CSE455: Computer Vision

Geometric Primitives & Transformations

Joshua Jung

Reference: Szeliski 2.1

What is the most popular topic at CVPR?

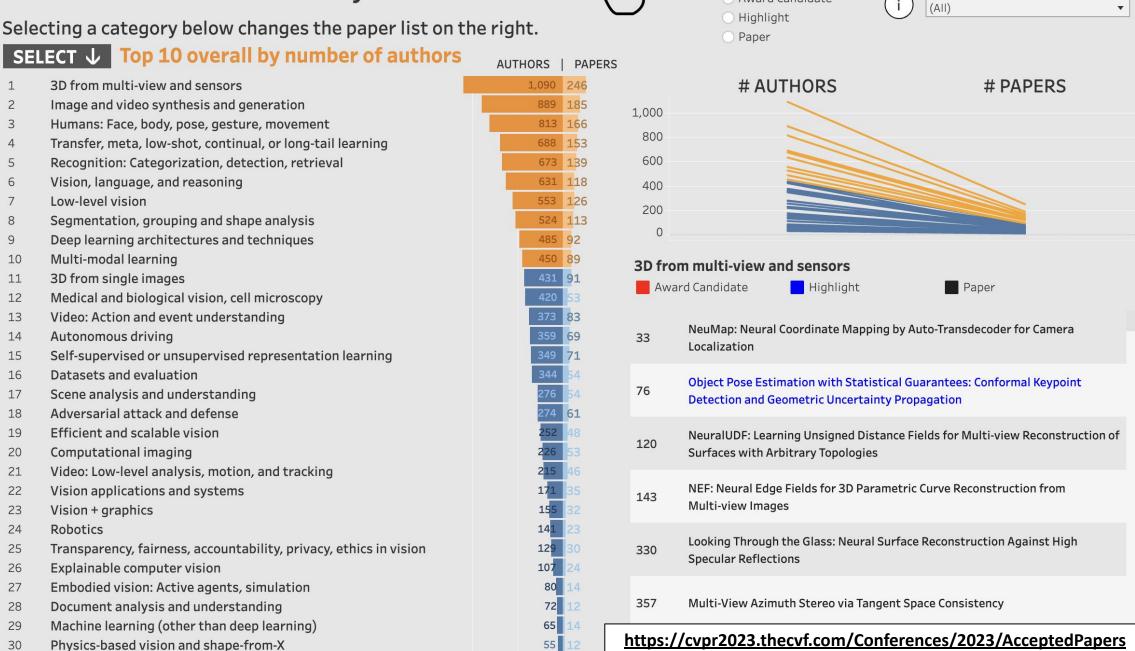
	Publication	<u>h5-index</u>	<u>h5-median</u>
1.	Nature	<u>467</u>	707
2.	The New England Journal of Medicine	<u>439</u>	876
3.	Science	<u>424</u>	665
4.	IEEE/CVF Conference on Computer Vision and Pattern Recognition	<u>422</u>	681
5.	The Lancet	<u>368</u>	688
6.	Nature Communications	349	456
7.	Advanced Materials	326	415
8.	Cell	<u>316</u>	503
9.	Neural Information Processing Systems	309	503
10.	International Conference on Learning Representations	303	563

CVPR 2023 by the Numbers

Select All

Award Candidate

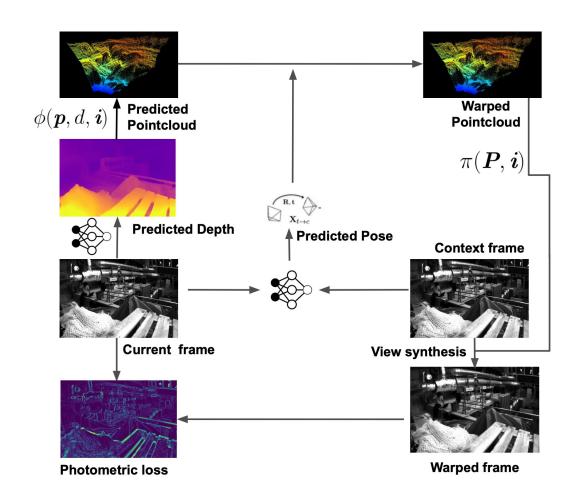
PICK INSTITUTIONS



Why do we care about Geometry?

- Self-driving cars: navigation, collision avoidance
- Robots: navigation, manipulation
- Graphics & AR/VR: augment or generate images
- Photogrammetry (architecture, surveys)
- Pattern Recognition (web, medical imaging, etc)

Geometry is more useful now than ever!



PackNet

Overview of Geometric Vision in CSE455

Geometric Image Formation

The Pinhole Camera model + Calibration

Multi-view Geometry

Structure-from-Motion

What will we learn today?

- Why Geometric Vision Matters
- Geometric Primitives in 2D & 3D
- 2D & 3D Transformations

General Advice / Observations

- Fundamentals: need to (eventually) feel easy
- Try to do the math in parallel live in class!
- If not grokking this: practice later, ask on Ed, OH
- Lots of good (hard?) exercises in Szeliski's book

What will we learn today?

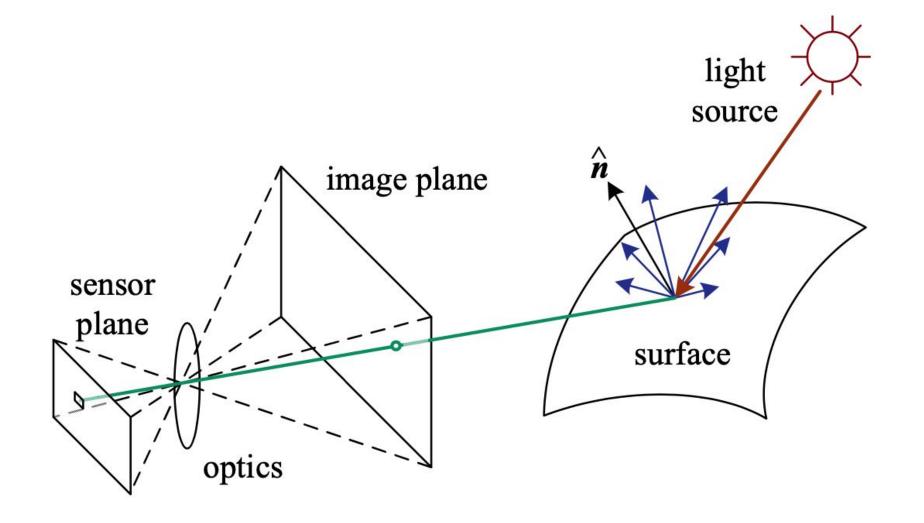
Why Geometric Vision Matters

Geometric Primitives in 2D & 3D

2D & 3D Transformations

Images are 2D projections of the 3D world

Simplified Image Formation



Perspective Projection

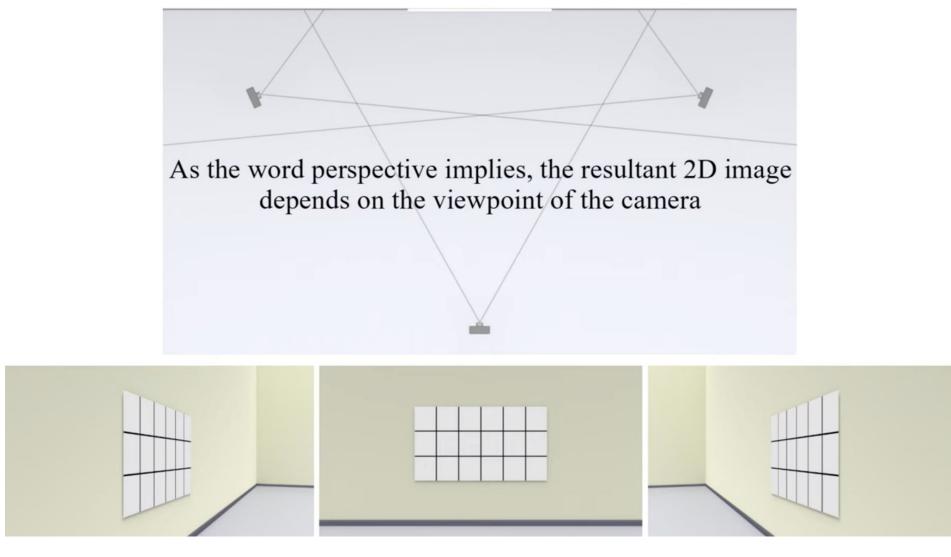


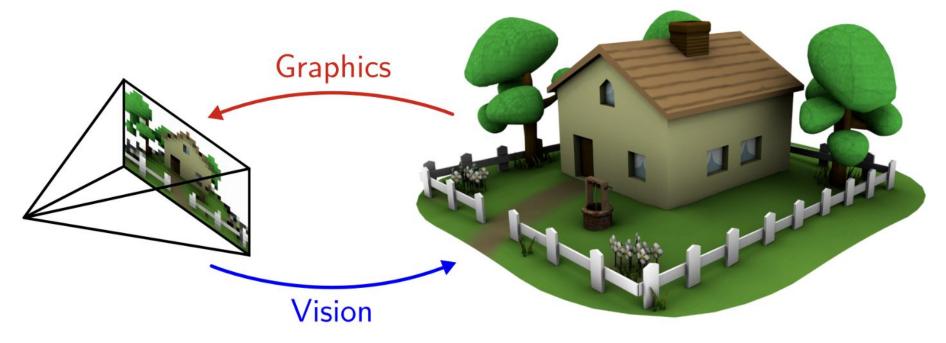
Figure: https://www.youtube.com/@huseyin_ozde...

