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Outline

* Vectors and matrices
— Basic Matrix Operations
— Determinants, norms, trace
— Special Matrices

Vectors and matrices are just
collections of ordered numbers that
represent something: movements
in space, scaling factors, pixel
brightness, etc. We'll define some
common uses and standard
operations on them.



Vector

e A column vector v € R**1where
e
U2

* Arow vector T - glxnwhere

VT — [”Ul Vo ... Un}

" denotes the transpose operation



Vector

e We'll default to column vectors in this class

* You’ll want to keep track of the orientation of your vectors
when programming in python

* You can transpose a vector V in python by writing V.t. (But
in class materials, we will always use V' to indicate
transpose, and we will use V' to mean “V prime”)



Vectors have two main uses

* Data (pixels, gradients at an
image keypoint, etc) can
also be treated as a vector.

* Such vectors don’t have a
* \ectors can represent . . .
n offset in 2D or 3D geometric interpretation,
but calculations like
space.
« Points are just vectors “distance” can still have
from the origin. value.
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Matrix

* A matrix A € R™*"™ is an array of numbers with size by ,
l.e. mrows and n columns.

aii ai2 aiz ... A1n
a1 a9 az3 ... aA2n,
A =
Om1  Gm2 Am3 Amn_

* If m = n,wesaythat A issquare.



Images
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* Python represents an image as a matrix of pixe
brightnesses

* Note that the upper left corner is [y,x] = (0,0)



Images as both a matrix as well as a vector

Stretch pixels into column
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Color Images
* Grayscale images have one number per pixel, and are
stored as an m x n matrix.

* Color images have 3 numbers per pixel — red, green,
and blue brightnesses (RGB)

e Stored as an m x n x 3 matrix
m Ne—>

/4




Basic Matrix Operations

* We will discuss:
— Addition
— Scaling
— Dot product
— Multiplication
— Transpose
— Inverse / pseudoinverse
— Determinant / trace



Matrix Operations

e Addition

a bl [1 2 a+1 b+2
Qa n _ a +

c d 3 4 c+3 d+4
— Can only add a matrix with matching dimensions,
or a scalar.

a b LT a+7 b+T

¢ d le+T7 d+7

e Scaling ) ] )
a b e 3a  3b
c d -3¢ 3d




Vectors

sNorm |zl = \ ) at.

* More formally, a norm is any function f : R® — R
that satisfies 4 properties:

* Non-negativity: Forall z € R*, f(z) >0

* Definiteness: f(x) =0 if and only if x =0.

* Homogeneity: Forall z ¢ R™ ¢t e R. f(tz) = It f ()

* Triangle inequality: Forall ; 4 c R”, f(z 4+ y) < f(z) + f(v)



Norms

* Example Norms

n
|zl = Z 5] |zl oo = max; ||
=1

* General ¢, norms: ) 1p
ety = (3

=1



Matrix Operations

* Inner product (dot product) of vectors

— Multiply corresponding entries of two vectors and
add up the result

— x-y is also | x| |y|Cos( the angle between x and y )

Y1
xVy=lz1 ... ] | 0| =D miy (scalar)
Yn




Matrix Operations

* Inner product (dot product) of vectors

— If B is a unit vector, then A-B gives the length of A
which lies in the direction of B




Matrix Operations

* The product of two matrices

( = AB ¢ %<&

A € Rmxn
Be [ -
Cij:ZAz’kBkj
k=1
[ — ag — | o | _agbl aibz
— a3 — as by azby .-
¢ =AB = § [bl by - bp} PR
— al — | . | _a%bl alby -




Matrix Operations
* Multiplication B

llE:
O

* The product AB is:

A

C Q
w N -
— — —

Q Q
w N =
N P N

Q Q Q
Q

e Each entry in the result is (that row of A) dot
product with (that column of B)

* Many uses, which will be covered later



Matrix Operations

* Multiplication example:

A X B\ — Each entry of the matrix
1 product is made by taking the
dot product of the
_5 7_ corresponding row in the left
matrix, with the corresponding
'- 10 14 column in the right one.
4 6 34 54

0-34+2-7=14



Matrix Operations

* The product of two matrices

Matrix multiplication is associative: (AB)C = A(BC).
Matrix multiplication is distributive: A(B + C) = AB + AC.

