Linear Algebra Primer

Joshua Jung

• In general, a matrix multiplication lets us linearly combine components of a vector

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \times \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax + by \\ cx + dy \end{bmatrix}$$

- This is sufficient for scale, rotate, skew transformations.
- But notice, we can't add a constant! 😕

The (somewhat hacky) solution? Stick a "1" at the end of every vector:

$$\begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} ax + by + c \\ dx + ey + f \\ 1 \end{bmatrix}$$

- Now we can rotate, scale, and skew like before, AND translate (note how the multiplication works out, above)
- This is called "homogeneous coordinates"

 In homogeneous coordinates, the multiplication works out so the rightmost column of the matrix is a vector that gets added.

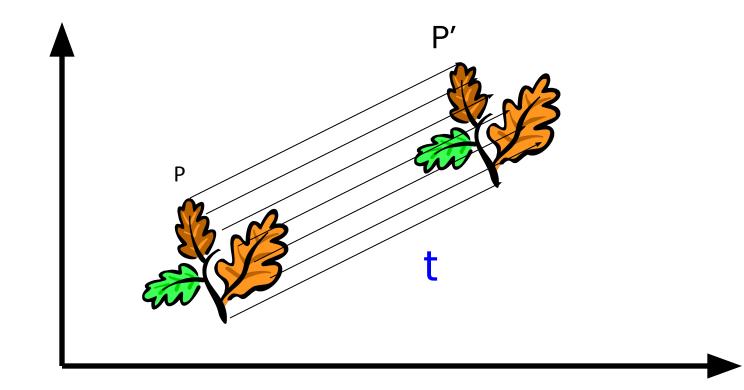
$$\begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} ax + by + c \\ dx + ey + f \\ 1 \end{bmatrix}$$

 Generally, a homogeneous transformation matrix will have a bottom row of [0 0 1], so that the result has a "1" at the bottom too.

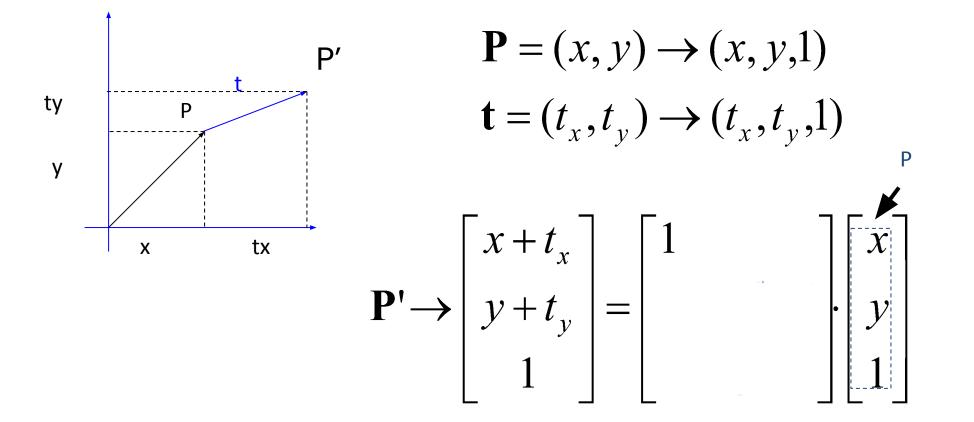
- One more thing we might want: to divide the result by something
 - For example, we may want to divide by a coordinate, to make things scale down as they get farther away in a camera image
 - Matrix multiplication can't actually divide
 - So, by convention, in homogeneous coordinates, we'll divide the result by its last coordinate after doing a matrix multiplication

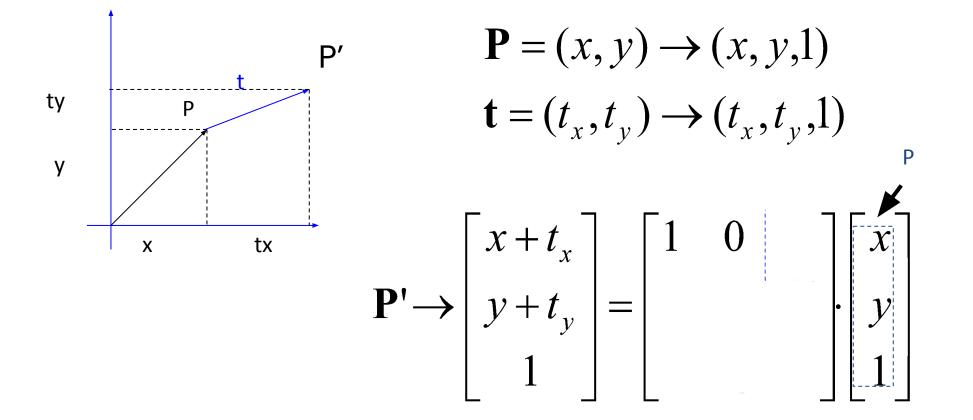
$$\begin{bmatrix} x \\ y \\ 7 \end{bmatrix} \Rightarrow \begin{bmatrix} x/7 \\ y/7 \\ 1 \end{bmatrix}$$