Can we understand the 3D world from 2D images?

CV is an ill-posed inverse problem

2D Image

3D Scene



$\mathbf{D} \cdot \mathbf{I}$	N 1		
Pixel	1\ /1	7 +	VIV
Γ	- 1 // 1	<i>a</i> 1	IIX
		~ ~	

217 191 252 255 239 102 80 200 146 138 159 94 91 121 138 179 106 136 85 41 115 129 83 112 67 **Objects**

Material

Shape/Geometry

Motion

Semantics

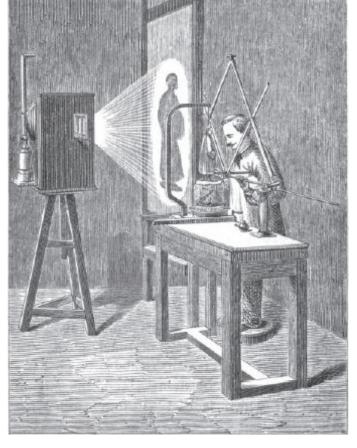
3D Pose

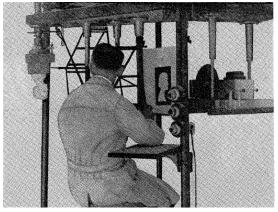
Slide credit: Andreas Geiger

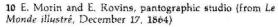
- 2020-: geometry + learning
- 2010s: deep learning
- 2000s: local features, birth of benchmarks
- 1990s: digital camera, 3D reconstruction
- 1980s: epipolar geometry (stereo) [Longuet-Higgins]

• . . .

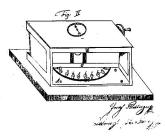
• 1860s: first Computer Vision startup? [Willème]



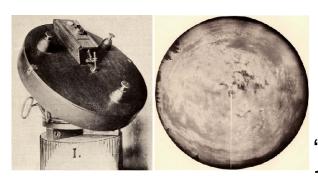




- 1860s: first Computer Vision startup? [Willème]
- 1850s: birth of photogrammetry [Laussedat]
- 1840s: panoramic photography



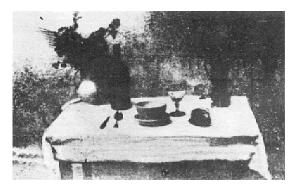
Puchberger 1843



"Cloud camera", 190?

Source: P. Sturm

- 1860s: first Computer Vision startup? [Willème]
- 1850s: birth of photogrammetry [Laussedat]
- 1840s: panoramic photography
- 1822-39: birth of photography [Niépce, Daguerre]



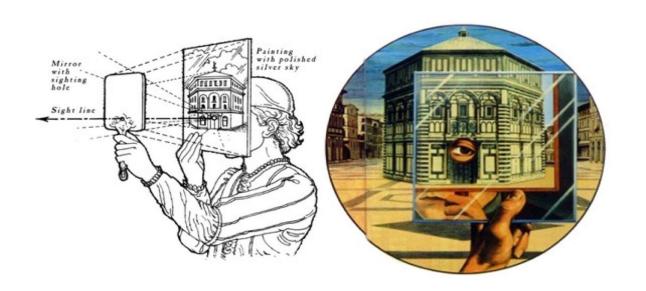
Niépce, "La Table Servie", 1822

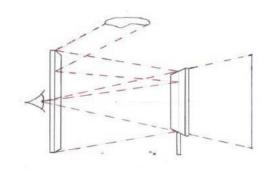
- 1773: general 3-point pose estimation [Lagrange]
- 1715: basic intrinsic calibration (pre-photography!) [Taylor]
- 1700's: topographic mapping from perspective drawings [Beautemps-Beaupré, Kappeler]

• 15th century: start of mathematical treatment of 3D, first AR app?

Augmented reality invented by Filippo Brunelleschi (1377-1446)?

Tavoletta prospettica di Brunelleschi





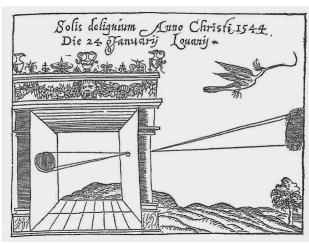
Source: P. Sturm

- 5th century BC: principles of pinhole camera, a.k.a. camera obscura
 - China: 5th century BC
 - Greece: 4th century BC
 - Egypt: 11th century
 - Throughout Europe: from 11th century onwards

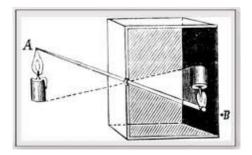
First mention ...

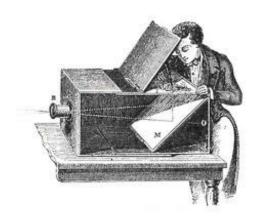
Chinese philosopher Mozi (470 to 390 BC)

First camera?



Greek philosopher Aristotle (384 to 322 BC)





What will we learn today?

Why Geometric Vision Matters

Geometric Primitives in 2D & 3D

2D & 3D Transformations

Points in Cartesian and Homogeneous Coordinates

2D points:
$$\mathbf{x} = (x, y) \in \mathcal{R}^2$$
 or column vector $\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$

3D points: $\mathbf{x} = (x, y, z) \in \mathcal{R}^3$ (often noted \mathbf{X} or \mathbf{P})

Homogeneous coordinates: append a 1

$$\mathbf{\bar{x}} = (x, y, 1) \qquad \mathbf{\bar{x}} = (x, y, z, 1)$$

Why?

Homogeneous coordinates in 2D

2D Projective Space: $\mathcal{P}^2 = \mathcal{R}^3 - (0,0,0)$ (same story in 3D with \mathcal{P}^3)

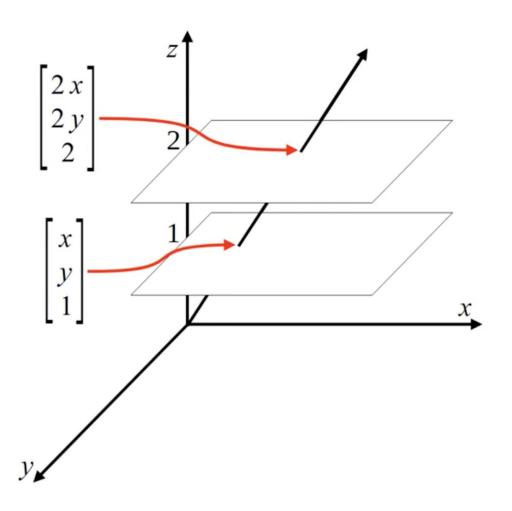
heterogeneous
$$\begin{bmatrix} x \\ y \end{bmatrix} \Rightarrow \begin{bmatrix} x \\ y \end{bmatrix}$$

homogeneous
$$\begin{vmatrix} x \\ y \\ w \end{vmatrix} \Rightarrow \begin{bmatrix} x/w \\ y/w \end{bmatrix}$$

• points differing only by scale are equivalent: $(x, y, w) \sim \lambda(x, y, w)$

$$\tilde{\mathbf{x}} = (\tilde{x}, \tilde{y}, \tilde{w}) = \tilde{w}(x, y, 1) = \tilde{w}\bar{\mathbf{x}}$$

Homogeneous coordinates in 2D



In homogeneous coordinates, a point and its scaled versions are same

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = w \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} wx \\ wy \\ w \end{bmatrix} \qquad w \neq 0$$

Everything is easier in Projective Space

2D Lines:

Representation: l = (a, b, c)

Equation: ax + by + c = 0

In homogeneous coordinates: $\bar{x}^T l = 0$

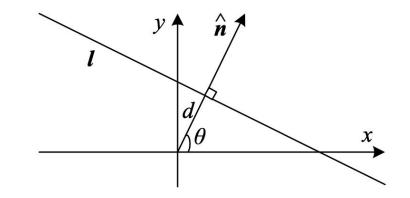
General idea: homogenous coordinates unlock the full power of linear algebra!