Matrix multiplication is, in general, not commutative; that is, it can be the case that
AB # BA. (For example, if A € R™*™ and B € R™?, the matrix product BA does
not even exist if m and g are not equal!)



Matrix Operations

e Powers

— By convention, we can refer to the matrix product
AA as A%, and AAA as A°, etc.

— Obviously only square matrices can be multiplied
that way



Matrix Operations

* Transpose — flip matrix, so row 1 becomes

column 1

-

* A useful identity:

(ABC)T = CcTBT AT

- DN O

ot o =

i

)

Qo DO

Ot =~




Matrix Operations
* Determinant

— det(A)returns a scalar
— Represents area (or volume) of the

parallelogram described by the vectors

in the rows of the matrix

— For A = [a 2]; det(A) = ad — bc

C

— Properties:
det(AB) = det(BA)
1
—1\
det(A™) = ot A

det(AT) = det(A)
det(A) = 0 < A is singular

(0,0)

(c.d)

(a+c,b+d)

(a,b)



Matrix Operations

* Trace

tr(A) = sum of diagonal elements

m[é ?7’])21+7:8

— Invariant to a lot of transformations, so it’s used
sometimes in proofs. (Rarely in this class though.)

— Properties:

tr(AB) = tr(BA)
tr(A 4+ B) = tr(A) + tr(B)



Matrix Operations

e VVector Norms

n
Izl =) |z |z |0 = max; |z;|
=1

n n 1/p
|2 = \ > ]l = (Z |93z'|p)
' =1

e Matrix norms: Norms can also be defined for
matrices, such as

m n

\ Z Z A2 = \/tr(ATA).

1Al =




Special Matrices

* |dentity matrix I

— Square matrix, 1's along diagonal, 0’s
elsewhere

— I - [another matrix] = [that matrix]

* Diagonal matrix

— Square matrix with numbers along
diagonal, O’s elsewhere

— A diagonal - [another matrix] scales the
rows of that matrix

p—d




Special Matrices

* Symmetric matrix

e Skew-symmetric matrix




Outline

Matrix multiplication can be used

e Transformation Matrices - jco :}:z.ansforr_n ve::ltcijrs. A matrix used
in this way is called a

transformation matrix.




Transformation

* Matrices can be used to transform vectors in useful ways,
through multiplication: x’= Ax
* Simplest is scaling:

S, 0 Xa::sw:c

0 s, Y Sy Y

(Verify to yourself that the matrix multiplication works out this way)



Transformation

X
|




Rotation

S\




Rotation

 How can you convert a vector represented in frame
“0” to a new, rotated coordinate frame “1”?

yo0




Rotation

 How can you convert a vector represented in frame
“0” to a new, rotated coordinate frame “1”?

e Remember what a vector is:

[component in direction of the frame’s x axis, component in direction of y axis]

yO0

X0



Rotation

* So to rotate it we must produce this vector:

[component in direction of new x axis, component in direction of new y axis]

* We can do this easily with dot products!
* New x coordinate is [original vector] dot [the new X axis]
* New vy coordinate is [original vector] dot [the new y axis]

yo0

X0



Rotation

* |nsight: this is what happens in a matrix*vector
multiplication

— Result x coordinate is:
[original vector] dot [matrix row 1]

— So matrix multiplication can rotate a vectnr n-
yo0

RXxp= P
rotated p

- L

. [m—

—.707 .707




Rotation

e Suppose we express a point in the new
coordinate system which is rotated left

* |f we plot the result in the original coordinate

system, we have rotated the point right
o — Thus, rotation matrices

can be used to rotate
vectors. We'll usually
think of them in that
sense-- as operators to
rotate vectors




2D Rotation Matrix Formula

Counter-clockwise rotation by an
angle 6

X'=cosOx—sm0Oy
y'=cos0 y+sm 0 x

X cos@ —sméb

y'| |sm60 cosO

P'=RP




Transformation Matrices

* Multiple transformation matrices can be used to transform a
point:
p'=R,R,Sp

* The effect of this is to apply their transformations one after
the other, from right to left.