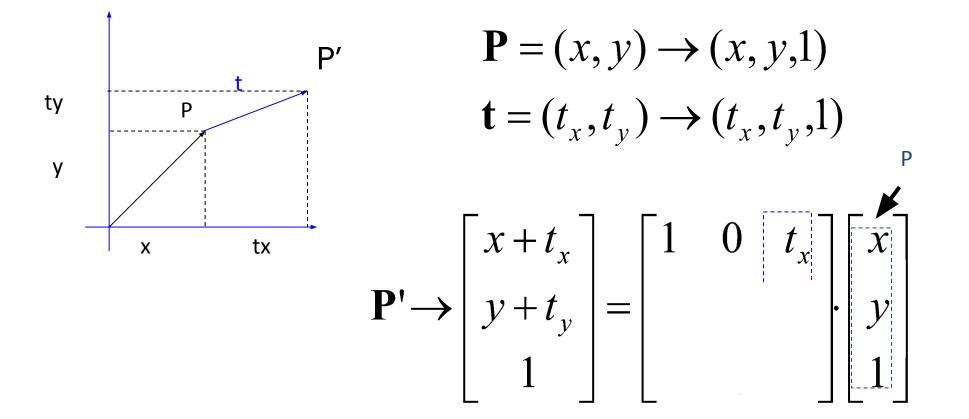
2D Translation



 $\mathbf{P} = (x, y) \to (x, y, 1)$ $\mathbf{t} = (t_x, t_y) \to (t_x, t_y, 1)$ P′ ty Ρ Ρ y $\mathbf{P'} \rightarrow \begin{bmatrix} x + t_x \\ y + t_y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix}$ tx Х ·y

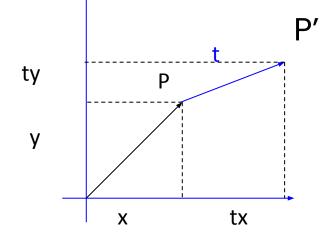






2D Translation using Homogeneous Coordinates

P

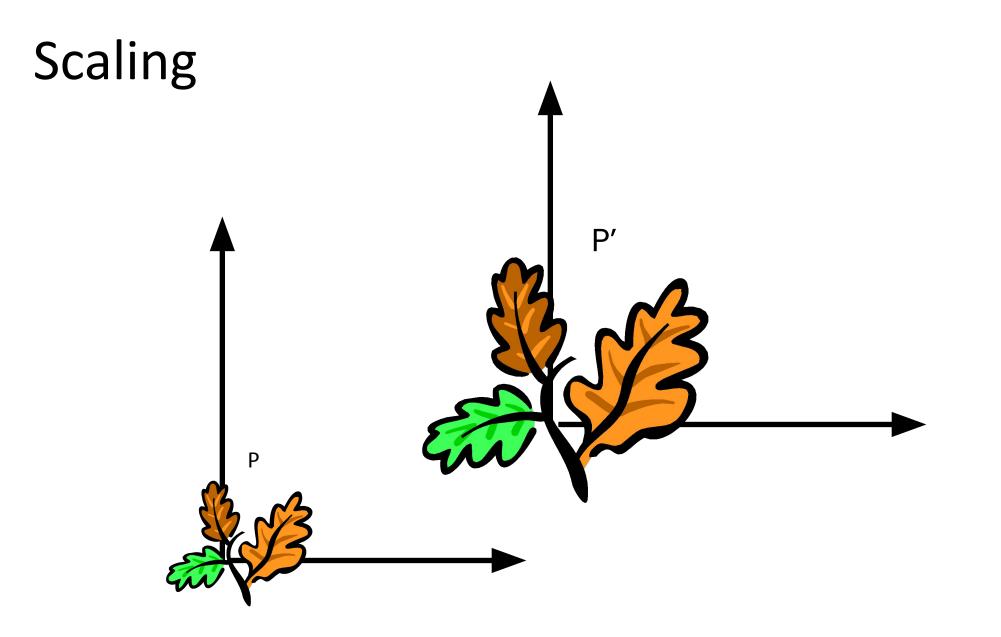


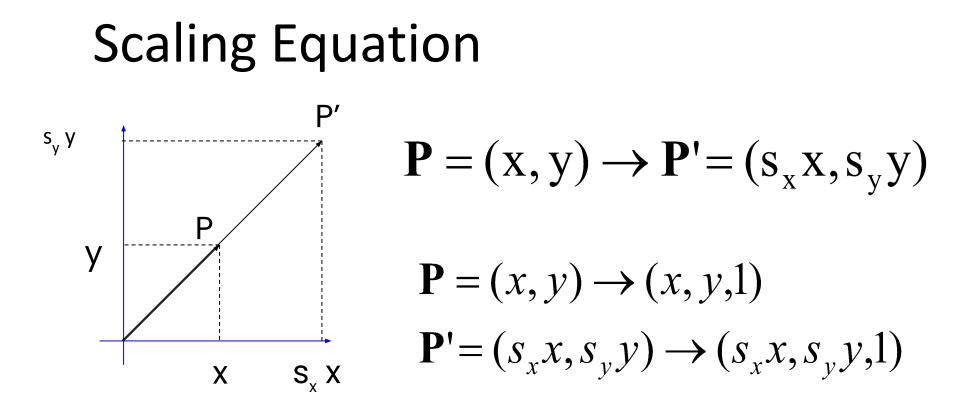
$$\mathbf{P} = (x, y) \rightarrow (x, y, 1)$$

$$\mathbf{t} = (t_x, t_y) \rightarrow (t_x, t_y, 1)$$

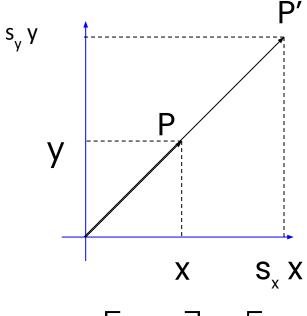
$$\mathbf{t} = \begin{bmatrix} x + t_x \\ y + t_y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

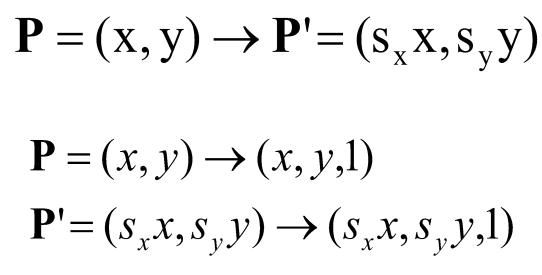
$$= \begin{bmatrix} \mathbf{I} & \mathbf{t} \\ 0 & 1 \end{bmatrix} \cdot \mathbf{P} = \mathbf{T} \cdot \mathbf{P}$$

