Lecture 1: Brief history of computer vision

CSE 455 - Computer Vision

Ranjay Krishna

Lecture 1 - 1

Science stands on the shoulder of giants

Ranjay Krishna

Computer vision draws origins from math & physics

Pinhole projection, optics

Projective geometry

Models of color vision (trichromacy)

Ranjay Krishna

Early theories of visual perception: Helmholtz,

Lecture 1 -

Two big technologies changed how computer vision was studied and how we understand them today.

Q. Can anyone here guess what those two events were?

Lecture 1 - 4

First technology

Aside from physics and math, computer vision also has connections to art

HISTORY OF CAMERA

Ranjay Krishna

Lecture 1 - 5

Pictures before 1838

Portraiture - artists would spend hours/days drawing their subjects who stood still in front of them

January 7, 2025

Ranjay Krishna

Lecture 1 - 6

1812: Jacques-Louis-David The Emperor Napoleon at his Study at the Tuileries

1808: Ingres, La grande baigneuse

1837: Niépce, First photo of one's meal

Ranjay Krishna

Lecture 1 - 9

1838: Boulevard du Temple, Daguerre

Ranjay Krishna

Lecture 1 - 10

1838: First selfie, Robert Cornelius

Ranjay Krishna

Lecture 1 - 11

Technology often begets fear

"From today, painting is dead" — painter Paul Delaroche at a demonstration of the Daguerreotype, 1839

Ranjay Krishna

Lecture 1 - 12

Second technology

• 1957: Digital scanner invented at NIST

Ranjay Krishna

Lecture 1 - 13

With smaller cameras and larger storage,

We began curating large scale databases of images online

Ranjay Krishna

Lecture 1 - 14

With those images, we now train models to understand what is in an image

We can also train models to generate new images

Neural Style Transfer [Gatys et al. 2015]

Ranjay Krishna

Lecture 1 - 16

Ranjay Krishna

Lecture 1 - 17

New interactive art

Ranjay Krishna

Lecture 1 - 18

New technology begets fear

Can Computers Create Art?

Aaron Hertzmann Adobe Research* Working draft[†]

January 16, 2018

Abstract

This paper discusses whether computers, using Artifical Intelligence (AI), could create art. The first part concerns AI-based tools for assisting with art making. The history of technologies that automated aspects of art is covered, including photography and animation. In each case, we see initial fears and denial of the technology, followed by acceptance, and a blossoming of new creative and professional opportunities for artists. The hype and reality of Artificial Intelligence (AI) tools for art making is discussed, together with predictions about how AI tools will be used. The second part concerns AI systems that could conceive of artwork, and be credited with authorship of an artwork.

-486v1 [cs.AI] 13 Jan 2018

Ranjay Krishna

Lecture 1 - 19

At the end of the day, vision is for doing

One single model controls multiple robot embodiments [Link to paper]

Ranjay Krishna

Lecture 1 - 20

Robots and agents powered by vision

have often been depicted by popular media

Lecture 1 - 21

Depictions of AI: Myths and Stories

Legend of Talos Adrienne Mayor, *Gods and Robots* Ranjay Krishna

R. U. R. (1920)

Data in Star Trek (1987)

Lecture 1 - 22

1965

1956

Ranjay Krishna

Lecture 1 - 23

l'm sorry, Dave. l'm afraid l can't do that.

1968

Ranjay Krishna

Lecture 1 - 24

Ranjay Krishna

Lecture 1 - 25

Aside from physics, math, art, popular media,

Computer Vision also draws on fundamental findings in neuroscience

Lecture 1 - 26

Human vision is superbly efficient

Potter, Biederman, etc. 1970s

Ranjay Krishna

Lecture 1 -

Aside from physics, math, art, popular media, neuroscience

Computer Vision is also influenced by cognitive science explorations

Lecture 1 - 31

Change Blindness

Rensink, O'regan, Simon, etc.

Ranjay Krishna

Lecture 1 -

Change Blindness

Rensink, O'regan, Simon, etc.

Ranjay Krishna

Lecture 1 -

camouflage

Ranjay Krishna

Lecture 1 -

Who are these two people?

