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Lecture 2
Pixels and Filters
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Administrative

A0 is out. 
- It is ungraded
- Meant to help you with python and numpy basics
- Learn how to do homeworks and submit them on gradescope.
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● Assignment 0 (Using Colabs, Python basics)
○ Recommended Due by Jan 14 (Ungraded)

● Assignment 1 (Filters, Convolutions, Edges)
○ Due Jan 24, 11:59 PST

● Assignment 2 (Keypoints, Panaromas, Seam Carving)
○ Due Feb 7, 11:59 PST

● Assignment 3 (Cameras, Clustering, Segmentation)
○ Due Feb 21, 11:59 PST

● Assignment 4 (kNN, PCA, LDA, Detection)
○ Due Mar 7, 11:59 PST

● Assignment 5 (Optical Flow, Tracking, Machine Learning)
○ Due Mar 15, 11:59 PST

Grading policy - Assignments
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Grading policy - assignments

● Most assignments will have an extra credit worth 1% of your 
total grade.

● Late policy
■ 5 free late days – use them in your ways
■ Maximum of 2 late days per assignment
■ Afterwards, 25% off per day late

● Collaboration policy
■ Read the student code book, understand what is ‘collaboration’ and what is 

‘academic infraction’
■ We have links to this on the course webpage
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Recitations (2 options)

● Friday mornings 9:30-10:20am @ MGH 231

● Friday afternoons 12:30-1:20pm @ CSE2 G01

This week:
We will go over Linear algebra basics

Administrative
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So far: Computer vision extracts geometric 3D information 
from 2D images

TRI & GATech’s ShaPO (ECCV’22): https://zubair-irshad.github.io/projects/ShAPO.html
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So far: why is computer vision hard?

It is an ill posed 
problem
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● Color spaces
● Image sampling and quantization
● Image histograms
● Images as functions
● Filters
● Properties of systems

Today’s agenda

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 7
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● Color spaces
● Image sampling and quantization
● Image histograms
● Images as functions
● Filters
● Properties of systems

Today’s agenda

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 7
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Linear color spaces

• Defined by a choice of three primaries
• The coordinates of a color are given by the weights of the primaries 

used to match it

mixing two lights 
produces colors that lie 
along a straight line in 

color space

mixing three lights produces 
colors that lie within the 

triangle they define in color 
space
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How to compute the weights of the primaries to match any 
spectral signal

Matching functions: the amount of each primary needed to match 
a monochromatic light source at each wavelength

p
1

p
2

p
3
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Explaining Color - Simplified

.* =

Foundations of Vision, by Brian Wandell, Sinauer Assoc., 
1995
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The Physics of Light Sources
Some examples of the spectra of light sources

A. Ruby Laser B. Gallium Phosphide Crystal

14



Ranjay Krishna January 09, 2024Lecture 2 -

The Physics of Reflectance
Some examples of the reflectance spectra of surfaces
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Physiology of Human Vision
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Color is a psychological phenomenon
• The result of interaction between 

physical light in the environment and our 
visual system.

• A psychological property of our visual 
experiences when we look at objects and 
lights, not a physical property of those 
objects or lights.

Slide credit: Lana 
Lazebnik 17



Ranjay Krishna January 09, 2024Lecture 2 -

RGB space
Primaries are monochromatic lights (for monitors, they 

correspond to the three types of phosphors)

RGB primaries

18
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• Primaries (X, Y and Z) are imaginary

• X: Represents a mix of red and green.

• Y: Represents luminance (brightness).

• Z: Represents a mix of blue and green.

• 2D visualization: draw (x,y), where

x = X/(X+Y+Z), y = Y/(X+Y+Z)

Linear color spaces: CIE XYZ

http://en.wikipedia.org/wiki/CIE_1931_color_space

19
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Nonlinear color spaces: HSV

• Perceptually meaningful dimensions: Hue, Saturation, Value (Intensity)

20
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Nonlinear color spaces: HSV

• Perceptually meaningful dimensions: Hue, Saturation, Value (Intensity)
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● Color spaces
● Image sampling and quantization
● Image histograms
● Images as functions
● Filters
● Properties of systems

Today’s agenda

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 7
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Image Formation
Light Source

Physical 
Object

Lens

Sensor 
Plane
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Camera sensors produce discrete outputs

https://commons.wikimedia.org/wiki/File:Mirrorless_Camera_Sensor.jpg

https://ai.stanford.edu/~syyeung/cvweb/Pictures1/imagematrix.png
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Types of Images

Binary Grayscale Color

25
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Binary image representation
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Grayscale image representation

27
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Q. If you used HSV to represent grayscale images, is 
the slider representing hue? Or saturation? Or value?
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Color image representation

B channel G channel R channel
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Color image - one channel

R channel

30
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Types of Images

Binary Grayscale Color

31
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Digital Images 

are sampled

What happens when we zoom 
into the images we capture?