Everything is easier in Projective Space

2D Lines:

$$\tilde{\mathbf{x}}^{\mathrm{T}}\mathbf{l} = 0, \forall \tilde{\mathbf{x}} = (x, y, w) \in P^2$$

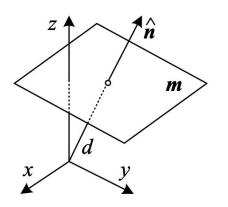
$$\mathbf{l} = (\hat{n}_x, \hat{n}_y, d) = (\hat{\mathbf{n}}, d) \text{ with } ||\hat{\mathbf{n}}|| = 1$$



3D planes: same!

$$\tilde{\mathbf{x}}^{\mathrm{T}}\mathbf{m} = \mathbf{0}, \forall \tilde{\mathbf{x}} = (x, y, z, w) \in P^3$$

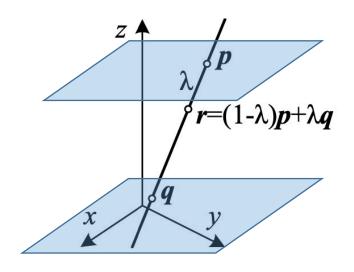
 $\mathbf{m} = (\hat{n}_x, \hat{n}_y, \hat{n}_z, d) = (\hat{\mathbf{n}}, d) \text{ with } ||\hat{\mathbf{n}}|| = 1$



Lines in 3D

Two-point parametrization:

$$\mathbf{r} = (1 - \lambda)\mathbf{p} + \lambda\mathbf{q}$$
 $\tilde{\mathbf{r}} = \mu\tilde{\mathbf{p}} + \lambda\tilde{\mathbf{q}}$

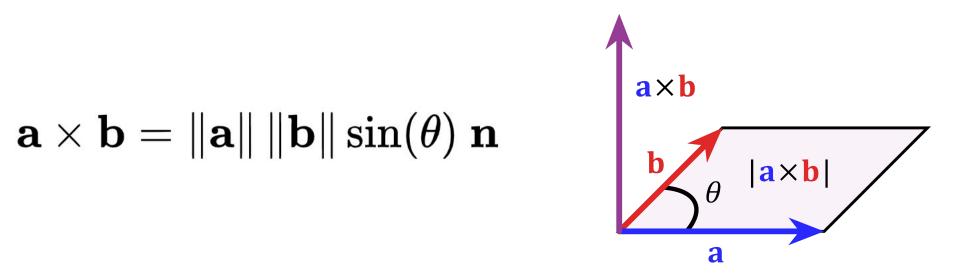


Two-plane parametrization:

coordinates $(x_0, y_0) \& (x_1, y_1)$ of intersection with planes at z = 0, 1 (or other planes)

Cross-product quick reminder

$$\mathbf{a} imes \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \sin(\theta) \mathbf{n}$$



$$\mathbf{a} imes\mathbf{b}=[\mathbf{a}]_{ imes}\mathbf{b}=egin{bmatrix}0&-a_3&a_2\a_3&0&-a_1\-a_2&a_1&0\end{bmatrix}egin{bmatrix}b_1\b_2\b_3\end{bmatrix}$$

Benefits of Homogeneous Coordinates

- Line Point duality:
 - $oldsymbol{\cdot}$ line between two 2D points: $ilde{f l} = ilde{f x}_1 imes ilde{f x}_2$
 - $oldsymbol{\cdot}$ intersection of two 2D lines: $ilde{\mathbf{x}} = ilde{\mathbf{l}}_1 imes ilde{\mathbf{l}}_2$
- Representation of Infinity:
 - points at infinity: (x, y, 0); line at infinity: (0,0,1)
- Parallel & vertical lines are easy (take-home: intersect //)
- Makes 2D & 3D transformations linear!

Questions?

What will we learn today?

Why Geometric Vision Matters

Geometric Primitives in 2D & 3D

2D & 3D Transformations

The camera as a coordinate transformation

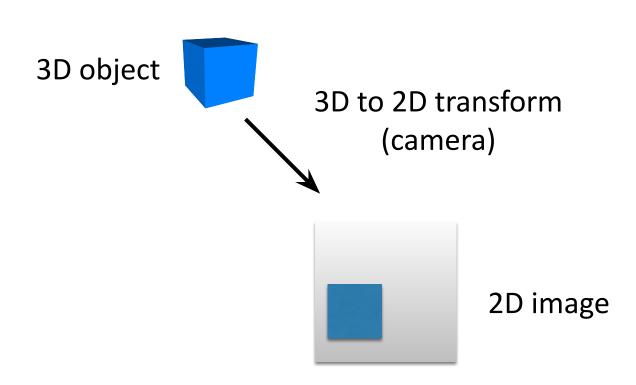
A camera is a mapping

from:

the 3D world

to:

a 2D image



The camera as a coordinate transformation

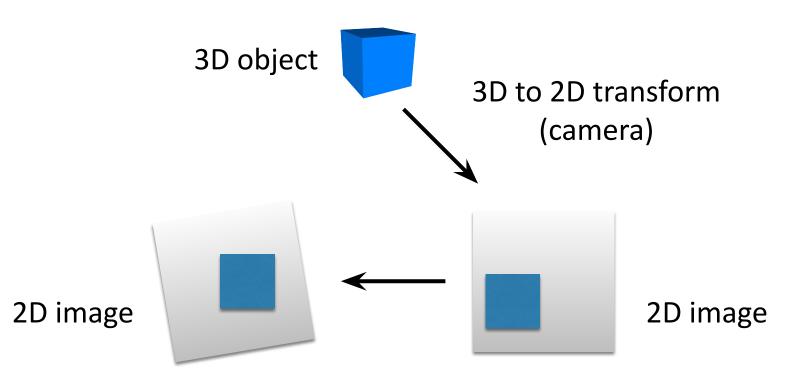
A camera is a mapping

from:

the 3D world

to:

a 2D image



2D to 2D transform (image warping)

Cameras and objects can move!

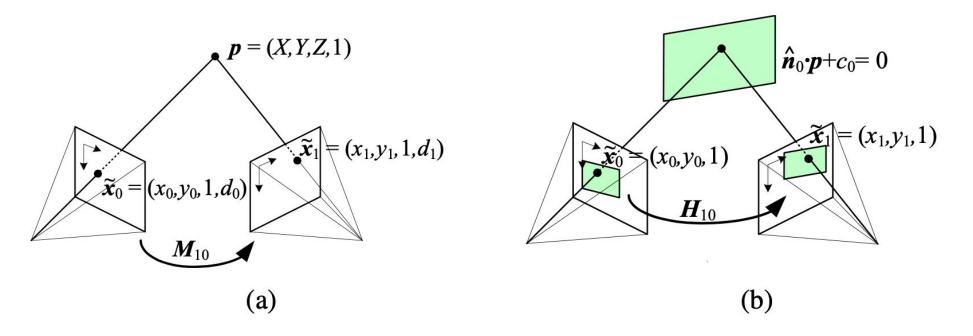
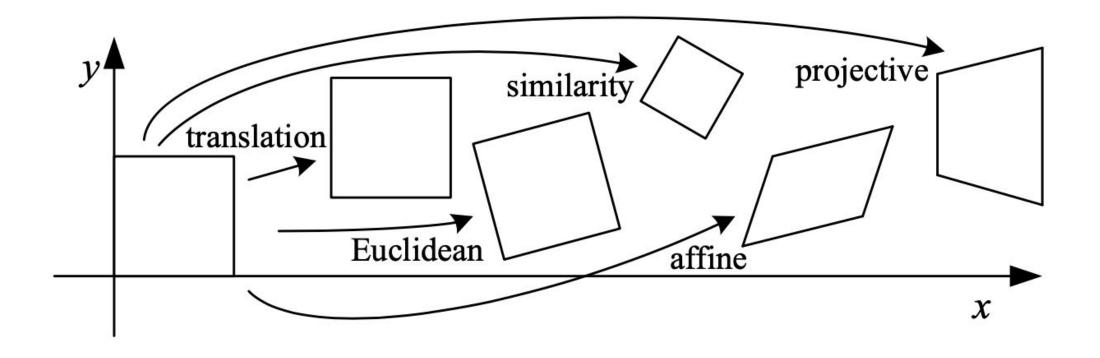


Figure 2.12 A point is projected into two images: (a) relationship between the 3D point coordinate (X, Y, Z, 1) and the 2D projected point (x, y, 1, d); (b) planar homography induced by points all lying on a common plane $\hat{\mathbf{n}}_0 \cdot \mathbf{p} + c_0 = 0$.