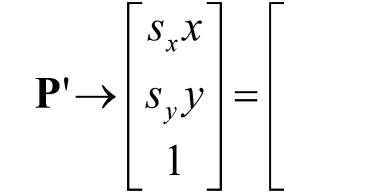


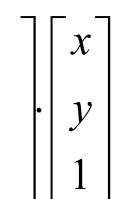


Scaling Equation

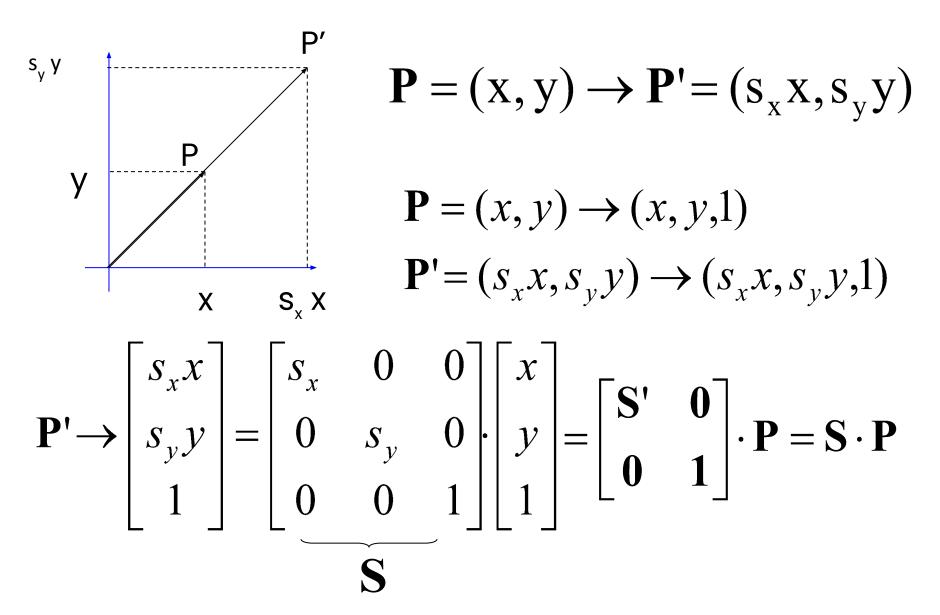




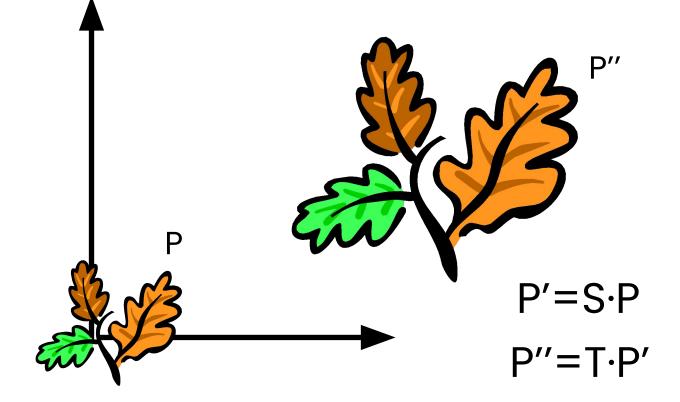




Scaling Equation



Scaling & Translating

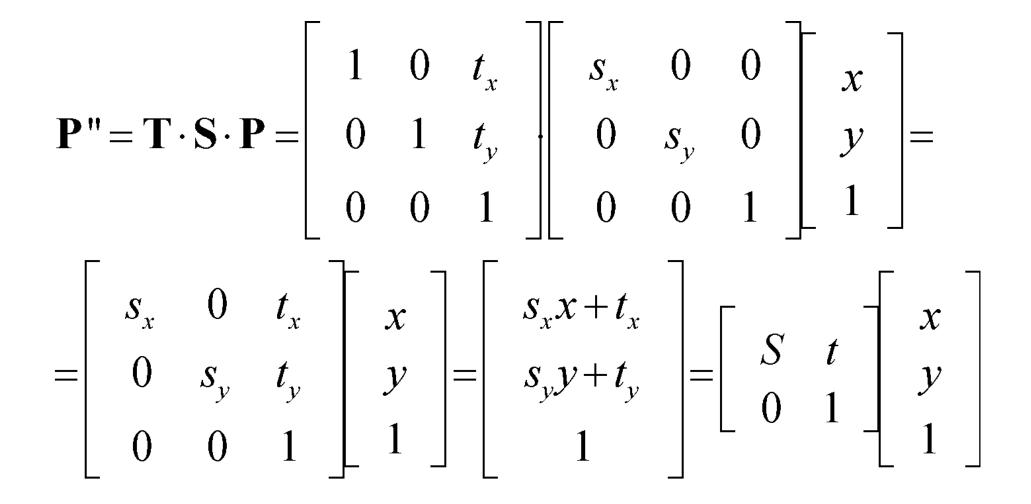


 $P''=T \cdot P'=T \cdot (S \cdot P)=T \cdot S \cdot P$

Scaling & Translating

$$\mathbf{P}'' = \mathbf{T} \cdot \mathbf{S} \cdot \mathbf{P} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Scaling & Translating