32
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Errors due to Sampling

33
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Resolution
is a sampling parameter, defined in dots per inch (DPI) or 
equivalent measures of spatial pixel density
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Images are Sampled and Quantized

231

75

148

• An image contains discrete number of pixels

–Pixel value:

•“grayscale”

(or “intensity”): [0,255]

35
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Images are Sampled and Quantized

• An image contains discrete number of pixels

–Pixel value:

•“grayscale”

(or “intensity”): [0,255]

•“color”

–RGB: [R, G, B] [249, 215, 203]

[90, 0, 53]

[213, 60, 67]

36
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With this loss of information (from sampling and 

quantization),

Can we still use images for useful tasks?

37
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● Color spaces
● Image sampling and quantization
● Image histograms
● Images as functions
● Filters
● Properties of systems

Today’s agenda

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 7
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Starting with grayscale images: 
● Histogram captures the 

distribution of gray levels in the 
image. 

● How frequently each gray level 
occurs in the image

39
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Grayscale histograms in code
● Histogram of an image provides the frequency of the brightness 

(intensity) value in the image. 
Here is an efficient implementation of calculating histograms:

def histogram(im):
      h = np.zeros(255)
      for row in im.shape[0]:
            for col in im.shape[1]:
                 val = im[row, col]
                 h[val] += 1

40
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Visualizing h[:]

41

def histogram(im):
      h = np.zeros(255)
      for row in im.shape[0]:
            for col in im.shape[1]:
                 val = im[row, col]
                 h[val] += 1
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Visualizing Histograms for patches

Slide credit: Dr. Mubarak 
Shah42
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Histogram – use case

Slide credit: Dr. Mubarak 
Shah43

In emphysema, the inner walls of the lungs' 
air sacs called alveoli are damaged, causing 
them to eventually rupture.

You can take a picture of the lung with 
special dye to mark the alveoli
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Histograms are a convenient representation to 
extract information 

Can we develop better transformations than histograms?

44
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● Color spaces
● Image sampling and quantization
● Image histograms
● Images as functions
● Filters
● Properties of systems

Today’s agenda

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 7
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At every pixel 
location, we get an 
intensity value for that 
pixel.

The world captured 
by the image 
continues beyond the 
confines of the image

Images are a function!!!
This is a new formalism that will allow us to borrow ideas from signal 
processing to extract meaningful information.

46
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Images as discrete functions
• Digital images are usually discrete:

– Sample the 2D space on a regular grid

• Represented as a matrix of integer values
pixel intensity

n

m

47



Ranjay Krishna January 09, 2024Lecture 2 -

• The input to the image function is a pixel location, [n m]

• The output to the image function is the pixel intensity

Images as discrete function f

pixel intensity

n

m

48



Ranjay Krishna January 09, 2024Lecture 2 -

• The input to the image function is a pixel location, [n m]

• The output to the image function is the pixel intensity

Q1. What is f[0, 0]?

Images as discrete function f

pixel intensity

n

m

49
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• The input to the image function is a pixel location, [n m]

• The output to the image function is the pixel intensity

Q2. What is f[0, 4]?

Images as discrete function f

pixel intensity

n

m

50
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• The input to the image function is a pixel location, [n m]

• The output to the image function is the pixel intensity

Q2. What is f[0, -8]?

Images as discrete function f

pixel intensity

n

m
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Images as coordinates
We can represent this function as f.
f[n, m] represents the pixel intensity at that value.

Notation for 
discrete 
functions

52

n and m can be 
any integer

Even negative!!