2D Transformations Zoo



Transformation = Matrix Multiplication

Scale

$$\mathbf{M} = \left[egin{array}{ccc} s_x & 0 \ 0 & s_y \end{array}
ight]$$

$$\mathbf{M} = \left[egin{array}{cc} -1 & 0 \ 0 & 1 \end{array}
ight]$$

Rotate

$$\mathbf{M} = \left[egin{array}{ccc} \cos heta & -\sin heta \ \sin heta & \cos heta \end{array}
ight] \qquad \qquad \mathbf{M} = \left[egin{array}{ccc} -1 & 0 \ 0 & -1 \end{array}
ight]$$

Flip across origin

$$\mathbf{M} = \left[egin{array}{ccc} -1 & 0 \ 0 & -1 \end{array}
ight]$$

Shear

$$\mathbf{M} = \left[egin{array}{cc} 1 & s_x \ s_y & 1 \end{array}
ight]$$

Identity

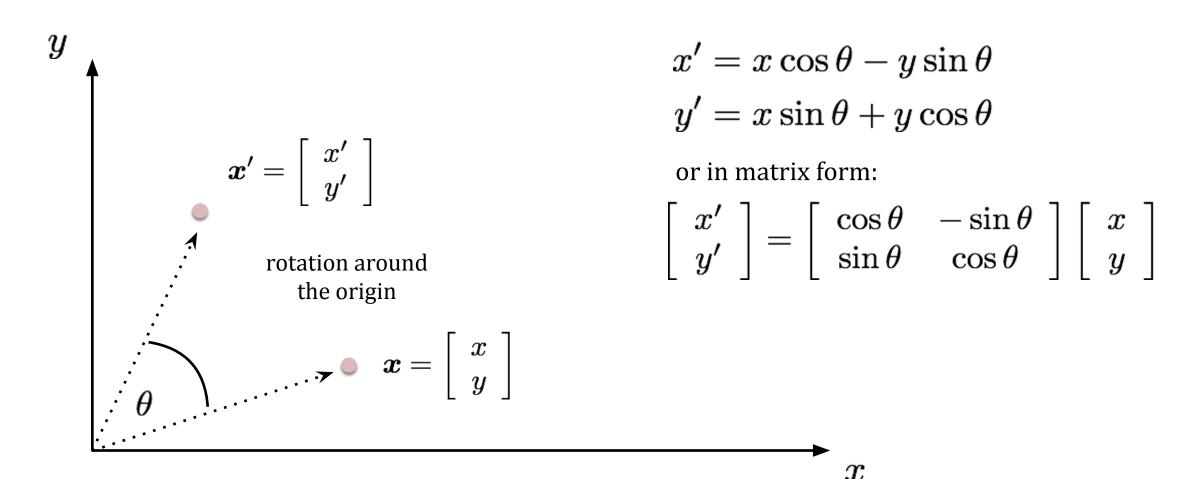
$$\mathbf{M} = \left[egin{array}{cc} 1 & 0 \ 0 & 1 \end{array}
ight]$$

Scaling

$$\begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \times \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} s_x x \\ s_y y \end{bmatrix}$$

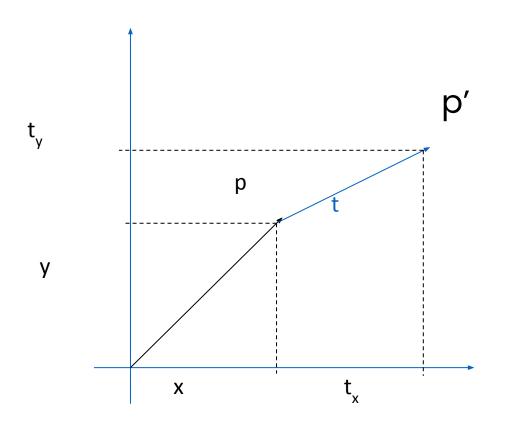
$$A \qquad P \qquad P'$$

Rotation



Slide: K. Kitani

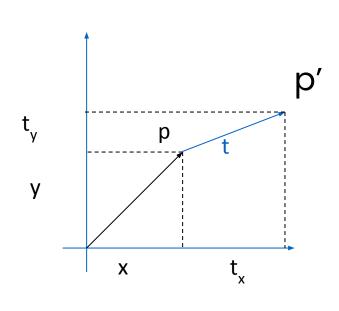
Translation



$$x' = x + t_x$$
$$y' = y + t_y$$

As a matrix?

Translation with homogeneous coordinates



$$p = \begin{bmatrix} x \\ y \end{bmatrix} \to \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$t = \begin{bmatrix} t_x \\ t_y \end{bmatrix} \to \begin{bmatrix} t_x \\ t_y \\ 1 \end{bmatrix}$$
$$p' = Tp$$

$$p' \rightarrow \begin{bmatrix} x + tx \\ y + ty \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} I & t \\ 0 & 1 \end{bmatrix} p = Tp$$

2D Transformations with homogeneous coordinates

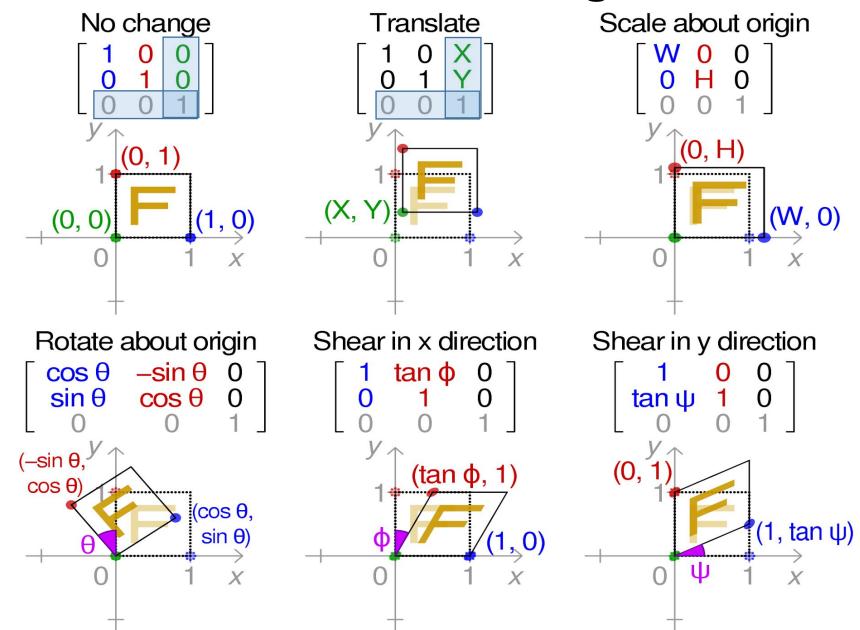
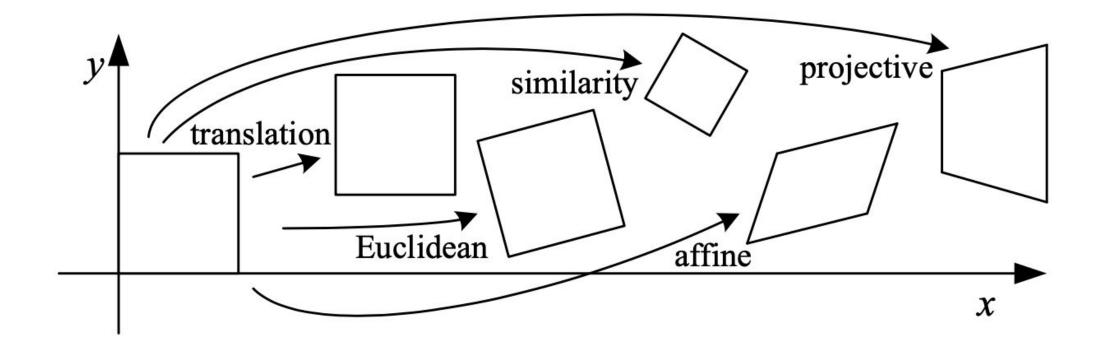


Figure: Wikipedia

Questions?