Translating & Scaling != Scaling & Translating

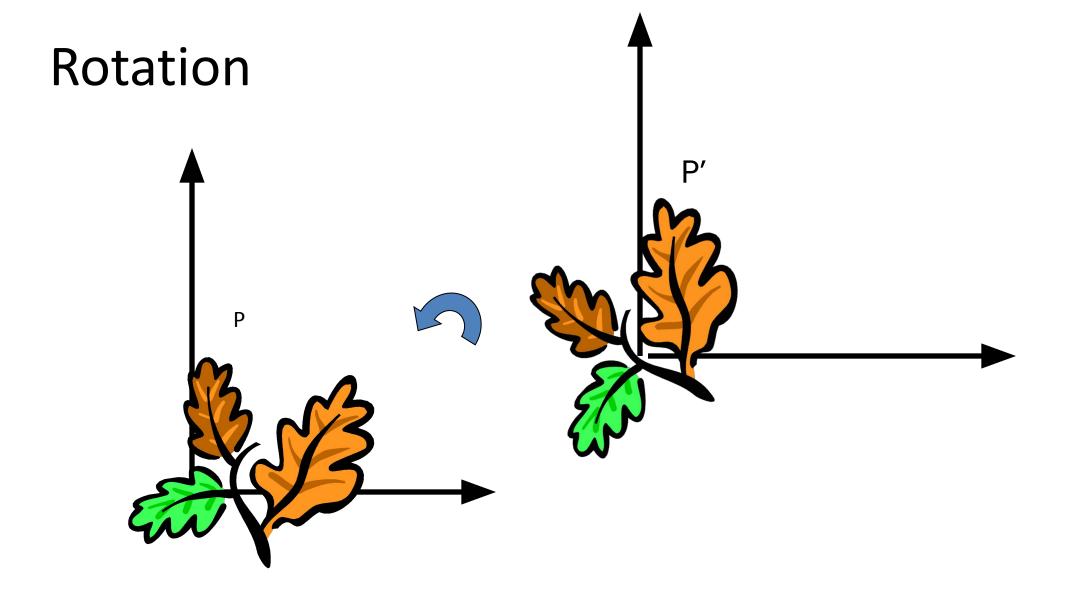
$$\mathbf{P'''} = \mathbf{T} \cdot \mathbf{S} \cdot \mathbf{P} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & t_x \\ 0 & s_y & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} s_x x + t_x \\ s_y y + t_y \\ 1 \end{bmatrix}$$

Translating & Scaling != Scaling & Translating

$$\mathbf{P}''' = \mathbf{T} \cdot \mathbf{S} \cdot \mathbf{P} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & t_x \\ 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_x x + t_x \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} s_x x + t_y \\ 1 \end{bmatrix} = \begin{bmatrix} s_x x + t_y \\ 1 \end{bmatrix} = \begin{bmatrix} s_y y + t_y \\ 1 \end{bmatrix}$$
$$\mathbf{P}''' = \mathbf{S} \cdot \mathbf{T} \cdot \mathbf{P} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} s_y x + t_y \\ 1 \end{bmatrix}$$

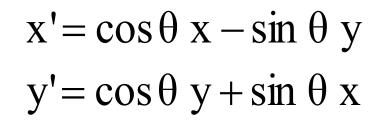
Translating & Scaling != Scaling & Translating

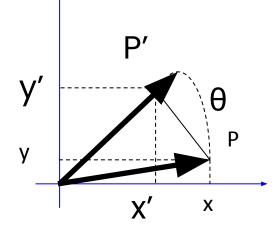
$$\mathbf{P}^{\prime\prime\prime} = \mathbf{T} \cdot \mathbf{S} \cdot \mathbf{P} = \begin{bmatrix} 1 & 0 & t_{x} \\ 0 & 1 & t_{y} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_{x} & 0 & 0 \\ 0 & s_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & t_{x} \\ 0 & s_{y} & t_{y} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_{x} x + t_{x} \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} s_{x} x + t_{x} \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} s_{x} x + t_{y} \\ s_{y} y + t_{y} \\ 1 \end{bmatrix}$$
$$\mathbf{P}^{\prime\prime\prime} = \mathbf{S} \cdot \mathbf{T} \cdot \mathbf{P} = \begin{bmatrix} s_{x} & 0 & 0 \\ 0 & s_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & t_{x} \\ 0 & 1 & t_{y} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} s_{x} x + s_{x} t_{x} \\ s_{y} y + s_{y} t_{y} \\ 1 \end{bmatrix} = \begin{bmatrix} s_{x} x + s_{x} t_{x} \\ s_{y} y + s_{y} t_{y} \\ 1 \end{bmatrix}$$



Rotation Equations

Counter-clockwise rotation by an angle $\boldsymbol{\theta}$





$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

 $\mathbf{P'} = \mathbf{R} \mathbf{P}$

Rotation Matrix Properties

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

A 2D rotation matrix is 2x2

Note: R belongs to the category of *normal* matrices

and satisfies many interesting properties:

$$\mathbf{R} \cdot \mathbf{R}^{\mathrm{T}} = \mathbf{R}^{\mathrm{T}} \cdot \mathbf{R} = \mathbf{I}$$

det $(\mathbf{R}) = 1$

Rotation Matrix Properties

• Transpose of a rotation matrix produces a rotation in the opposite direction

$$\mathbf{R} \cdot \mathbf{R}^{\mathrm{T}} = \mathbf{R}^{\mathrm{T}} \cdot \mathbf{R} = \mathbf{I}$$

det $(\mathbf{R}) = 1$

- The rows of a rotation matrix are always mutually perpendicular (a.k.a. orthogonal) unit vectors
 - (and so are its columns)

Scaling + Rotation + Translation

P'= (T R S) P

$$\mathbf{P'} = \mathbf{T} \cdot \mathbf{R} \cdot \mathbf{S} \cdot \mathbf{P} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} =$$

$$= \begin{bmatrix} \cos \theta & -\sin \theta & t_{x} \\ \sin \theta & \cos \theta & t_{y} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_{x} & 0 & 0 \\ 0 & s_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} =$$
This is the form of the general-purpose transformation matrix
$$= \begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} S & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} R S & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Outline

- Vectors and matrices
 - Basic Matrix Operations
 - Determinants, norms, trace
 - Special Matrices
- Transformation Matrices
 - Homogeneous coordinates
 - Translation