January 7, 2025

Ranjay Krishna

Lecture 1 -

Ranjay Krishna

Lecture 1 -
Motion without movement

Ranjay Krishna

Common theme in computer vision: which parts of human vision are necessary for intelligent systems?

Ranjay Krishna

Lecture 1 - 38

So, what is computer vision?

Ranjay Krishna

Lecture 1 -

Today's agenda

- History of understanding perception
- Introduction to computer vision
- Course overview

Today's agenda

- History of understanding perception
- Introduction to computer vision
- Course overview

The goal of computer vision: convert light into meaning

January 7, 2025

Ranjay Krishna

What kind of information can we extract from an image?

- 1. Semantic information
- 2. Geometric 3D information

Vision as a source of semantic information

Extracting Semantic

Segment Anything 2023

January 7, 2025

Ranjay Krishna

Extracting geometric information

Real-time stereo

Pollefeys et al.

Goesele et al.

January 7, 2025

Ranjay Krishna

Geometric 3D information from 2D images

Input RGB-D

6D pose and size

Per-frame 3D Prediction

January 7, 2025

TRI & GATech's ShaPO (ECCV'22): https://zubair-irshad.github.io/projects/ShAPO.html

Ranjay Krishna

MIT thought that computer vision would be solved as an undergraduate <u>summer project</u>

"The primary goal of the project is to construct a system of programs which will divide a [...] picture into regions such as likely objects, likely background areas and chaos."

"The final goal is OBJECT IDENTIFICATION which will actually name objects by matching them with a vocabulary of known objects." MASSACHUSETTS INSTITUTE OF TECHNOLOGY PROJECT MAC

Artificial Intelligence Group Vision Memo. No. 100. July 7, 1966

January 7, 2025

THE SUMMER VISION PROJECT

Seymour Papert

The summer vision project is an attempt to use our summer workers effectively in the construction of a significant part of a visual system. The particular task was chosen partly because it can be segmented into sub-problems which will allow individuals to work independently and yet participate in the construction of a system complex enough to be a real landmark in the development of "pattern recognition".

Ranjay Krishna

But why is computer vision so hard?

It is an ill posed problem

Ranjay Krishna

Lecture 1 - 49

Computers need to convert pixel intensities into meaning

Ranjay Krishna

Why study computer vision?

Vision is useful: Images and video are everywhere!

Ranjay Krishna

Lecture 1 -

80% of all web traffic is images and videos

Majority of the internet is dark matter without computer vision

Ranjay Krishna

Lecture 1 - 52

Special effects: shape and motion capture

Ranjay Krishna

Lecture 1 -

3D urban modeling

Google Streetview - custom campus tours

Ranjay Krishna

Lecture 1 -

3D urban modeling: Microsoft Photosynth

http://photosynth.net

Ranjay Krishna

Lecture 1 -

Face detection

Many digital cameras now detect faces
Canon, Sony, Fuji, ...

Ranjay Krishna

Smile detection

The Smile Shutter flow

Imagine a camera smart enough to catch every smile! In Smile Shutter Mode, your Cyber-shot[®] camera can automatically trip the shutter at just the right instant to catch the perfect expression.

Sony Cyber-shot® T70 Digital Still Camera

Ranjay Krishna

Lecture 1 -

January 5%, 2025

Face recognition: Apple iPhoto software

January 7, 2025

Lecture 1 -

Ranjay Krishna

Biometrics

How the Afghan Girl was Identified by Her Iris Patterns

Ranjay Krishna

Lecture 1 -

Biometrics

Fingerprint scanners on many new laptops, other devices

Face recognition systems now on iphones and samsungs

January 7, 2025

Ranjay Krishna

Optical character recognition (OCR)

Technology to convert scanned docs to text

• If you have a scanner, it probably came with OCR software

Digit recognition, AT&T labs

License plate readers http://en.wikipedia.org/wiki/Automatic_number_plate_recognition

January 7, 2025

Ranjay Krishna

Google maps: Annotate all houses and streets

Avenue des Sapins

Goodfellow et al. 2014

January 7, 2025

Ranjay Krishna

Vision-powered toys and robots in the 2000s

Ranjay Krishna

Lecture 1 -

Vision-powered toys and robots in the 2020s

Scout home security robot - monitors your house

Unitree Go1's companion robot - like a dog

Ranjay Krishna

Lecture 1 - 64

Brown

White

Polka dot

Skirt

25

The Leader in Visual Al for Retail

Syte changes the way retailers connect shoppers with the products that inspire them by delivering the best Visual AI technology for retail. Discover our solutions that empower retailers to increase customer engagement, and boost conversion and sales.