2D Transformations Zoo

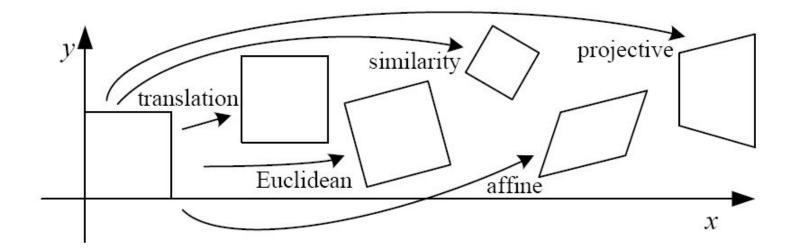


Euclidean / Rigid Transformation

Euclidean (rigid): rotation + translation

 $egin{bmatrix} \cos heta & -\sin heta & t_x \ \sin heta & \cos heta & t_y \ 0 & 0 & 1 \end{bmatrix}$

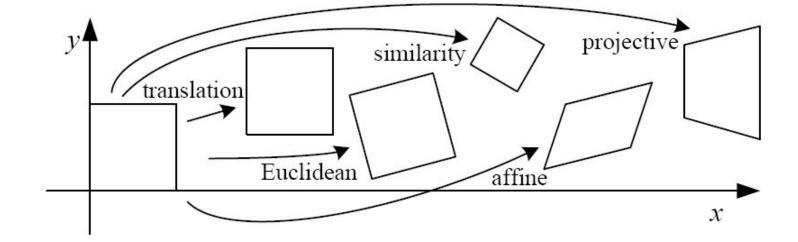
How many degrees of freedom?



Similarity Transformation

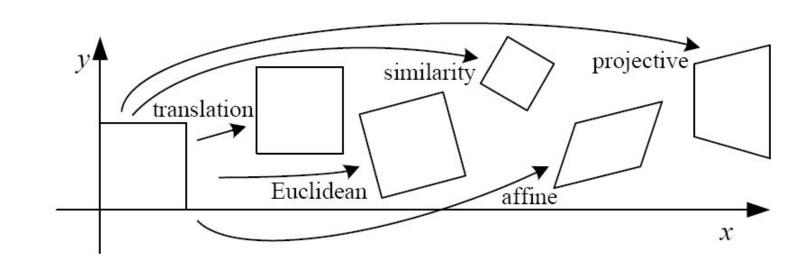
How many degrees of freedom?

Similarity: Scaling + rotation + translation
$$\begin{bmatrix} a & -b & t_x \\ b & a & t_y \\ 0 & 0 & 1 \end{bmatrix}$$



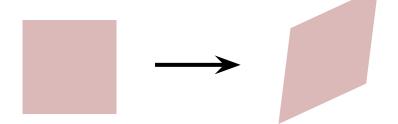
Similarity Transformation

Similarity: Scaling + rotation + translation
$$\begin{bmatrix} a & -b & t_x \\ b & a & t_y \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \alpha \cos \theta & -\alpha \sin \theta & b_0 \\ \alpha \sin \theta & \alpha \cos \theta & b_1 \\ 0 & 0 & 1 \end{bmatrix}$$
 How many degrees of freedom?



Affine transformations are combinations of

• Arbitrary (4-DOF) linear transformations + translations



$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} A_{00} & A_{01} \\ A_{10} & A_{11} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} b_0 \\ b_1 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} \qquad \begin{bmatrix} x' \\ y' \end{bmatrix}$$

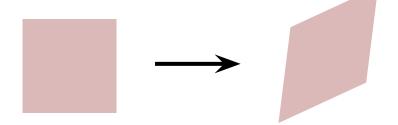
Cartesian coordinates

$$\begin{bmatrix} x \\ y \end{bmatrix} \quad \begin{bmatrix} x' \\ y' \end{bmatrix} \quad \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix}$$

Source: K. Kitani

Affine transformations are combinations of

• Arbitrary (4-DOF) linear transformations + translations



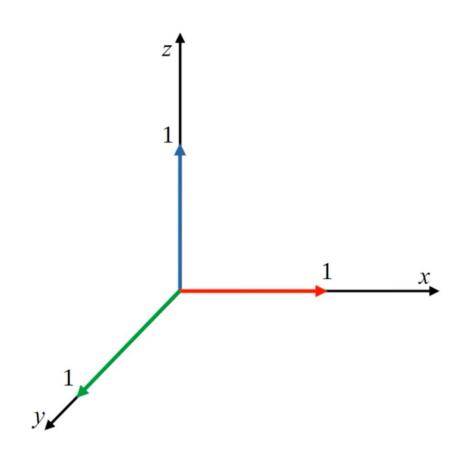
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} A_{00} & A_{01} \\ A_{10} & A_{11} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} b_0 \\ b_1 \end{bmatrix}$$

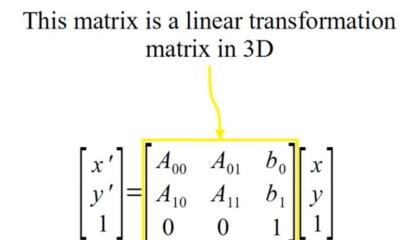
$$\begin{bmatrix} x \\ y \end{bmatrix} \qquad \begin{bmatrix} x' \\ y' \end{bmatrix}$$

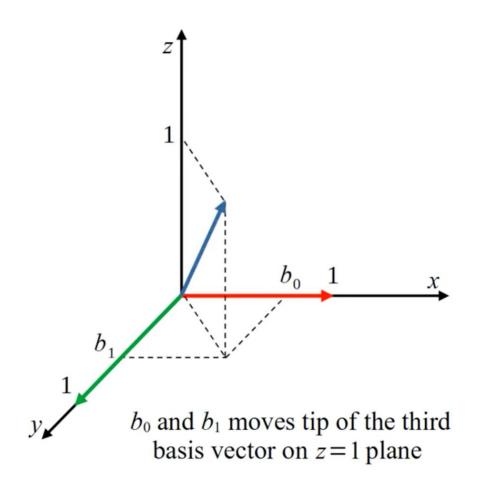
$$\begin{bmatrix} x \\ y \end{bmatrix} \qquad \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} \qquad \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix}$$

$$\longrightarrow \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} A_{00} & A_{01} & b_0 \\ A_{10} & A_{11} & b_1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

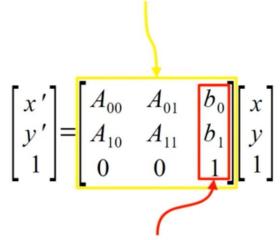
How many degrees of freedom?





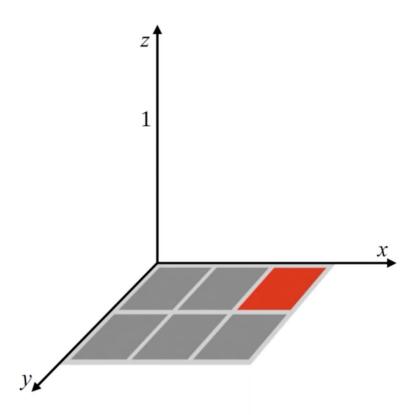


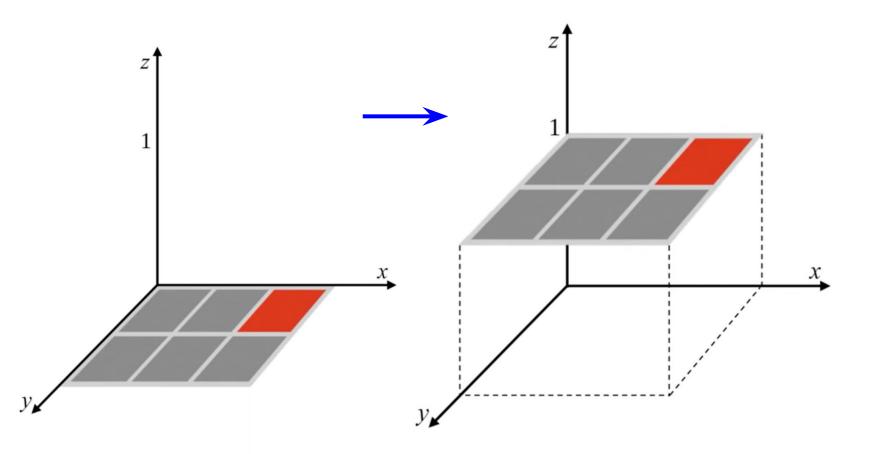
This matrix is a linear transformation matrix in 3D