* In the example above, the result is
(R, (R, (S p)))

* The result is exactly the same if we multiply the matrices
first, to form a single transformation matrix:

p'=(R,R,S)p



Homogeneous system

* [n general, a matrix multiplication lets us linearly
combine components of a vector

a b « | axr + by
c d Y cx + dy

— This is sufficient for scale, rotate, skew transformations.
— But notice, we can’t add a constant! (=X



Homogeneous system

— The (somewhat hacky) solution? Stick a “1” at the end of every

vector:
a b ¢ £l ar 4+ by + ¢
d e f|l| X |yl =|de+ey+f
0 0 1 1 I 1 ]

— Now we can rotate, scale, and skew like before, AND translate
(note how the multiplication works out, above)

— This is called “homogeneous coordinates”



Homogeneous system

— In homogeneous coordinates, the multiplication works out
so the rightmost column of the matrix is a vector that gets

added.
a b c Ed ax + by + ¢
d e f|l X |yl =|der+ey+f
0o 0 1 1 i 1 i
— Generally, a homogeneous transformation matrix will have a

bottom row of [0 0 1], so that the result has a “1” at the
bottom too.



Homogeneous system

* One more thing we might want: to divide the result by
something

— For example, we may want to divide by a coordinate, to make
things scale down as they get farther away in a camera image

— Matrix multiplication can’t actually divide

— So, by convention, in homogeneous coordinates, we’ll divide the
result by its last coordinate after doing a matrix multiplication

T -33/7_
y| = |y/7
i I




2D Translation




2D Translation using Homogeneous

Coordinates
R S
Yoo p _
y |
X tXx

P'—

P=(x,y)—>(x,p)l)
t=(t,,t,) > (1,0

_x+tx_

y+ty
1

_______




2D Translation using Homogeneous
Coordinates

L P=(x,y)—>(x,]0)
v e t=(t,.t,)—>(t,t,.1)
y i _ o o
X tx X+ | x
P'—|y+t, |= | y




2D Translation using Homogeneous
Coordinates

. F P=(x,y)—>(x,.1)

Ve t=(1,,1,) > (t,1,,])
y i _ _ o ¥
Pyt =]y




2D Translation using Homogeneous
Coordinates

P P=(x,y)—>(x,y,l)
A — g t=(t,.t,) > (.1,
V - - - N
P'— y-l—fy = o L y




2D Translation using Homogeneous

Coordinates
I A
Yool p _
y |
X tx

P'—

P=(x,y)—>(x,),])
t=(,1,) > (,.,t,,]) |

_x+tx

y+ty

1

_______







Scaling Equation

P=(x,y) > P'=(s,Xx,8,¥)

P=(x,y)— (x,,])
P'=(s.x,5,y) > (s,%,5,5,])




Scaling Equation

S, Y b
___________ P
Y
X
S X
' —_—
P'—>|s,y|=

P=(x,y) > P'=(s,x,s,y)

P=(x,y) = (x,»,])
P'=(s.x,5,y) > (s,x,5,5,])




Scaling Equation

o
R - P=(x,y) > P'=(s,%x,8,y)
SR
’ P=(x,y) > (x,y,])
) SX'X P'=(s.x,5,y) > (s,x,5,5,])
sx| [s. 0 Of[x] _ _
S'" 0
P'—>isy|=10 s, Oly]|= -P=S-P
0 1
1] [0 0 1f1] * -