Apple Vision Pro, Snapstacles and Google glasses

me in undergrad ->

Lecture 1 -

Ranjay Krishna

Automotive safety

<u>Mobileye</u>: Vision systems in high-end BMW, GM, Volvo models

Claimed that they would release self-driving cars by 2015. Still not there.

Ranjay Krishna

Lecture 1 -

Source Januarys 7°, 2025

Vision in supermarkets

LaneHawk by EvolutionRobotics (acquired by iRobot for \$74M in 2012)

"A smart camera is flush-mounted in the checkout lane, continuously watching for items. When an item is detected and recognized, the cashier verifies the quantity of items that were found under the basket, and continues to close the transaction. The item can remain under the basket, and with LaneHawk, you are assured to get paid for it... "

Ranjay Krishna

Amazon Go

Ranjay Krishna

January 7, 2025

Vision-based interaction (and games)

Microsoft's Kinect


```
Sony EyeToy
```

Ranjay Krishna

Lecture 1 -

Augmented Reality

Ranjay Krishna

Lecture 1 -

Virtual Reality

Ranjay Krishna

Lecture 1 -
Vision for robotics, space exploration

<u>NASA'S Mars Exploration Rover Spirit</u> captured this westward view from atop a low plateau where Spirit spent the closing months of 2007.

Vision systems (JPL) used for several tasks

- Panorama stitching
- 3D terrain modeling
- Obstacle detection, position tracking
- For more, read "<u>Computer Vision on Mars</u>" by Matthies et al.

Ranjay Krishna

Lecture 1 -

Machine Bias

There's software used across the country to predict future criminals. And it's biased against blacks.

Ranjay Krishna

Lecture 1 -

MGMT "When You Die"

Ranjay Krishna

Lecture 1 -

How should you make sense of computer vision as a field?

Let's situate computer vision in the broader context of AI

I want to change your conception of computer vision is

Lecture 1 - 76

Lecture 1 - 77

Lecture 1 - 78

Lecture 1 - 79

Lecture 1 - 80

Lecture 1 - 81

Lecture 1 - 82

Lecture 1 - 83

CVPR has seen a large number of deep learning people enter

Ranjay Krishna

Lecture 1 - 84

Like · Reply · 5d · Edited

Lecture 1 -

if we've seen our Newton yet. But looking hopeful.

January 7, 2025

0 9

The Affective Growth of Computer Vision

Norman Makoto Su David J. Crandall Luddy School of Informatics, Computing, and Engineering Indiana University Bloomington

Abstract

The success of deep learning has led to intense growth and interest in computer vision, along with concerns about its potential impact on society. Yet we know little about how these changes have affected the people that research and practice computer vision: we as a community spend so much effort trying to replicate the abilities of humans, but so little time considering the impact of this work on ourselves. In this paper, we report on a study in which we asked computer vision researchers and practitioners to write stories about emotionally-salient events that happened to them. Our analysis of over 50 responses found tremendous affective (emotional) strain in the computer vision community. While many describe excitement and success, we found strikingly frequent feelings of isolation, cynicism, apathy, and exasperation over the state of the field. This is especially true among people who do not share the unbridled enthusiasm for normative standards for computer vision research and who do not see themselves as part of the "incrowd." Our findings suggest that these feelings are closely tied to the kinds of research and professional practices now expected in computer vision. We argue that as a community with significant stature, we need to work towards an inclusive culture that makes transparent and addresses the real emotional toil of its members.

Academics are starting to get worried...