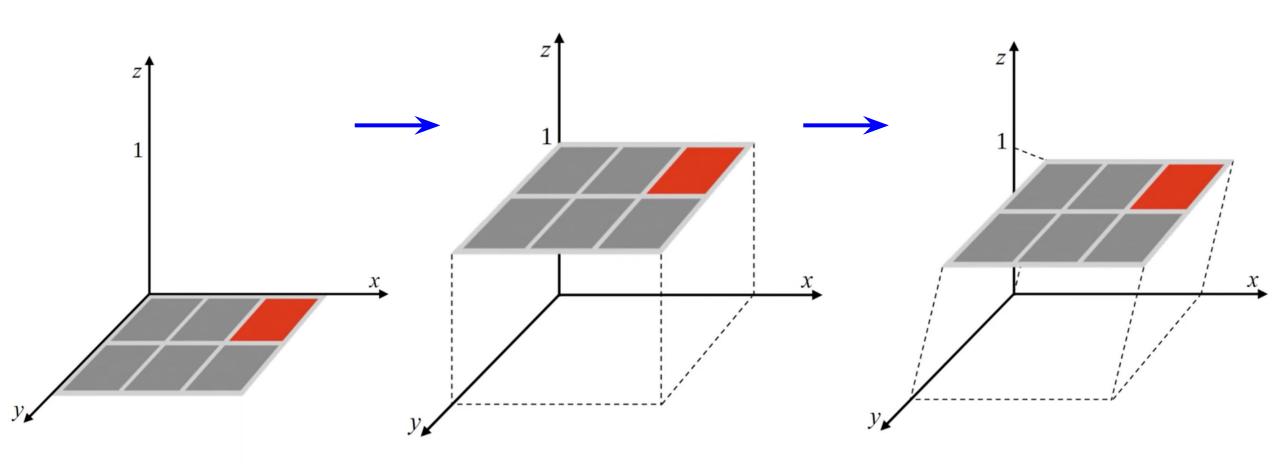


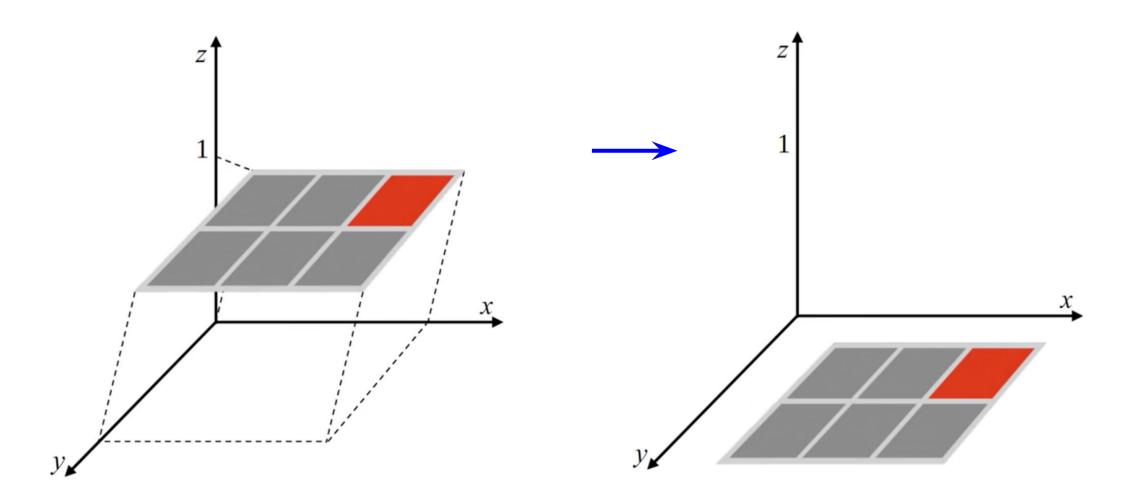
Then this column is the third basis vector of transformed vector space

And what b_0 and b_1 do is to change the orientation of that basis vector



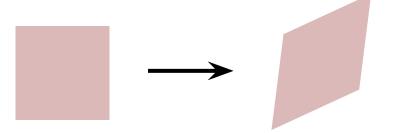






Affine transformations are combinations of

• Arbitrary (4-DOF) linear transformations + translations



Properties of affine transformations:

- origin does not necessarily map to origin
- lines map to lines
- parallel lines map to parallel lines
- ratios are preserved

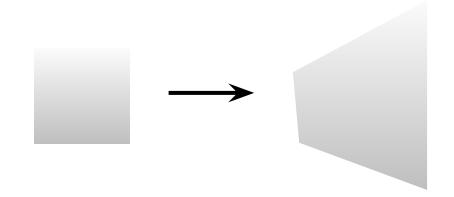
$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} A_{00} & A_{01} & b_0 \\ A_{10} & A_{11} & b_1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

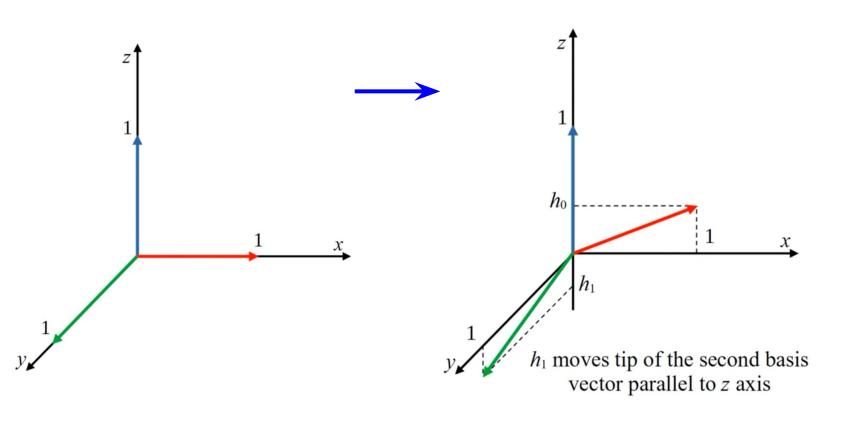
Projective transformations are combinations of

• Affine transformations + projective warps

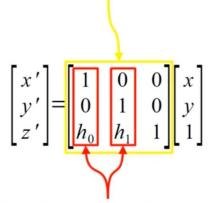
$$w \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} A_{00} & A_{01} & b_0 \\ A_{10} & A_{11} & b_1 \\ h_0 & h_1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

How many degrees of freedom?



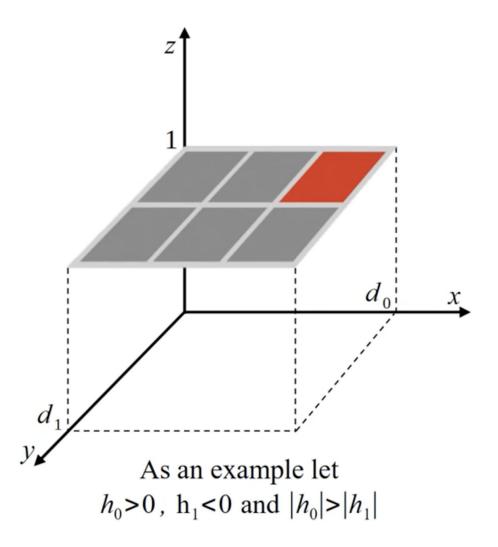


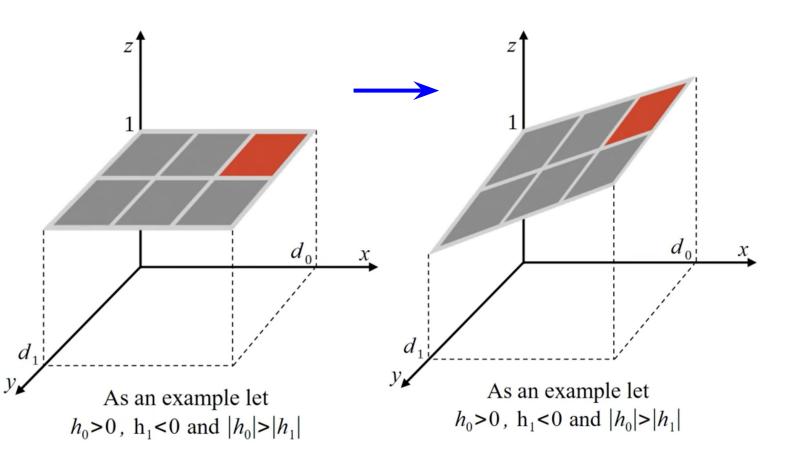
This matrix is a linear transformation matrix in 3D