• Matrix inverse

- Matrix rank
- Eigenvalues and Eigenvectors
- Matrix Calculate

The inverse of a transformation matrix reverses its effect

Inverse

 Given a matrix A, its inverse A⁻¹ is a matrix such that AA⁻¹ = A⁻¹A = I

• E.g.
$$\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{3} \end{bmatrix}$$

- Inverse does not always exist. If A⁻¹ exists, A is invertible or non-singular. Otherwise, it's singular.
- Useful identities, for matrices that are invertible:

$$(\mathbf{A}^{-1})^{-1} = \mathbf{A}$$
$$(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$$
$$\mathbf{A}^{-T} \triangleq (\mathbf{A}^{T})^{-1} = (\mathbf{A}^{-1})^{T}$$

Matrix Operations

- Pseudoinverse
 - Fortunately, there are workarounds to solve AX=B in these situations. And python can do them!
 - Instead of taking an inverse, directly ask python to solve for X in AX=B, by typing np.linalg.solve(A, B)
 - Python will try several appropriate numerical methods (including the pseudoinverse if the inverse doesn't exist)
 - Python will return the value of X which solves the equation
 - If there is no exact solution, it will return the closest one
 - If there are many solutions, it will return the smallest one

Matrix Operations

• Python example:

$$AX = B$$
$$A = \begin{bmatrix} 2 & 2 \\ 3 & 4 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

>> import numpy as np
>> x = np.linalg.solve(A,B)
x =
 1.0000
 -0.5000

Outline

- Vectors and matrices
 - Basic Matrix Operations
 - Determinants, norms, trace
 - Special Matrices
- Transformation Matrices
 - Homogeneous coordinates
 - Translation
- Matrix inverse
- Matrix rank
- Eigenvalues and Eigenvectors
- Matrix Calculate

The rank of a transformation matrix tells you how many dimensions it transforms a vector to.

Linear independence

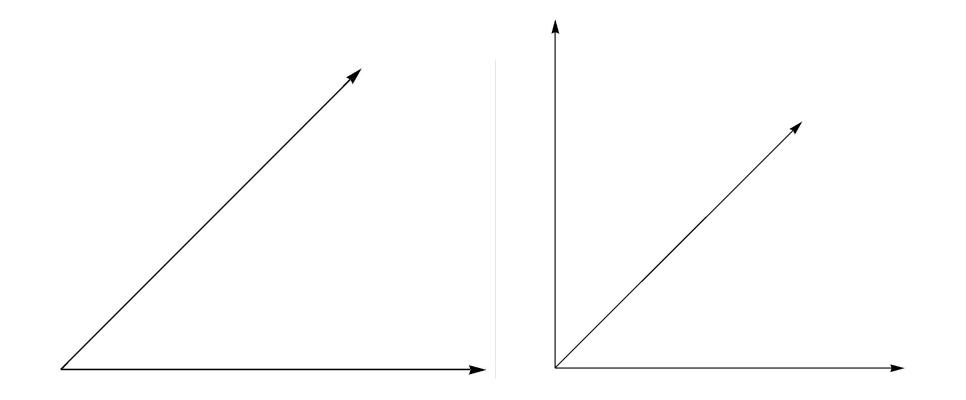
- Suppose we have a set of vectors $v_1, ..., v_n$
- If we can express v₁ as a linear combination of the other vectors v₂...v_n, then v₁ is linearly *dependent* on the other vectors.
 - The direction v_1 can be expressed as a combination of the directions $v_2 \dots v_n$. (E.g. $v_1 = .7 v_2 .7 v_4$)

Linear independence

- Suppose we have a set of vectors $v_1, ..., v_n$
- If we can express v₁ as a linear combination of the other vectors v₂...v_n, then v₁ is linearly *dependent* on the other vectors.
 - The direction \mathbf{v}_1 can be expressed as a combination of the directions $\mathbf{v}_2 \dots \mathbf{v}_n$. (E.g. $\mathbf{v}_1 = .7 \mathbf{v}_2 .7 \mathbf{v}_4$)
- If no vector is linearly dependent on the rest of the set, the set is linearly *independent*.
 - Common case: a set of vectors $v_1, ..., v_n$ is always linearly independent if each vector is perpendicular to every other vector (and non-zero)

Linear independence

Linearly independent set Not linearly independent



Matrix rank

• Column/row rank

- Column rank always equals row rank

• Matrix rank

$$\operatorname{rank}(\mathbf{A}) \triangleq \operatorname{col-rank}(\mathbf{A}) = \operatorname{row-rank}(\mathbf{A})$$

Matrix rank

- For transformation matrices, the rank tells you the dimensions of the output
- E.g. if rank of **A** is 1, then the transformation

p'=Ap

maps points onto a line.

• Here's a matrix with rank 1:

$$\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} \times \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x+y \\ 2x+2y \end{bmatrix} - All \text{ points get mapped to the line y=2x}$$

Matrix rank

- If an *m* x *m* matrix is rank *m*, we say it's "full rank"
 - Maps an m x 1 vector uniquely to another m x 1 vector
 - An inverse matrix can be found
- If rank < m, we say it's "singular"
 - At least one dimension is getting collapsed. No way to look at the result and tell what the input was
 - Inverse does not exist
- Inverse also doesn't exist for non-square matrices

Outline

- Vectors and matrices
 - Basic Matrix Operations
 - Determinants, norms, trace
 - Special Matrices
- Transformation Matrices
 - Homogeneous coordinates
 - Translation
- Matrix inverse
- Matrix rank
- Eigenvalues and Eigenvectors(SVD)
- Matrix Calculus

• An eigenvector **x** of a linear transformation *A* is a non-zero vector that, when *A* is applied to it, does not change direction.

$$Ax = \lambda x, \quad x \neq 0.$$

- An eigenvector **x** of a linear transformation A is a non-zero vector that, when A is applied to it, does not change direction.
- Applying A to the eigenvector only scales the eigenvector by the scalar value λ , called an eigenvalue.