Choose Your Weapon: Survival Strategies for Depressed AI Academics

Julian Togelius and Georgios N. Yannakakis*

April 14, 2023

Abstract

Are you an AI researcher at an academic institution? Are you anxious you are not coping with the current pace of AI advancements? Do you feel you have no (or very limited) access to the computational and human resources required for an AI research breakthrough? You are not alone; we feel the same way. A growing number of AI academics can no longer find the means and resources to compete at a global scale. This is a somewhat recent phenomenon, but an accelerating one, with private actors investing enormous compute resources into cutting edge AI research. Here, we discuss what you can do to stay competitive while remaining an academic. We also briefly discuss what universities and the private sector could do improve the situation, if they are so inclined. This is not an exhaustive list of strategies, and you may not agree with all of them, but it serves to start a discussion.

https://arxiv.org/pdf/2304.06035.pdf https://vision.soic.indiana.edu/papers/affective2021cvpr.pdf

January 7, 2025

Lecture 1 - 86

Ranjay Krishna

Workshops in 2023 in response

Date: June 19, 12:45 PM PDT East Exhibit Hall B + <u>Zoom</u>

A forum to discuss ways the academic community can adapt and continue to thrive

What is QVCV?

Computer vision is at an inflection point. The triumph of massive generative models is having a multi-faceted impact on our community. On one hand, the advent of these models has opened up new avenues of research and generated new challenges, making the field even more exhilarating. The field is experiencing a significant influx of new researchers and engineers eager to build on these recent breakthroughs, and the industry is driving towards the development of end-user products. On the other hand, the rapid pace of progress and fear of not keeping up with key developments is leaving researchers uncertain about which problems to tackle next. It's likely that a significant proportion of computer vision researchers are undergoing a type of "existential crisis" currently, and that's why we believe a workshop would provide an excellent opportunity to address and discuss this new state of affairs.

January 7, 2025

https://sites.google.com/view/academic-cv/ https://gkioxari.github.io/Tutorials/iccv2023/

Ranjay Krishna

Lecture 1 - 87

Lecture 1 - 88

Lecture 1 - 89

Lecture 1 -

CVPR is a lot more than just deep learning and recognition - what CSE455 will cover

	1	3D from multi-view and sensors	2	1,090	246
	2	Image and video synthesis and generation		889	185
	3	Humans: Face, body, pose, gesture, movement		813	166
	4	Transfer, meta, low-shot, continual, or long-tail learning		688	153
	5	Recognition: Categorization, detection, retrieval		673	139
	6	Vision, language, and reasoning		631	118
	7	Low-level vision		553	126
	8	Segmentation, grouping and shape analysis		524	113
	9	Deep learning architectures and techniques		485	92
	10	Multi-modal learning		450	89
	11	3D from single images		431	91
	12	Medical and biological vision, cell microscopy		420	53
	13	Video: Action and event understanding		373	83
	14	Autonomous driving		359	69
	15	Self-supervised or unsupervised representation learning		349	71
	16	Datasets and evaluation		344	54
	17	Scene analysis and understanding		276	54
	18	Adversarial attack and defense		274	61
	19	Efficient and scalable vision		252	48
	20	Computational imaging		226	53
	21	Video: Low-level analysis, motion, and tracking		215	46
Krishna	22	Vision applications and systems		171	35
	~~	1.0.1			1000

What I cover in my CSE493G1 deep learning course

	1	3D from multi-view and sensors	1,	.090	246
	2	Image and video synthesis and generation		889	185
	3	Humans: Face, body, pose, gesture, movement		813	166
	4	Transfer, meta, low-shot, continual, or long-tail learning		688	153
	5	Recognition: Categorization, detection, retrieval		673	139
	6	Vision, language, and reasoning		631	<mark>1</mark> 18
	7	Low-level vision		553	1 26
	8	Segmentation, grouping and shape analysis		524	1 13
	9	Deep learning architectures and techniques		485	92
	10	Multi-modal learning		450	89
	11	3D from single images		431	91
	12	Medical and biological vision, cell microscopy		420	53
	13	Video: Action and event understanding		373	83
	14	Autonomous driving		359	69
	15	Self-supervised or unsupervised representation learning		349	71
	16	Datasets and evaluation		344	54
	17	Scene analysis and understanding		276	54
	18	Adversarial attack and defense		274	61
	19	Efficient and scalable vision		252	48
	20	Computational imaging		226	53
	21	Video: Low-level analysis, motion, and tracking		215	46
Ranjay Krishna	22	Vision applications and systems		171	35
	~~	A.P. 1			-