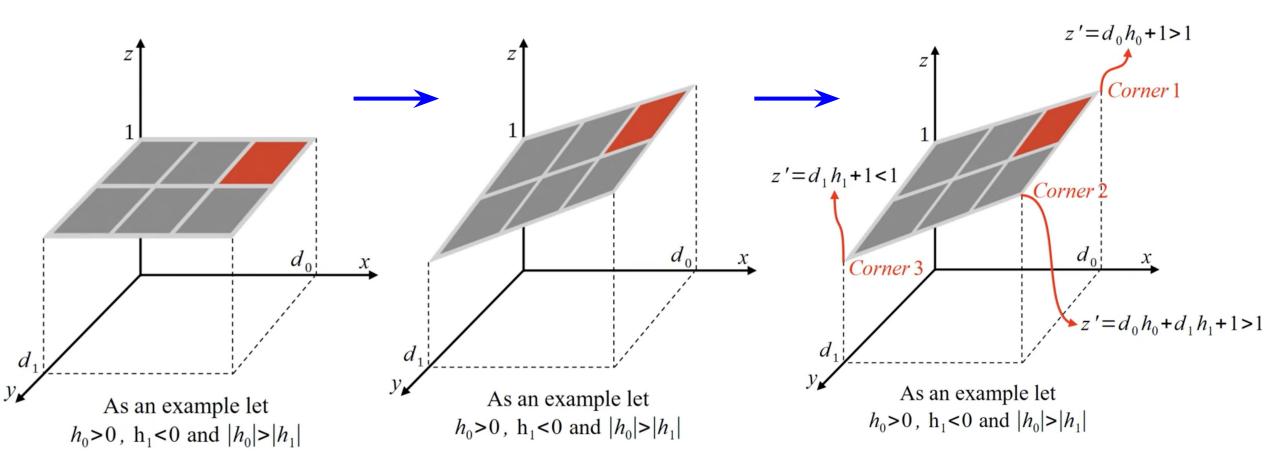


Then these two columns are the first and the second basis vectors of transformed vector space

And what h_0 and h_1 do is to change the orientation of those basis vectors







When going back to Cartesian coordinates

$$\frac{x'}{z'}$$

$$\frac{y'}{z'}$$

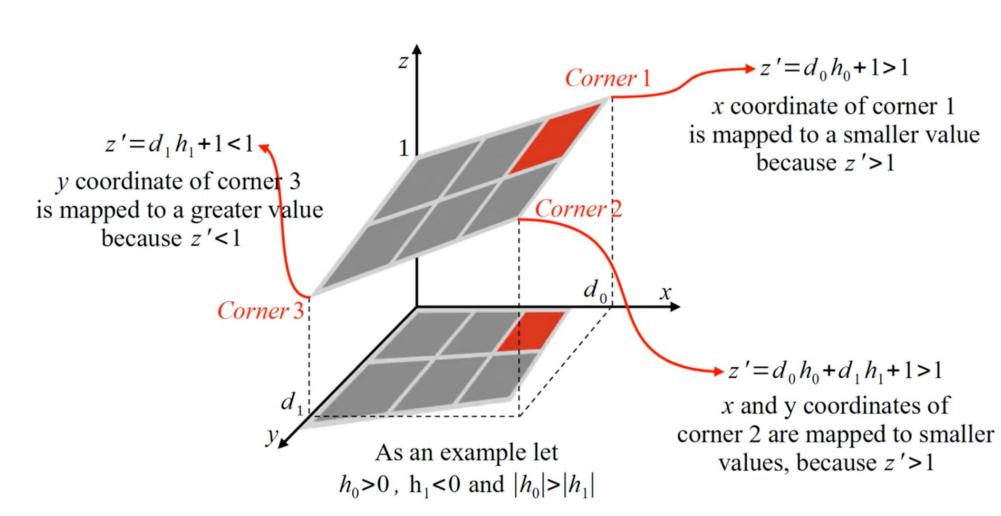
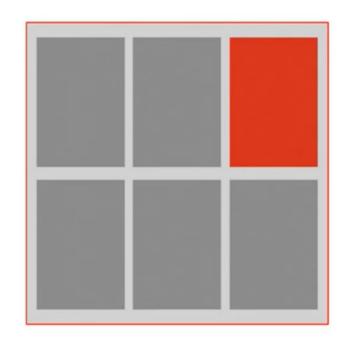
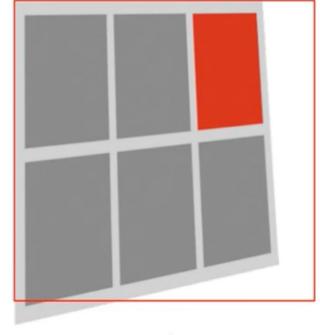


Figure: https://www.youtube.com/@huseyin_ozde...



$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ h_0 & h_1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$h_0 > 0$$
, $h_1 < 0$ and $|h_0| > |h_1|$



Warped Image

Figure: https://www.youtube.com/@huseyin_ozde...

Projective transformations are combinations of

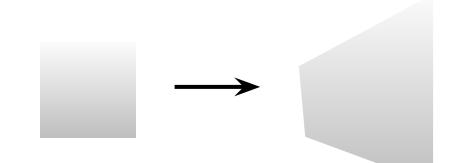
• Affine transformations + projective warps

$$w \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} A_{00} & A_{01} & b_0 \\ A_{10} & A_{11} & b_1 \\ h_0 & h_1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

How many degrees of freedom?

Properties of projective transformations:

- origin does not necessarily map to origin
- lines map to lines
- parallel lines do not necessarily map to parallel lines
- ratios are not necessarily preserved



Questions?

Composing Transformations

Transformations = Matrices => Composition by Multiplication!

$$p' = R_2 R_1 S p$$

In the example above, the result is equivalent to

$$p' = R_2(R_1(Sp))$$

Equivalent to multiply the matrices into single transformation matrix:

$$p' = (R_2 R_1 S) p$$

Order Matters! Transformations from right to left.

Scaling & Translating != Translating & Scaling

$$p'' = TSp = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & t_x \\ 0 & s_y & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} s_xx + t_x \\ s_yy + t_y \\ 1 \end{bmatrix}$$

$$p''' = STp = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & s_x t_x \\ 0 & s_y & s_y t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} s_x x + s_x t_x \\ s_y y + s_y t_y \\ 1 \end{bmatrix}$$

Similarity: Translation + Rotation + Scaling

$$p' = (T R S) p$$

$$p' = TRSp = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} \cos \theta & -\sin \theta & t_x \\ \sin \theta & \cos \theta & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} S & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} RS & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

This is the form of the general-purpose transformation matrix

2D Transforms = Matrix Multiplication

Transformation	Matrix	# DoF	Preserves	Icon
translation	$egin{bmatrix} \mathbf{I} & \mathbf{t} \end{bmatrix}_{2 imes 3}$	2	orientation	
rigid (Euclidean)	$egin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix}_{2 imes 3}$	3	lengths	\Diamond
similarity	$\begin{bmatrix} s\mathbf{R} & \mathbf{t} \end{bmatrix}_{2 \times 3}$	4	angles	\Diamond
affine	$\left[\mathbf{A} ight]_{2 imes 3}$	6	parallelism	
projective	$\left[\mathbf{ ilde{H}} ight]_{3 imes 3}$	8	straight lines	

Table 2.1 Hierarchy of 2D coordinate transformations, listing the transformation name, its matrix form, the number of degrees of freedom, what geometric properties it preserves, and a mnemonic icon. Each transformation also preserves the properties listed in the rows below it, i.e., similarity preserves not only angles but also parallelism and straight lines. The 2×3 matrices are extended with a third $[0^T \ 1]$ row to form a full 3×3 matrix for homogeneous coordinate transformations.