S



Scaling & Translating

77

P'=S-P
p=T-P’

p’=T - P’=T+(S-P)=T-S P



Scaling & Translating

1 O
P'=T-S-P= 0 1 ¢ 0
0 0




Scaling & Translating

o O e
) Sy O
Sx o O

- e
O - O
—_ O O

P'=T-S-P




Translating & Scaling != Scaling & Translating

P"=T-S-P=

(Y

»

o O
e

_SXX + tx_

s,y +t,

1



Translating & Scaling != Scaling & Translating

(1 0 t |[s, 0 O]x]| [s, O t |[x] [s.,x+t,]
P"=T-S-P={0 1 t (10 s O]y|=]0 s, t [y|=[s,y+t,
00 1o o 1|1] [0 O 11| [ 1

P'"=S-T-P=




1 0 t,
"=T-S-P=|0 1 ¢t

0 0 1|
P'"=S-T-P=
s, 0 st

=1 0 s, st
0 0 1

Translating & Scaling != Scaling & Translating

_SXX + tx_

s,y +t,




Rotation




Rotation Equations

Counter-clockwise rotation by an
angle 6

X'=cosOx—sm0Oy
y'=cos0 y+sm 0 x

X cos@ —sn0

y'| |sm@ cosO

P'=RP




Rotation Matrix Properties

X cos@ —snl | x

y'| |sm@ cosO ||y

A 2D rotation matrix is 2x2

Note: R belongs to the category of normal

matrices
and satisfies many interesting properties:

R-R"=R"-R=1
det(R) =1



Rotation Matrix Properties

* Transpose of a rotation matrix produces a
rotation in the opposite direction

R-R'"=R"-R=1
det(R) =1
* The rows of a rotation matrix are always

mutually perpendicular (a.k.a. orthogonal)
unit vectors

— (and so are its columns)



P'=T-R-S-P=

Scaling + Rotation + Translation

cos O

sin O

—sino

cos O

P’=(TRS)P

S = O

t

X

t

y

cos©
sin 0
0

—sin® Os. 0 0O]x

cos O
0

<

<

oflo s. O]y
1] o

This is the form of the
general-purpose
transformation matrix




Outline

e Matrix inverse - The inverse of a transformation
matrix reverses its effect



Inverse

e Given a matrix A, its inverse A is a matrix such
that AA ' =ATA =1

- | -

i F 1
* E.8. 2 0 _ |2 (1)
_O 3_ _O 3

* Inverse does not always exist. If A exists, A is
invertible or non-singular. Otherwise, it’s singular.

e Useful identities, for matrices that are invertible:



Matrix Operations

e Pseudoinverse

— Fortunately, there are workarounds to solve AX=B in these
situations. And python can do them!

— Instead of taking an inverse, directly ask python to solve for X in
AX=B, by typing np.linalg.solve(A, B)

— Python will try several appropriate numerical methods (including
the pseudoinverse if the inverse doesn’t exist)

— Python will return the value of X which solves the equation
* If there is no exact solution, it will return the closest one
* If there are many solutions, it will return the smallest one



Matrix Operations

* Python example:

AX =B

R

>> import numpy as np
>> x = np.linalg.solve(A, B)
X =

1.0000

-0.5000




Outline

. The rank of a transformation matrix
* Matrix rank < tells you how many dimensions it
transforms a vector to.




Linear independence

* Suppose we have a set of vectors v , ..., v
n

* If we can express v, as a linear combination of the other
vectors v,...v , thenv_is linearly dependent on the other
vectors.

— The direction v, can be expressed as a combination of the
directionsv,...v . (Eg.v.=.7Vv -7V,



Linear independence

* Suppose we have a set of vectors v , ..., v
n

* If we can express v, as a linear combination of the other
vectors v,...v , then v_is linearly dependent on the other
vectors.

— The direction v, can be expressed as a combination of the
directionsv,...v . (Eg.v.=.7Vv -7V,
* |f no vector is linearly dependent on the rest of the set, the
set is linearly independent.