Decade by decade

- **1960s**: Image processing and pattern recognition, blocks world
- **1970s**: Key recovery problems defined: structure from motion, stereo, shape from shading, color constancy. Attempts at knowledge-based recognition
- **1980s**: Fundamental and essential matrix, multi-scale analysis, corner and edge detection, optical flow, geometric recognition as alignment
- **1990s**: Multi-view geometry, statistical and appearance-based models for recognition, first approaches for (class-specific) object detection
- 2000s: Local features, generic object recognition and detection
- 2010s: Deep learning, big data

Adapted from J. Malik

January 7, 2025

Ranjay Krishna

Lecture 1 -

CVPR 2024 was here in June 2024 (2025 is in Nashville)

https://cvpr.thecvf.com/

Ranjay Krishna

Lecture 1 - 94

Why should you go to CVPR? It is ranked #4 amongst all scientific publications across all disciplines

(Publication	h5-index	h5-median
1.	Nature	467	707
2.	The New England Journal of Medicine	439	876
3.	Science	424	665
4.	IEEE/CVF Conference on Computer Vision and Pattern Recognition	422	681
5.	The Lancet	368	688
6.	Nature Communications	349	456
7.	Advanced Materials	326	415
8.	Cell	316	503

Lecture 1 - 95

January 7, 2025

Source: Google scholar

Ranjay Krishna

Today's agenda

- History of computer vision
- Introduction to computer vision
- Course overview

Lecture 1 - 96

Course staff (Office hours coming soon)

Ranjay Krishna

Lecture 1 - 97

Class times

Lectures

• Tuesdays and Thursdays 10:00-11:20am @ CSE2 G20

Recitations (2 options)

- Friday mornings 9:30-10:20am @ MGH 231
- Friday afternoons 12:30-1:20pm @ CSE2 G01

Ranjay Krishna

Lecture 1 - 98

Lecture recordings

Will be made available on canvas:

https://canvas.uw.edu/courses/1786126/

Come to class!

Lecture 1 - 99

Contacting instructor and TAs

- All announcements, Q&A in EdStem
 - o <u>https://edstem.org/us/courses/70815</u>
 - All course related posts should be public.
- All private correspondences to course staff should post private (instructors only) post on EdStem.
 - Use this for personal problems, and debugging help to avoid showing other people your solutions.
 - \circ If you have questions that others can benefit from, do a public post.

Ranjay Krishna

Lecture 1 - 100

How to think about computer vision?

Breadth

- Computer vision is a huge field
- It can impact every aspect of life and society
- It is driving the current generative AI revolution
- Pixels are everywhere in our lives and cyber space
- CSE455 is meant as an broad overview course,
 - we will not cover all topics of CV
- Lectures are mixture of detailed techniques and high level ideas
- I want to teach you to speak our "language"

Depth

Ranjay Krishna

0 ...

Lecture 1 - 101

How to think about computer vision?

Breadth

o ...

Depth

- Computer vision is a highly technical field, i.e. know your math!
- Master bread-and-butter techniques: face recognition, corners, lines, features, optical flows, clustering and segmentation

Lecture 1 - 102

January 7, 2025

- Programming assignments: be a good coder AND a good writer
- Math problem questions: know your concepts!
- Final Exam: your chance to shine!

Ranjay Krishna

Official website

https://courses.cs.washington.edu/courses/cse455/25wi/

Spring 2025 we changed the entire course. We will continue to improve it

All assignments, lectures, etc. changed last year

Ranjay Krishna

Lecture 1 - 103

What is new?

All assignments are new!

- No more coding in C. Everything is in Python
- We are moving everything to Google Colab

All slides are all new.

• There is some overlap with topics from previous years but taught differently

Lecture 1 - 104

January 7, 2025

• This is how I understand things in vision.

Ranjay Krishna

What can go wrong with all the changes?

We might invariably introduce errors in the assignments. We have have mistakes in the slides.

Help us detect and fix them!

I will give you extra credit if you post errors on EdStem.

Lecture 1 - 105

Grading policy

75%: 5 Assignments.

- **0%** for Assignment 0
- 20% for Assignment 1
- **15%** for Assignment 2, 3, & 4
- **10%** for Assignment 5

24%: 1 Final Exam.

up to 3%: Course Participation in Lectures, EdStem, & Recitations.