Figure: R. Szeliski

3D Transforms = Matrix Multiplication

Transformation	Matrix	# DoF	Preserves	Icon
translation	$egin{bmatrix} \mathbf{I} & \mathbf{t} \end{bmatrix}_{3 imes 4}$	3	orientation	
rigid (Euclidean)	$\begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix}_{3 imes 4}$	6	lengths	\Diamond
similarity	$\begin{bmatrix} s\mathbf{R} & \mathbf{t} \end{bmatrix}_{3 imes 4}$	7	angles	\Diamond
affine	$\left[\mathbf{A} ight]_{3 imes4}$	12	parallelism	
projective	$\left[\mathbf{ ilde{H}} ight]_{4 imes4}$	15	straight lines	

Table 2.2 Hierarchy of 3D coordinate transformations. Each transformation also preserves the properties listed in the rows below it, i.e., similarity preserves not only angles but also parallelism and straight lines. The 3×4 matrices are extended with a fourth $[\mathbf{0}^T \ 1]$ row to form a full 4×4 matrix for homogeneous coordinate transformations. The mnemonic icons are drawn in 2D but are meant to suggest transformations occurring in a full 3D cube.

Figure: R. Szeliski

What did we learn today?

Geometry is essential to Computer Vision!

What did we learn today?

- Geometry is essential to Computer Vision!
- Geometric Primitives in 2D & 3D
 - Homogeneous coordinates, points, lines, and planes in 2D & 3D

What did we learn today?

- Geometry is essential to Computer Vision!
- Geometric Primitives in 2D & 3D
 - Homogeneous coordinates, points, lines, and planes in 2D & 3D
- 2D & 3D Transformations
 - scaling, translation, rotation, rigid, similarity, affine, homography

Questions?

Appendix

3D Rotations: SO(3) representations

Euler Angles: yaw, pitch, roll (α, β, γ) \rightarrow compose $R(\gamma)R(\beta)R(\alpha)$ (order, axes!)

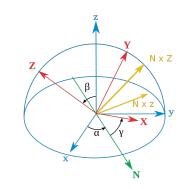
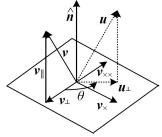


Figure: Wikipedia

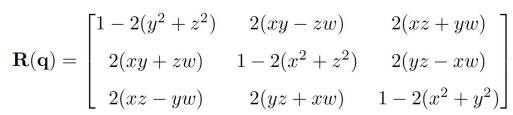
Axis-angle: (\hat{n}, θ) or $\omega = \theta \hat{n}$

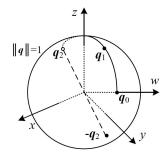
 \rightarrow matrix via Rodrigues formula (simple for small θ) $\mathbf{R}(\hat{\mathbf{n}}, \theta) = \mathbf{I} + \sin \theta [\hat{\mathbf{n}}]_{\times} + (1 + \cos \theta) [\hat{\mathbf{n}}]_{\times}^{2} \approx \mathbf{I} + [\theta \hat{\mathbf{n}}]_{\times}$

$$\mathbf{R}(\hat{\mathbf{n}}, \theta) = \mathbf{I} + \sin \theta [\hat{\mathbf{n}}]_{\times} + (1 + \cos \theta) [\hat{\mathbf{n}}]_{\times}^{2} \approx \mathbf{I} + [\theta \hat{\mathbf{n}}]_{\times}$$

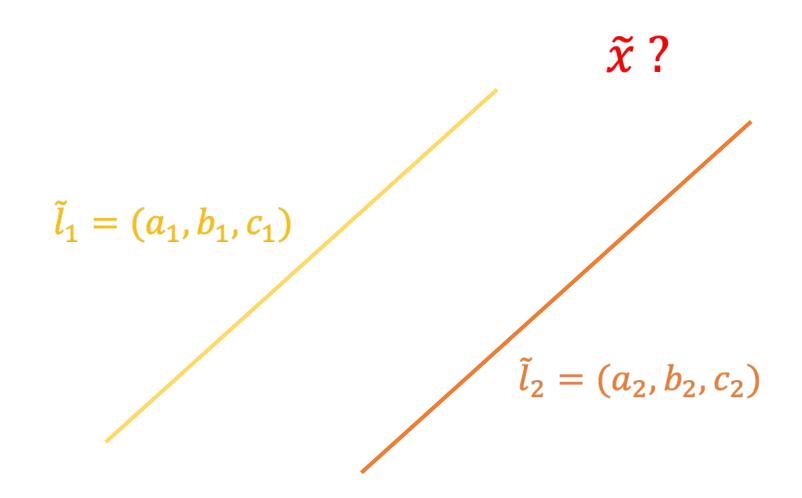


Unit Quaternions: $q = (x, y, z, w) = (\sin \frac{\theta}{2} \hat{n}, \cos \frac{\theta}{2})$, ||q|| = 1 \rightarrow continuous, nice algebraic properties, matrix via Rodrigues

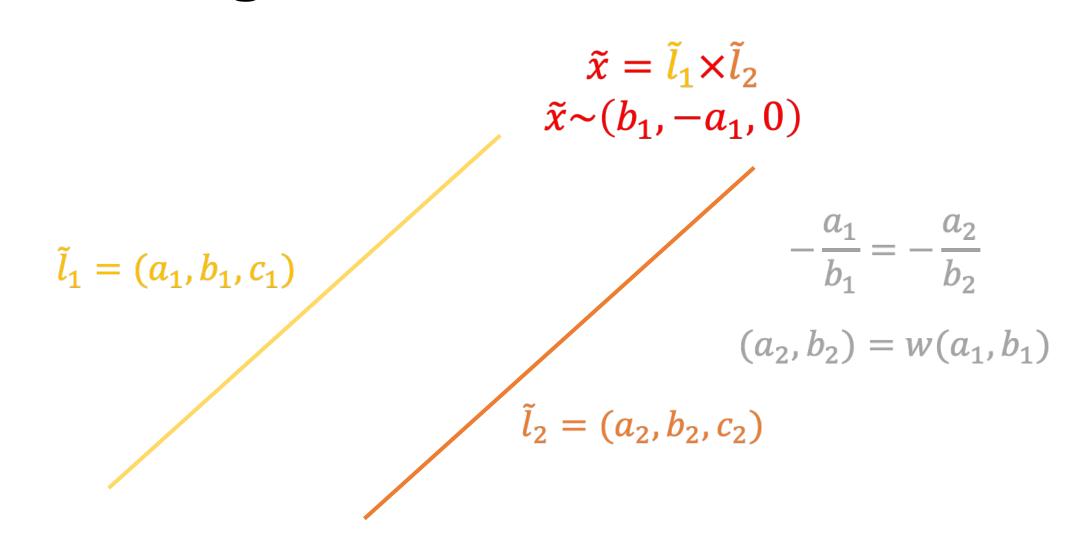




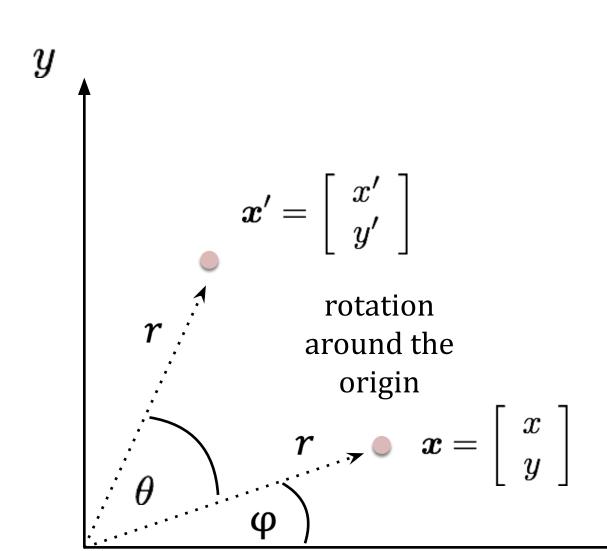
Intersecting Parallel Lines



Intersecting Parallel Lines



2D planar transformations



Polar coordinates...

$$x = r \cos (\phi)$$

$$y = r \sin (\phi)$$

$$x' = r \cos (\phi + \theta)$$

$$y' = r \sin (\phi + \theta)$$

Trigonometric Identity...

$$x' = r \cos(\varphi) \cos(\theta) - r \sin(\varphi)$$

$$\sin(\theta)$$

$$y' = r \sin(\varphi) \cos(\theta) + r \cos(\varphi)$$

$$\sin(\theta)$$

Substitute...

$$x' = x \cos(\theta) - y \sin(\theta)$$

$$y' = x \sin(\theta) + y \cos(\theta)$$