Ranjay Krishna January 09, 2024Lecture 2 -

We don’t have the intensity values for 
negative indices

53

n and m can be 
any integer 

Even negative!!
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• An Image as a function f from R2 to RC:
• if grayscale then C=1, 
• if color then C=3
• f [n, m] gives the intensity at position [n, m]  
• Has values over a rectangle, with a finite range:

f: [0,H] x [0,W]     [0,255]

Images as functions

54
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• An Image as a function f from R2 to RC:
• if grayscale, C=1, 
• if color, C=3
• f [n, m] gives the intensity at position [n, m]  
• Has values over a rectangle, with a finite range:

f: [0,H] x [0,W]     [0,255]

Images as functions

55

Domain support range
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• An Image as a function f from R2 to RC:
• if grayscale, C=1,
• if color, C=3
• f [n, m] gives the intensity at position [n, m]  
• Has values over a rectangle, with a finite range:

f: [0,H] x [0,W]     [0,255]

Images as functions

Domain support range

56

● Doesn’t have values outside of the image rectangle
f: [-inf,inf] x [-inf,inf]     [0,255]

● we assume that f[n, m] = 0 outside of the image 
rectangle
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Images as functions
• An Image as a function f from R2 to RC:

• f [n, m] gives the intensity at position [n, m]  
• Defined over a rectangle, with a finite range:

f: [a,b] x [c,d ]   [0,255]

57

Domain support range
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Histograms are also a type of function

58
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● Color spaces
● Image sampling and quantization
● Image histograms
● Images as functions
● Filters
● Properties of systems

Today’s agenda

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 7

59
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Super-resolutionDe-noising

In-painting

Bertamio et al 

Applications of filters

60
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Systems and Filters
Filtering:

– Forming a new image whose pixel values are 
transformed from original pixel values

Goals of filters: 
• Goal is to extract useful information from images, 

or transform images into another domain where 
we can modify/enhance image properties 
• Features (edges, corners, blobs…)
• super-resolution; in-painting; de-noising

61



Ranjay Krishna January 09, 2024Lecture 2 -

Intuition behind systems
● We will view systems as a sequence of filters applied to an image
● For example, multiplying by a constant leaves the semantic content intact 

○ but can reveal interesting patterns

62
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● Neural networks and specifically convolutional neural networks are a 
sequence of filters (except they are a non-linear system) that contains 
multiple individual linear sub-systems.

As an aside - we will go into detail later in the course:

63
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Systems use Filters

● we define a system as a unit that converts an input function f[n,m] 
into an output (or response) function g[n,m] 
○ where (n,m) index into the function
○ In the case for images, (n,m) represents the spatial position in 

the image.

64
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Images produce a 2D matrix with pixel intensities at 
every location

Notation for 
discrete 
functions

65
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2D discrete system 
(system is a sequence of filters)
S is the system operator, defined as a mapping or assignment 
of possible inputs f[n,m] to some possible outputs g[n,m].

66
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2D discrete system
S is the system operator, defined as a mapping or assignment 
of possible inputs f[n,m] to some possible outputs g[n,m].

Other notations:

67
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Filter example #1: Moving Average

68

Q. What do you think will happen to the 
photo if we use a moving average 
filter? 

Assume that the moving average 
replaces each pixel with an average 
value of itself and all its neighboring 
pixels.



Ranjay Krishna January 09, 2024Lecture 2 -

Filter example #1: Moving Average

69
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Visualizing what happens with a moving average filter
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Courtesy of S. Seitz

  

70

The red box is 
the h matrix
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Visualizing what happens with a moving average filter



Ranjay Krishna January 09, 2024Lecture 2 -
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Visualizing what happens with a moving average filter



Ranjay Krishna January 09, 2024Lecture 2 -
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Visualizing what happens with a moving average filter
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0 10 20 30 30
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0 0 0 0 0 0 0 0 0 0

  

74

Visualizing what happens with a moving average filter
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Visualizing what happens with a moving average filter
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Visual interpretation of moving average
A moving average over a 3 × 3 neighborhood window

h is a 3x3 matrix with values 1/9 everywhere.

76
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Visual interpretation of moving average
A moving average over a 3 × 3 neighborhood window

h is a 3x3 matrix with values 1/9 everywhere.

Q. Why are the values 1/9?

77
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Filter example #1: Moving Average

In summary:

• This filter “Replaces” each 
pixel with an average of its 
neighborhood.

• Achieve smoothing effect 
(remove sharp features)

78
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How do we represent applying this filter mathematically?

Mathematical interpretation of moving average

79
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How do we represent applying this filter mathematically?

