Krishna
Visualizing what happens with a moving average filter

		_	L		-	1			
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

f[n,m]

January 09, 2024

Ranjay Krishna

Visualizing what happens with a moving average filter

			L		-				_
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

f[n,m]

Ranjay Krishna

Lecture 2 - 74

Visualizing what happens with a moving average filter

						-			_
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

g[n,m]

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

Ranjay Krishna

Lecture 2 - 75

Visual interpretation of moving average

A moving average over a 3×3 neighborhood window

h is a 3x3 matrix with values 1/9 everywhere.

Ranjay Krishna

Lecture 2 - 76

Visual interpretation of moving average

A moving average over a 3×3 neighborhood window

h is a 3x3 matrix with values 1/9 everywhere.

Q. Why are the values 1/9?

January 09, 2024

Ranjay Krishna

Filter example #1: Moving Average

In summary:

- This filter "Replaces" each pixel with an average of its neighborhood.
- Achieve smoothing effect (remove sharp features)

January 09, 2024

Ranjay Krishna

How do we represent applying this filter mathematically?

$$f[n,m] \to \text{System } \mathcal{S} \to g[n,m]$$

January 09, 2024

Ranjay Krishna

How do we represent applying this filter mathematically?

$$f[n,m] \to \text{System } \mathcal{S} \to g[n,m]$$

January 09, 2024

Ranjay Krishna

$$f[n,m] \rightarrow \boxed{\text{System}\,\mathcal{S}} \rightarrow g[n,m] \quad \begin{array}{l} \text{Mathematical} \\ \text{interpretation of} \\ \text{moving average} \end{array}$$

Ranjay Krishna

$f[n,m] \rightarrow \boxed{\text{System } S} \rightarrow g[n,m]$ Mathematical interpretation of moving average

$$g[0,0] = f[-1,-1] + f[-1,0] + f[-1,1]$$

+ ...

			J	f[0]), ()]		-		_			g[0,	0]	
0	0	0	0	0	0	0	0	0	0							
0	0	0	0	0	0	0	0	0	0							
0	0	0	90	90	90	90	90	0	0							
0	0	0	90	90	90	90	90	0	0							
0	0	0	90	90	90	90	90	0	0							
0	0	0	90	0	90	90	90	0	0							
0	0	0	90	90	90	90	90	0	0							
0	0	0	0	0	82	0	0	0	0	Jar	ua	arv	09	9_ (20	24
			_	-			-		-			,		,		

Mathematical $f[n,m] \rightarrow |$ System $\mathcal{S} | \rightarrow g[n,m]$ interpretation of moving average

0

00

$$\begin{split} g[0,0] &= f[-1,-1] + f[-1,0] + f[-1,1] \\ &+ f[0,-1] + f[0,0] + f[0,1] \\ &+ \dots \end{split}$$

_		-	-	J	f[0]), ()]	-	-		_			g[0,	0]	
	0	0	0	0	0	0	0	0	0	0							
	0	0	0	0	0	0	0	0	0	0							
	0	0	0	90	90	90	90	90	0	0							
	0	0	0	90	90	90	90	90	0	0							
	0	0	0	90	90	90	90	90	0	0							
	0	0	0	90	0	90	90	90	0	0							
	0	0	0	90	90	90	90	90	0	0							
	0	0	0	0	0	83	0	0	0	0	Jar	lua	arv	0	9. 1	20	24
															,		

$f[n,m] \rightarrow \boxed{\text{System } S} \rightarrow g[n,m]$ Mathematical interpretation of moving average

$$\begin{split} g[0,0] &= f[-1,-1] + f[-1,0] + f[-1,1] \\ &+ f[0,-1] + f[0,0] + f[0,1] \\ &+ f[1,-1] + f[1,0] + f[1,1] \end{split}$$

				1000						_
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	0	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	0	0	84	0	0	0	0	

00

f[0,0]

g[0,0]

anuary 09, 2024	ar	ua	rv 0	9. :	20	24	

Lastly, divide by 1/9

Ranjay Krishna

$$\begin{split} g[0,0] &= \frac{1}{9} [f[-1,-1] + f[-1,0] + f[-1,1] \\ &\quad + f[0,-1] + f[0,0] + f[0,1] \\ &\quad + f[1,-1] + f[1,0] + f[1,1]] \\ &\qquad f[0,0] \end{split} \qquad g[0,0] \end{split}$$

										-
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	0	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	0	0	85	0	0	0	0	Ja

[°] [°] 85 [°] [°] January 09, 2024

Now, instead of [0, 0], let's do [n, m]

Now, instead of [0, 0], let's do [n, m]

 $g[n,m] = \dots$

Now, instead of [0, 0], let's do [n, m]

0

 $g[n,m] = f[n-1,m-1] + \dots$

Now, instead of [0, 0], let's do [n, m] $g[n,m] = f[n-1,m-1] + \dots$

0

0

0

Now, instead of [0, 0], let's do [n, m] g[n,m] = f[n-1,m-1] + f[n-1,m] + ...