— Common case: a set of vectors v , ..., v_is always linearly

independent if each vector is perpendicular to every other
vector (and non-zero)



Linear independence

Linearly independent set  Not linearly independent

A




Matrix rank

* Column/row rank

— Column rank always equals row rank

e Matrix rank

rank(A) = col-rank(A) = row-rank(A)



Matrix rank

* For transformation matrices, the rank tells you the
dimensions of the output

e E.g.if rank of Ais 1, then the transformation

) _
p'=Ap
maps points onto a line.
* Here’s a matrix with rank 1:

L1 X . — LY «— All points get
2 2 Y 21 + 2y mapped to

the line y=2x




Matrix rank

* |f an m x m matrix is rank m, we say it’s “full rank”
— Maps an m x 1 vector uniquely to another m x 1 vector
— An inverse matrix can be found

* If rank <m, we say it’s “singular”

— At least one dimension is getting collapsed. No way to look at
the result and tell what the input was

— Inverse does not exist

* Inverse also doesn’t exist for non-square matrices



Outline

* Eigenvalues and Eigenvectors(SVD)



Eigenvector and Eigenvalue

* An eigenvector x of a linear transformation A is a non-zero
vector that, when A is applied to it, does not change
direction.

Ar= i g+l



Eigenvector and Eigenvalue

* An eigenvector x of a linear transformation A is a non-zero
vector that, when A is applied to it, does not change
direction.

* Applying A to the eigenvector only scales the eigenvector by
the scalar value A, called an eigenvalue.

Ar= i g+l



Eigenvector and Eigenvalue

e We want to find all the eigenvalues of A:
A= xit =20,
e Which can we written as:

Az = (AM)x x # 0.

 Therefore:

(Al —A)x=0, z#0.



Eigenvector and Eigenvalue

* We can solve for eigenvalues by solving:

(Al —A)x=0, z#0.

* Since we are looking for non-zero x, we can instead solve the
above equation as:

(M — A)| = 0.



Properties

* The trace of a A is equal to the sum of its eigenvalues:

=1

 The determinant of A is equal to the product of its eigenvalues

Al =]
=1

* The rank of A is equal to the number of non-zero eigenvalues of
A.

* The eigenvalues of a diagonal matrix D = diag(d1, ... dn) are
just the diagonal entries d1, ... dn



Spectral theory

* We call an eigenvalue A and an associated eigenvector
an eigenpair.

* The space of vectors where (A — Al) = 0 is often called
the eigenspace of A associated with the eigenvalue A.

* The set of all eigenvalues of A is called its spectrum:

o(A) ={A € C: Al — Ais singular}



Spectral theory

 The magnitude of the largest eigenvalue (in
magnitude) is called the spectral radius

p(A) — max{|/\1|, ceey IAnl}

— Where Cis the space of all eigenvalues of A



Spectral theory

* The spectral radius is bounded by infinity norm of a
matrix: p(A) = lim || A¥|"/8

* Proof: Turn to a partner and prove this!



Spectral theory

* The spectral radius is bounded by infinity norm of a
matrix: p(A) = lim [|A%|["/*
* Proof: Let A and v be an eigenpair of A:
APl = Xl = [|A*v]| < [|4F]| - [Iv]
and since v # 0 we have
AF < [14%|

and therefore

1
p(A) < || A*||*.



Diagonalization

* An n x n matrix A is diagonalizable if it has n linearly
independent eigenvectors.

* Most square matrices (in a sense that can be made
mathematically rigorous) are diagonalizable:

— Normal matrices are diagonalizable
— Matrices with n distinct eigenvalues are diagonalizable

Lemma: Eigenvectors associated with distinct eigenvalues are
linearly independent.



Diagonalization

 An n x n matrix A is diagonalizable if it has n linearly
independent eigenvectors.
* Most square matrices are diagonalizable:

— Normal matrices are diagonalizable
— Matrices with n distinct eigenvalues are diagonalizable

Lemma: Eigenvectors associated with distinct eigenvalues are
linearly independent.



Diagonalization

* Eigenvalue equation:
AV =V D
A=VDV-

— Where D is a diagonal matrix of the eigenvalues

A1



Diagonalization

* Eigenvalue equation:
AV =VD
A=VDV-

* Assuming all A’s are unique:

A=VDV?