10%: Extra Credit - in assignments and in final exam.

Ranjay Krishna

Lecture 1 - 106

Grading policy - Assignments

- Assignment 0 (Using Colabs, Python basics)
 - Recommended Due by Jan 14 (Ungraded)
- Assignment 1 (Filters, Convolutions, Edges)
 - Due Jan 24, 11:59 PST
- Assignment 2 (Keypoints, Panaromas, Seam Carving)
 Due Feb 7, 11:59 PST
- Assignment 3 (Cameras, Clustering, Segmentation)
 Due Feb 21, 11:59 PST
- **Assignment 4** (kNN, PCA, LDA, Detection)
 - $\circ~$ Due Mar 7, 11:59 PST
- **Assignment 5** (Optical Flow, Tracking, Machine Learning)

Lecture 1 - 107

January 7, 2025

• Due Mar 15, 11:59 PST

Ranjay Krishna

Grading policy - assignments

- Most assignments will have an extra credit worth 1% of your total grade.
- Late policy
 - 5 free late days use them in your ways
 - Maximum of 2 late days per assignment
 - Afterwards, 25% off per day late
- Collaboration policy
 - Read the student code book, understand what is 'collaboration' and what is 'academic infraction'

Lecture 1 - 108

January 7, 2025

• We have links to this on the course webpage

Ranjay Krishna
Submitting homeworks

• **Homeworks** will consist of python files with code and jupyter notebooks.

Jupyter notebooks:

- Will guide you through the assignments.
- Might contain written questions
- Once you are done, convert the ipython notebook into a pdf and submit on Gradescope (<u>https://www.gradescope.com/courses/942464</u>).
 - Access code: Z3EXZY

• Python files:

- All code must be submitted to Gradescope as well.
- Check our course website for details on submissions.
- A0 will be live soon, you can start working on it immediately. We will try and get all the assignments out to you as soon as they are ready.

Lecture 1 - 109

January 7, 2025

Ranjay Krishna

Final exam

Ranjay Krishna

- Monday May 17th 10:30am 12:20pm @ CSE2 G20
 - Optional make up exam: details will be sent out later in the quarter
 - \circ $\,$ We will send out form for students to apply to take the make up
- Will contain written questions from the concept covered in class or any questions in the homeworks.
- Can require you to solve technical math problems.
- Will contain a lot of multiple choice and true-false questions. We will release a practice final towards the end of the quarter.

Lecture 1 - 110

Why should you take the class?

- Become a vision researcher
 - o CVPR 2019 conference
 - ICCV 2019 conference
- Become a vision engineer in industry
 - Perception team at Google AI
 - Vision at Google Cloud
 - Vision at Facebook AI
- General interest

Ranjay Krishna

Lecture 1 - 111

CSE 455 Roadmap

Ranjay Krishna

Pixels	Segments	Images	Videos	Web
Convolutions Edges Descriptors	Resizing Segmentation Clustering	Recognition Detection Machine learning	Motion Tracking	Neural networks Convolutional neural networks

From Convolutions to Convolutions

January 7, 2025

Lecture 1 - 112

Who is Ranjay?

Ranjay Krishna (Assistant Professor at UW CSE)

- PhD from Stanford
- I worked with Fei-Fei Li (AI)
- And with Michael Bernstein (HCI)

January 7, 2025

Other courses:

- UW CSE 493G1 [2023, 2024, 2025]: Deep learning for computer vision
- UW CSE 599H [2023]: Artificial intelligence vs intelligence augmentation
- Stanford CS 231N [2020, 2021]: Convolutional neural networks for computer vision
- Stanford CS 131 [2017, 2018, 2019]: Computer vision fundamentals and applications

Ranjay Krishna

Lecture 1 -

113

What I do aside from teaching? I co-direct the RAIVN lab at UW

https://raivn.cs.washington.edu/

Ranjay Krishna

Lecture 1 - 114

What I do aside from teaching? I lead the Vision team at Ai2

https://prior.allenai.org/

January 7, 2025

Ranjay Krishna

Lecture 1 - 115

If there is time

Demo: molmo.allenai.org

Lecture 1 - 116

Welcome to CSE455

Let's have a fun quarter!

Ranjay Krishna

Lecture 1 - 117