$$Ax = \lambda x, \quad x \neq 0.$$

• We want to find all the eigenvalues of A:

$$Ax = \lambda x, \quad x \neq 0.$$

• Which can we written as:

$$Ax = (\lambda I)x \quad x \neq 0.$$

• Therefore:

$$(\lambda I - A)x = 0, \quad x \neq 0.$$

• We can solve for eigenvalues by solving:

$$(\lambda I - A)x = 0, \quad x \neq 0.$$

• Since we are looking for non-zero **x**, we can instead solve the above equation as:

$$|(\lambda I - A)| = 0.$$

Properties

• The trace of a A is equal to the sum of its eigenvalues:

$$\mathrm{tr}A = \sum_{i=1}^{n} \lambda_i.$$

• The determinant of A is equal to the product of its eigenvalues

$$|A| = \prod_{i=1}^n \lambda_i.$$

- The rank of A is equal to the number of non-zero eigenvalues of A.
- The eigenvalues of a diagonal matrix D = diag(d1, . . . dn) are just the diagonal entries d1, . . . dn

- We call an eigenvalue λ and an associated eigenvector an eigenpair.
- The space of vectors where $(A \lambda I) = 0$ is often called the **eigenspace** of A associated with the eigenvalue λ .
- The set of all eigenvalues of A is called its **spectrum**:

$$\sigma(A) = \{\lambda \in \mathbb{C} : \lambda I - A \text{ is singular}\}.$$

• The magnitude of the largest eigenvalue (in magnitude) is called the spectral radius

$$ho(A)=\max\left\{|\lambda_1|,\ldots,|\lambda_n|
ight\}$$

Where C is the space of all eigenvalues of A

- The spectral radius is bounded by infinity norm of a matrix: $ho(A) = \lim_{k o \infty} \|A^k\|^{1/k}$
- Proof: Turn to a partner and prove this!

- The spectral radius is bounded by infinity norm of a matrix: $ho(A) = \lim_{k o \infty} \|A^k\|^{1/k}$
- Proof: Let λ and v be an eigenpair of A:

$$\|\lambda\|^k\|\mathbf{v}\| = \|\lambda^k\mathbf{v}\| = \|A^k\mathbf{v}\| \le \|A^k\|\cdot\|\mathbf{v}\|$$

and since $v \neq \mathbf{0}$ we have

$$\left|\lambda
ight|^k\leq \left\|A^k
ight\|$$

and therefore

$$ho(A) \leq \|A^k\|^{rac{1}{k}}.$$

- An n × n matrix A is diagonalizable if it has n linearly independent eigenvectors.
- Most square matrices (in a sense that can be made mathematically rigorous) are diagonalizable:
 - Normal matrices are diagonalizable
 - Matrices with n distinct eigenvalues are diagonalizable

Lemma: Eigenvectors associated with distinct eigenvalues are linearly independent.

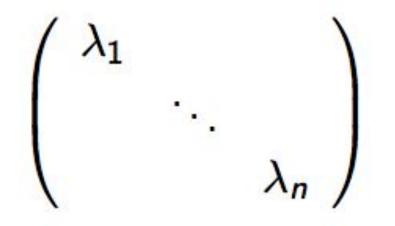
- An n × n matrix A is diagonalizable if it has n linearly independent eigenvectors.
- Most square matrices are diagonalizable:
 - Normal matrices are diagonalizable
 - Matrices with n distinct eigenvalues are diagonalizable

Lemma: Eigenvectors associated with distinct eigenvalues are linearly independent.

• Eigenvalue equation:

$$AV = VD$$
$$A = VDV^{-1}$$

- Where D is a diagonal matrix of the eigenvalues



• Eigenvalue equation:

AV = VD $A = VDV^{-1}$

• Assuming all λ_i 's are unique:

$$A = V D V^T$$

• Remember that the inverse of an orthogonal matrix is just its transpose and the eigenvectors are orthogonal

Symmetric matrices

- Properties:
 - For a symmetric matrix A, all the eigenvalues are real.
 - The eigenvectors of A are orthonormal.

$$A = VDV^T$$

Symmetric matrices

• Therefore:

$$x^T A x = x^T V D V^T x = y^T D y = \sum_{i=1}^n \lambda_i y_i^2$$

- where $y = V^T x$

• So, what can you say about the vector x that satisfies the following optimization? $\max_{x \in \mathbb{R}^n} x^T A x$ subject to $||x||_2^2 = 1$

Symmetric matrices

• Therefore:

$$x^T A x = x^T V D V^T x = y^T D y = \sum_{i=1}^n \lambda_i y_i^2$$

- where $y = V^T x$

So, what can you say about the vector x that satisfies the following optimization? max_{x∈ℝⁿ} x^TAx subject to ||x||₂² = 1
Is the same as finding the eigenvector that corresponds to the largest eigenvalue of A.

Some applications of Eigenvalues

- PageRank
- Schrodinger's equation
- PCA

• We are going to use it to compress images in future classes

Outline

- Vectors and matrices
 - Basic Matrix Operations
 - Determinants, norms, trace
 - Special Matrices
- Transformation Matrices
 - Homogeneous coordinates
 - Translation
- Matrix inverse
- Matrix rank
- Eigenvalues and Eigenvectors(SVD)
- Matrix Calculus

Matrix Calculus – The Gradient

- Let a function $f : \mathbb{R}^{m \times n} \to \mathbb{R}$ take as input a matrix A of size $m \times n$ and return a real value.
- Then the **gradient** of **f**:

$$\nabla_A f(A) \in \mathbb{R}^{m \times n} = \begin{bmatrix} \frac{\partial f(A)}{\partial A_{11}} & \frac{\partial f(A)}{\partial A_{12}} & \cdots & \frac{\partial f(A)}{\partial A_{1n}} \\ \frac{\partial f(A)}{\partial A_{21}} & \frac{\partial f(A)}{\partial A_{22}} & \cdots & \frac{\partial f(A)}{\partial A_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f(A)}{\partial A_{m1}} & \frac{\partial f(A)}{\partial A_{m2}} & \cdots & \frac{\partial f(A)}{\partial A_{mn}} \end{bmatrix}$$