Now, instead of [0, 0], let's do [n, m] g[n,m] = f[n-1,m-1] + f[n-1,m] + ...

0

0

0

Now, instead of [0, 0], let's do [n, m] g[n,m] = f[n-1,m-1] + f[n-1,m] + f[n-1,m+1]

0

0

Now, instead of [0, 0], let's do [n, m] g[n,m] = f[n-1,m-1] + f[n-1,m] + f[n-1,m+1]+ f[n,m-1] + f[n,m] + f[n,m+1]

			f	[n	, r	n]							g[i	n,	m	[א	
0	0	0	0	0	0	0	0	0	0								
0	0	0	0	0	0	0	0	0	0								
0	0	0	90	90	90	90	90	0	0								
0	0	0	90	90	90	90	90	0	0								
0	0	0	90	90	90	90	90	0	0								
0	0	0	90	0	90	90	90	0	0								
0	0	0	90	90	90	90	90	0	0								1
0	0	0	0	0	93	0	0	0	0	Jar	lua	arv	0	9. 1	20	24	
0	0	00	0	0		0	0	0	0			_		,			

Now, instead of [0, 0], let's do [n, m]

$$g[n,m] = f[n-1,m-1] + f[n-1,m] + f[n-1,m+1]$$

 $+ f[n,m-1] + f[n,m] + f[n,m+1]$
 $+ f[n+1,m-1] + f[n+1,m] + f[n+1,m+1]$

		f	[n	, r	n]							g[a	n,	m)	
0	0	0	0	0	0	0	0	0								
0	0	0	0	0	0	0	0	0								
0	0	90	90	90	90	90	0	0								
0	0	90	90	90	90	90	0	0								
0	0	90	90	90	90	90	0	0								
0	0	90	0	90	90	90	0	0								
0	0	90	90	90	90	90	0	0								
0	0	0	0	94	0	0	0	0	Jar	ua	arv	09	9. 1	20	24	
0	00					0	0				,		,			

Lastly, divide by 1/9

$$\begin{split} g[n,m] &= \frac{1}{9} [f[n-1,m-1] + f[n-1,m] + f[n-1,m+1] \\ &\quad + f[n,m-1] + f[n,m] + f[n,m+1] \\ &\quad + f[n+1,m-1] + f[n+1,m] + f[n+1,m+1]] \end{split}$$

		-	f	[n]	, r	n]		-		_			g[n,	m	り]
0	0	0	0	0	0	0	0	0	0							
0	0	0	0	0	0	0	0	0	0							
0	0	0	90	90	90	90	90	0	0							
0	0	0	90	90	90	90	90	0	0							Γ
0	0	0	90	90	90	90	90	0	0							F
0	0	0	90	0	90	90	90	0	0							
0	0	0	90	90	90	90	90	0	0							
0	0	0	0	0	95	0	0	0	0	Jar	i U a	ıry	0	9,	20	2

We can re-write the equation using summations

$$g[n,m] = \frac{1}{9} \sum_{k=??}^{??} \sum_{l=??}^{??} f[k,l]$$

January 09, 2024

Q. What values will k take?

Ranjay Krishna

How do we represent applying this filter mathematically?

$$g[n,m] = \frac{1}{9} \sum_{k=n-1}^{n+1} \sum_{l=??}^{??} f[k,l]$$

January 09, 2024

k goes from n-1 to n+1

Ranjay Krishna

How do we represent applying this filter mathematically?

$$g[n,m] = \frac{1}{9} \sum_{k=n-1}^{n+1} \sum_{l=??}^{??} f[k,l]$$

January 09, 2024

Q. What values will I take?

Ranjay Krishna

How do we represent applying this filter mathematically?

$$g[n,m] = \frac{1}{9} \sum_{k=n-1}^{n+1} \sum_{l=m-1}^{m+1} f[k,l]$$

January 09, 2024

I goes from m-1 to m+1

Ranjay Krishna

Math formula for the moving average filter

A moving average over a 3×3 neighborhood window

We can write this operation mathematically:

$$g[n,m] = \frac{1}{9} \sum_{k=n-1}^{n+1} \sum_{l=m-1}^{m+1} f[k,l]$$

January 09, 2024

Ranjay Krishna

We are almost done. Let's rewrite this formula a little bit Let k' = n - k

$$g[n,m] = \frac{1}{9} \sum_{k=n-1}^{n+1} \sum_{l=m-1}^{m+1} f[k,l]$$

January 09, 2024

Ranjay Krishna

We are almost done. Let's rewrite this formula a little bit Let k' = n - k therefore, k = n - k'

$$g[n,m] = \frac{1}{9} \sum_{k=n-1}^{n+1} \sum_{l=m-1}^{m+1} f[k,l]$$

Ranjay Krishna

 $\begin{array}{c}
h[\cdot,\cdot] \\
1 & 1 & 1 \\
\hline
1 & 1 & 1 \\
9 & 1 & 1 & 1 \\
\end{array}$