Mathematical interpretation of moving average
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Mathematical 
interpretation of 
moving average
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Mathematical 
interpretation of 
moving average

…
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Mathematical 
interpretation of 
moving average

…
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0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

84

Mathematical 
interpretation of 
moving average
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0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
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Lastly, divide by 1/9
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0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
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Now, instead of [0, 0], let’s do [n, m]
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0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
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Now, instead of [0, 0], let’s do [n, m]
…
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0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

88

Now, instead of [0, 0], let’s do [n, m]
…
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0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
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Now, instead of [0, 0], let’s do [n, m]
…
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0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

90

Now, instead of [0, 0], let’s do [n, m]
…



Ranjay Krishna January 09, 2024Lecture 2 -

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
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Now, instead of [0, 0], let’s do [n, m]
…
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0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
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Now, instead of [0, 0], let’s do [n, m]



Ranjay Krishna January 09, 2024Lecture 2 -

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
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Now, instead of [0, 0], let’s do [n, m]
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0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
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Now, instead of [0, 0], let’s do [n, m]
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0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
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Lastly, divide by 1/9



Ranjay Krishna January 09, 2024Lecture 2 -

We can re-write the equation using summations

Q. What values will k take?

96

1 11

1 11

1 11

Mathematical interpretation of moving average
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How do we represent applying this filter mathematically?

k goes from n-1 to n+1

97

Mathematical interpretation of moving average

1 11

1 11

1 11
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Mathematical interpretation of moving average

How do we represent applying this filter mathematically?

Q. What values will l take?

1 11

1 11

1 11



Ranjay Krishna January 09, 2024Lecture 2 -

How do we represent applying this filter mathematically?

l goes from m-1 to m+1

99

Mathematical interpretation of moving average

1 11

1 11

1 11
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Math formula for the moving average filter

100

A moving average over a 3 × 3 neighborhood window

We can write this operation mathematically:

1 11

1 11

1 11
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Rewriting this formula

101

1 11

1 11

1 11

We are almost done. Let’s rewrite this formula a little bit
Let 
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Rewriting this formula
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1 11

1 11

1 11

We are almost done. Let’s rewrite this formula a little bit
Let 
therefore, 

Now we can replace k in the equation above
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Rewriting this formula
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1 11

1 11

1 11

We are almost done. Let’s rewrite this formula a little bit
Let 
therefore, 
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Rewriting this formula
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1 11

1 11

1 11

So now we have this:
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So now we have this:

We can simplify the equations in red:

Rewriting this formula
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1 11

1 11

1 11
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So now we have this:

Remember that summations are just for-loops!!

Rewriting this formula
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1 11

1 11

1 11
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So now we have this:

Remember that summations are just for-loops!!

Rewriting this formula

107

1 11

1 11

1 11
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One last change: since there are no more k and only k’, 
let’s just write k’ as k

Rewriting this formula

108

1 11

1 11

1 11
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Let’s repeat for l, just like we did for k

Mathematical interpretation of moving average
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1 11

1 11

1 11
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Filter example #1: Moving Average

110
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Filter example #2: Image Segmentation

Q. How would you use pixel values to design a filter to segment an image so that 
you only keep around the edges?

111
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Filter example #2: Image Segmentation

● Use a simple pixel threshold:
255,

112
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Summary so far
- Discrete systems convert input discrete signals and convert them into 

something more meaningful.
- There are an infinite number of possible filters we can design. 
- What are ways we can category the space of possible systems?

113
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● Color spaces
● Image sampling and quantization
● Image histograms
● Images as functions
● Filters
● Properties of systems

Today’s agenda

114
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● Amplitude properties:
○ Additivity

Properties of systems

115
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Example question:
Q. Is the moving average filter additive?

How would you prove it?

116

1 11

1 11

1 11
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Let 

Example question:
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1 11

1 11

1 11
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Let 

Example question:
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Let 

Example question:
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Let 

Example question:
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Let 

Example question:

121
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Let 

Example question:
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1 11

1 11
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● Amplitude properties:
○ Additivity

Properties of systems
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● Amplitude properties:
○ Additivity

 
○ Homogeneity

Properties of systems

124
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Another question:
Q. Is the moving average filter homogeneous?

Practice proving it at home using:

125

1 11

1 11

1 11
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● Color spaces
● Image sampling and quantization
● Image histograms
● Images as functions
● Filters
● Properties of systems

What we covered today

126
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Next time:

127

Linear systems and convolutions