Matrix Calculus – The Gradient

- Every entry in the matrix is: $\nabla_A f(A))_{ij} = \frac{\partial f(A)}{\partial A_{ij}}$.
- the size of $\nabla_A f(A)$ is always the same as the size of A. So if A is just a vector x:

$$\nabla_x f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{bmatrix}$$

• Example:

For $x \in \mathbb{R}^n$, let $f(x) = b^T x$ for some known vector $b \in \mathbb{R}^n$

$$f(x) = \begin{bmatrix} b_1 & b_2 & \dots & b_n \end{bmatrix}^T \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
$$\frac{\partial f(x)}{\partial x_k} = ?$$

• Find:

 $\nabla_x f(x) = ?$

• Example:

For $x \in \mathbb{R}^n$, let $f(x) = b^T x$ for some known vector $b \in \mathbb{R}^n$

$$f(x) = \sum_{i=1}^{n} b_i x_i$$

$$\frac{\partial f(x)}{\partial x_k} = \frac{\partial}{\partial x_k} \sum_{i=1}^n b_i x_i = b_k.$$

• From this we can conclude that:

 $\nabla_x b^T x = b$

Matrix Calculus – The Gradient

- Properties
- $\nabla_x(f(x) + g(x)) = \nabla_x f(x) + \nabla_x g(x).$
- For $t \in \mathbb{R}$, $\nabla_x(t f(x)) = t \nabla_x f(x)$.

• The Hessian matrix with respect to x, written $\nabla_x^2 f(x)$ or simply as H:

$$\nabla_x^2 f(x) \in \mathbb{R}^{n \times n} = \begin{bmatrix} \frac{\partial^2 f(x)}{\partial x_1^2} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f(x)}{\partial x_2 \partial x_1} & \frac{\partial^2 f(x)}{\partial x_2^2} & \cdots & \frac{\partial^2 f(x)}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f(x)}{\partial x_n \partial x_1} & \frac{\partial^2 f(x)}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_n^2} \end{bmatrix}$$

• The Hessian of n-dimensional vector is the n × n matrix.

• Each entry can be written as:

$$\nabla_x^2 f(x))_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}$$

• Exercise: Why is the Hessian always symmetric?

• Each entry can be written as:

$$abla_x^2 f(x))_{ij} = rac{\partial^2 f(x)}{\partial x_i \partial x_j}$$

• The Hessian is always symmetric, because

$$\frac{\partial^2 f(x)}{\partial x_i \partial x_j} = \frac{\partial^2 f(x)}{\partial x_j \partial x_i}.$$

 This is known as Schwarz's theorem: The order of partial derivatives don't matter as long as the second derivative exists and is continuous.

 Note that the hessian is not the gradient of whole gradient of a vector (this is not defined). It is actually the gradient of every entry of the gradient of the vector.

$$\nabla_x^2 f(x) \in \mathbb{R}^{n \times n} = \begin{bmatrix} \frac{\partial^2 f(x)}{\partial x_1^2} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f(x)}{\partial x_2 \partial x_1} & \frac{\partial^2 f(x)}{\partial x_2^2} & \cdots & \frac{\partial^2 f(x)}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f(x)}{\partial x_n \partial x_1} & \frac{\partial^2 f(x)}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_n^2} \end{bmatrix}$$

• Eg, the first column is the gradient of $\frac{\partial f(x)}{\partial x_1}$

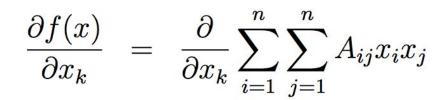
$$\nabla_x^2 f(x) \in \mathbb{R}^{n \times n} = \begin{bmatrix} \frac{\partial^2 f(x)}{\partial x_1^2} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f(x)}{\partial x_2 \partial x_1} & \frac{\partial^2 f(x)}{\partial x_2^2} & \cdots & \frac{\partial^2 f(x)}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f(x)}{\partial x_n \partial x_1} & \frac{\partial^2 f(x)}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_n^2} \end{bmatrix}$$

• Example:

consider the quadratic function $f(x) = x^T A x$

$$f(x) = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} x_i x_j$$

$$\frac{\partial f(x)}{\partial x_k} = \frac{\partial}{\partial x_k} \sum_{i=1}^n \sum_{j=1}^n A_{ij} x_i x_j$$



$$\frac{\partial f(x)}{\partial x_k} = \frac{\partial}{\partial x_k} \sum_{i=1}^n \sum_{j=1}^n A_{ij} x_i x_j$$
$$= \frac{\partial}{\partial x_k} \left[\sum_{i \neq k} \sum_{j \neq k} A_{ij} x_i x_j + \sum_{i \neq k} A_{ik} x_i x_k + \sum_{j \neq k} A_{kj} x_k x_j + A_{kk} x_k^2 \right]$$

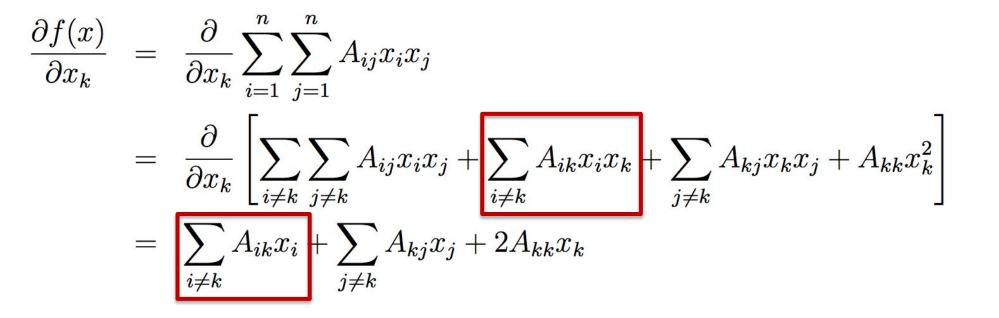
Divide the summation into 3 parts depending on whether:

- i == k or
- j == k

$$\frac{\partial f(x)}{\partial x_k} = \frac{\partial}{\partial x_k} \sum_{i=1}^n \sum_{j=1}^n A_{ij} x_i x_j$$

$$= \frac{\partial}{\partial x_k} \left[\sum_{i \neq k} \sum_{j \neq k} A_{ij} x_i x_j + \sum_{i \neq k} A_{ik} x_i x_k + \sum_{j \neq k} A_{kj} x_k x_j + A_{kk} x_k^2 \right]$$

$$= \sum_{i \neq k} A_{ik} x_i + \sum_{j \neq k} A_{kj} x_j + 2A_{kk} x_k$$



$$\frac{\partial f(x)}{\partial x_k} = \frac{\partial}{\partial x_k} \sum_{i=1}^n \sum_{j=1}^n A_{ij} x_i x_j$$

$$= \frac{\partial}{\partial x_k} \left[\sum_{i \neq k} \sum_{j \neq k} A_{ij} x_i x_j + \sum_{i \neq k} A_{ik} x_i x_k + \sum_{j \neq k} A_{kj} x_k x_j + A_{kk} x_k^2 \right]$$

$$= \sum_{i \neq k} A_{ik} x_i + \sum_{j \neq k} A_{kj} x_j + 2A_{kk} x_k$$

$$\frac{\partial f(x)}{\partial x_k} = \frac{\partial}{\partial x_k} \sum_{i=1}^n \sum_{j=1}^n A_{ij} x_i x_j$$

$$= \frac{\partial}{\partial x_k} \left[\sum_{i \neq k} \sum_{j \neq k} A_{ij} x_i x_j + \sum_{i \neq k} A_{ik} x_i x_k + \sum_{j \neq k} A_{kj} x_k x_j + A_{kk} x_k^2 \right]$$

$$= \sum_{i \neq k} A_{ik} x_i + \sum_{j \neq k} A_{kj} x_j + 2A_{kk} x_k$$

$$\frac{\partial f(x)}{\partial x_k} = \frac{\partial}{\partial x_k} \sum_{i=1}^n \sum_{j=1}^n A_{ij} x_i x_j$$

$$= \frac{\partial}{\partial x_k} \left[\sum_{i \neq k} \sum_{j \neq k} A_{ij} x_i x_j + \sum_{i \neq k} A_{ik} x_i x_k + \sum_{j \neq k} A_{kj} x_k x_j + A_{kk} x_k^2 \right]$$

$$= \sum_{i \neq k} A_{ik} x_i + \sum_{j \neq k} A_{kj} x_j + 2A_{kk} x_k$$

$$\begin{aligned} \frac{\partial f(x)}{\partial x_k} &= \frac{\partial}{\partial x_k} \sum_{i=1}^n \sum_{j=1}^n A_{ij} x_i x_j \\ &= \frac{\partial}{\partial x_k} \left[\sum_{i \neq k} \sum_{j \neq k} A_{ij} x_i x_j + \sum_{i \neq k} A_{ik} x_i x_k + \sum_{j \neq k} A_{kj} x_k x_j + A_{kk} x_k^2 \right] \\ &= \sum_{i \neq k} A_{ik} x_i + \sum_{j \neq k} A_{kj} x_j + 2A_{kk} x_k \\ &= \sum_{i=1}^n A_{ik} x_i + \sum_{j=1}^n A_{kj} x_j = 2 \sum_{i=1}^n A_{ki} x_i, \end{aligned}$$

$$f(x) = x^T A x$$
$$f(x) = \sum_{i=1}^n \sum_{j=1}^n A_{ij} x_i x_j$$

$$\frac{\partial^2 f(x)}{\partial x_k \partial x_\ell} = \frac{\partial}{\partial x_k} \left[\frac{\partial f(x)}{\partial x_\ell} \right] = \frac{\partial}{\partial x_k} \left[\sum_{i=1}^n 2A_{\ell i} x_i \right]$$

$$f(x) = x^T A x$$
$$f(x) = \sum_{i=1}^n \sum_{j=1}^n A_{ij} x_i x_j$$

$$\frac{\partial^2 f(x)}{\partial x_k \partial x_\ell} = \frac{\partial}{\partial x_k} \left[\frac{\partial f(x)}{\partial x_\ell} \right] = \frac{\partial}{\partial x_k} \left[\sum_{i=1}^n 2A_{\ell i} x_i \right]$$
$$= 2A_{\ell k} = 2A_{k\ell}.$$

$$f(x) = x^T A x$$
$$f(x) = \sum_{i=1}^n \sum_{j=1}^n A_{ij} x_i x_j$$

$$\frac{\partial^2 f(x)}{\partial x_k \partial x_\ell} = \frac{\partial}{\partial x_k} \left[\frac{\partial f(x)}{\partial x_\ell} \right] = \frac{\partial}{\partial x_k} \left[\sum_{i=1}^n 2A_{\ell i} x_i \right]$$
$$= 2A_{\ell k} = 2A_{k\ell}.$$

$$\nabla_x^2 f(x) = 2A$$

What we have learned

- Vectors and matrices
 - Basic Matrix Operations
 - Special Matrices
- Transformation Matrices
 - Homogeneous coordinates
 - Translation
- Matrix inverse
- Matrix rank
- Eigenvalues and Eigenvectors
- Matrix Calculate