Lecture 2 - 102

January 09, 2024

Now we can replace k in the equation above

We are almost done. Let's rewrite this formula a little bit Let k' = n - k therefore, k = n - k'

$$g[n,m] = \frac{1}{9} \sum_{k=n-1}^{n+1} \sum_{l=m-1}^{m+1} f[k,l]$$

$$g[n,m] = \frac{1}{9} \sum_{n-k'=n-1}^{n-k'=n+1} \sum_{l=m-1}^{m+1} f[n-k',l]$$

Ranjay Krishna

Lecture 2 - 103

So now we have this:

$$g[n,m] = \frac{1}{9} \sum_{n-k'=n-1}^{n-k'=n+1} \sum_{l=m-1}^{m+1} f[n-k',l]$$

January 09, 2024

Ranjay Krishna

So now we have this:

$$g[n,m] = \frac{1}{9} \sum_{n-k'=n-1}^{n-k'=n+1} \sum_{l=m-1}^{m+1} f[n-k',l]$$

We can simplify the equations in red:

$$g[n,m] = \frac{1}{9} \sum_{k'=1}^{k'=-1} \sum_{l=m-1}^{m+1} f[n-k',l]$$

January 09, 2024

Ranjay Krishna

So now we have this:

$$g[n,m] = \frac{1}{9} \sum_{k'=1}^{k'=-1} \sum_{l=m-1}^{m+1} f[n-k',l]$$

Remember that summations are just for-loops!!

January 09, 2024

Ranjay Krishna

So now we have this:

$$g[n,m] = \frac{1}{9} \sum_{k'=1}^{k'=-1} \sum_{l=m-1}^{m+1} f[n-k',l]$$

Remember that summations are just for-loops!!

$$g[n,m] = \frac{1}{9} \sum_{k'=-1}^{1} \sum_{l=m-1}^{m+1} f[n-k',l]$$

January 09, 2024

Ranjay Krishna

One last change: since there are no more k and only k', let's just write k' as k

$$g[n,m] = \frac{1}{9} \sum_{k'=-1}^{1} \sum_{l=m-1}^{m+1} f[n-k',l]$$

January 09, 2024

$$g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=m-1}^{m+1} f[n-k,l]$$

Ranjay Krishna
Mathematical interpretation of moving average

Let's repeat for I, just like we did for k

$$g[n,m] = \frac{1}{9} \sum_{k=n-1}^{n+1} \sum_{l=m-1}^{m+1} f[k,l]$$

$$=\frac{1}{9}\sum_{k=-1}^{1}\sum_{l=-1}^{1}f[n-k,m-l]$$

January 09, 2024

Ranjay Krishna

Filter example #1: Moving Average

Original image

Ranjay Krishna

Lecture 2 - 110

Smoothed image

Filter example #2: Image Segmentation

Q. How would you use pixel values to design a filter to segment an image so that you only keep around the edges?

Ranjay Krishna

Lecture 2 - 111

Filter example #2: Image Segmentation

• Use a simple pixel threshold: $g[n,m] = \begin{cases} 255, f[n,m] > 100\\ 0, & \text{otherwise.} \end{cases}$

Ranjay Krishna

Lecture 2 - 112

Summary so far

- Discrete systems convert input discrete signals and convert them into something more meaningful.
- There are an infinite number of possible filters we can design.
- What are ways we can category the space of possible systems?

Lecture 2 - 113

Today's agenda

- Color spaces
- Image sampling and quantization
- Image histograms
- Images as functions
- Filters
- Properties of systems

Ranjay Krishna

Lecture 2 - 114

Properties of systems

- Amplitude properties:
 - \circ Additivity

$$\mathcal{S}[f_i[n,m] + f_j[n,m]] = \mathcal{S}[f_i[n,m]] + \mathcal{S}[f_j[n,m]]$$

Q. Is the moving average filter additive?

$$\mathcal{S}[f_i[n,m] + f_j[n,m]] = \mathcal{S}[f_i[n,m]] + \mathcal{S}[f_j[n,m]]$$

January 09, 2024

How would you prove it?

$$g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$$

Ranjay Krishna

$$\begin{split} \mathcal{S}[f_i[n,m] + f_j[n,m]] &= \mathcal{S}[f_i[n,m]] + \mathcal{S}[f_j[n,m]] \\ \text{Let } f'[n,m] &= f_i[n,m] + f_j[n,m] \end{split}$$

January 09, 2024

Ranjay Krishna

$$\mathcal{S}[f_i[n,m] + f_j[n,m]] = \mathcal{S}[f_i[n,m]] + \mathcal{S}[f_j[n,m]]$$

Let $f'[n,m] = f_i[n,m] + f_j[n,m]$
 $\mathcal{S}[f_i[n,m] + f_j[n,m]] = \mathcal{S}[f'[n,m]]$

Ranjay Krishna

Lecture 2 - 118

$$\begin{split} \mathcal{S}[f_i[n,m] + f_j[n,m]] &= \mathcal{S}[f_i[n,m]] + \mathcal{S}[f_j[n,m]] \\ \text{Let } f'[n,m] &= f_i[n,m] + f_j[n,m] \\ \mathcal{S}[f_i[n,m] + f_j[n,m]] &= \mathcal{S}[f'[n,m]] \\ &= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f'[n-k,m-l] \end{split}$$

 $g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$

January 09, 2024

Ranjay Krishna

$$\mathcal{S}[f_i[n,m] + f_j[n,m]] = \mathcal{S}[f_i[n,m]] + \mathcal{S}[f_j[n,m]]$$

Let $f'[n,m] = f_i[n,m] + f_j[n,m]$
 $\mathcal{S}[f_i[n,m] + f_j[n,m]] = \mathcal{S}[f'[n,m]]$

$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f'[n-k,m-l]$$
$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} [f_i[n-k,m-l] + f_j[n-k,m-l]]$$

$$g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$$

Ranjay Krishna

Lecture 2 - 120

$$\mathcal{S}[f_i[n,m] + f_j[n,m]] = \mathcal{S}[f_i[n,m]] + \mathcal{S}[f_j[n,m]]$$

Let $f'[n,m] = f_i[n,m] + f_j[n,m]$

 $\mathcal{S}[f_i[n,m] + f_i[n,m]] = \mathcal{S}[f'[n,m]]$ $= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f'[n-k, m-l]$ $1 \sum_{k=1}^{l} \sum_{j=1}^{l} \left[f_{j} \left[m - k - m - l \right] + f_{j} \left[m - k - m - l \right] \right]$ -l

 $g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$

$$= \frac{1}{9} \sum_{k=-1}^{l} \sum_{l=-1}^{l} [f_i[n-k,m-l] + f_j[n-k,m-l]]$$
$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f_i[n-k,m-l] + \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f_j[n-k,m]$$

Ranjay Krishna

Lecture 2 - 121

$$\begin{split} \mathcal{S}[f_i[n,m] + f_j[n,m]] &= \mathcal{S}[f_i[n,m]] + \mathcal{S}[f_j[n,m]] \\ \text{Let } f'[n,m] &= f_i[n,m] + f_j[n,m] \end{split}$$

 $\mathcal{S}[f_i[n,m] + f_j[n,m]] = \mathcal{S}[f'[n,m]]$

Ranjay Krishna

$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f'[n-k,m-l]$$

$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} [f_i[n-k,m-l] + f_j[n-k,m-l]]$$

$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f_i[n-k,m-l] + \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f_j[n-k,m-l]$$

$$= \mathcal{S}[f_i[n,m]] + \mathcal{S}[f_j[n,m]]$$

 $g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$

Lecture 2 - 122

January 09, 2024

l]]

Properties of systems

- Amplitude properties:
 - \circ Additivity

$$\mathcal{S}[f_i[n,m] + f_j[n,m]] = \mathcal{S}[f_i[n,m]] + \mathcal{S}[f_j[n,m]]$$

Properties of systems

• Amplitude properties:

 \circ Additivity

$$\mathcal{S}[f_i[n,m] + f_j[n,m]] = \mathcal{S}[f_i[n,m]] + \mathcal{S}[f_j[n,m]]$$

 \circ Homogeneity

$$\mathcal{S}[\alpha f[n,m]] = \alpha \mathcal{S}[f[n,m]]$$

Another question:

Q. Is the moving average filter homogeneous?

 $\mathcal{S}[\alpha f[n,m]] = \alpha \mathcal{S}[f[n,m]]$

Practice proving it at home using:

$$g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$$

Ranjay Krishna

Lecture 2 - 125

What we covered today

- Color spaces
- Image sampling and quantization
- Image histograms
- Images as functions
- Filters
- Properties of systems

Ranjay Krishna

Lecture 2 - 126

Next time:

Linear systems and convolutions