« Remember that the inverse ot an orthogonal matrix is just its
transpose and the eigenvectors are orthogonal



Symmetric matrices

* Properties:
— For a symmetric matrix A, all the eigenvalues are real.
— The eigenvectors of A are orthonormal.

A=VDV?



Symmetric matrices

 Therefore:
T Az = 'VDVTz =yT'Dy = Z \il;
=1

— where y=V7Tg
* So, what can you say about the vector x that satisfies the
following optimization? ,¢ .. 274z  subject to [[z]2 = 1



Symmetric matrices

e Therefore:
T Az = 'VDVTz =yT'Dy = Z \iy;
g—=

— where y=V7Tg
* So, what can you say about the vector x that satisfies the
following optimization? ,¢ .. 274z  subject to [[z]2 = 1

— |s the same as finding the eigenvector that corresponds to the
largest eigenvalue of A.



Some applications of Eigenvalues

* PageRank
e Schrodinger’s equation
* PCA

* We are going to use it to compress images in future classes



Outline

e Matrix Calculus



Matrix Calculus — The Gradient

e Let a function f:R™" — R take as input a matrix A of size
m X n and return a real value.

* Then the gradient of f:

0f(A) 9Of(A) 9f(A)
0A11 0A12 0A1
srch  ofh . b
vAf(A) c Ran _ 0A21 0Ao2 0Aan,
0f(A) Of(A) 9f(A)




Matrix Calculus — The Gradient

0f(A
* Every entry in the matrix is: Vaf(4))i; = g/(hj)-

* the size of V f(A) is always the same as the size of A. So if A
IS just a vector x:

Vof(z)=| %=




Exercise

* Example:
For z € R", let f(z) = b’z for some known vector b € R"
o
T
f@=[b b ... b7 |
Ln
8.}((3;) _9 -7

e Find: Oz



Exercise

* Example:

For z € R", let f(z) = b’z for some known vector b € R"

n
= E b;;
i=1

of(

* From this we can conclude that: vV, bTz =



Matrix Calculus — The Gradient

* Properties

o Vau(f(z) +9(2)) = Vo f(z) + Vay().
e Fort e R, V,(t f(x)) =tV.f(x).



Matrix Calculus — The Hessian

* The Hessian matrix with respect to x, writtenv2f(z) or
simply as H:

- Pf@) @) . (@) -
8:1:% 0x10x2 0x10Tn
Pila) I .. 0@
vif(x) c RPX" — 09021 oz 0L20%n,
i) @) . 0%(@)
L Ozn0x1 Oxnlx2 Oy,

* The Hessian of n-dimensional vector is the n x n matrix.



Matrix Calculus — The Hessian

2
* Each entry can be written as: V2 f(z))i; = 0°f(z)
& < 833@837]

* Exercise: Why is the Hessian always symmetric?



Matrix Calculus — The Hessian

2
* Each entry can be written as: V2 f(z))i; = 0°f(z)
& < 833@837]

* The Hessian is always symmetric, because

0*f(z) _ 0°f(z)
8%—8@ N Bx]c?azz

* This is known as Schwarz's theorem: The order of partial
derivatives don’t matter as long as the second derivative
exists and is continuous.




Matrix Calculus — The Hessian

* Note that the hessian is not the gradient of whole gradient
of a vector (this is not defined). It is actually the gradient of
every entry of the gradient of the vector.

m Ffle) Bf) 0 Aflx) T
am% 0x10x2 0x10Tn
FHa) @flz ... o)
V?Ef(ﬂi) c RPXn — 8:1:2.3:1:1 8:1:% Bmzémn
fz)  8f(a) 52§ (a)
L 02,01 Ozndxs dr2




Matrix Calculus — The Hessian

* Eg, the first column is the gradient of

V2f(a) € R -

Ff(x) | 0°f(z)
Bm% 0x10x2
Ff(x) | 9*f(z)
8:13282171 83:%
Ff(x) | 0°f(x)
0rxn0x1 | Oxnldxs

0f (z)
8.’171




Exercise

* Example:

consider the quadratic function f(z) = 27 Az

f@) =)D Ayza;

i=1 j=1

i=1 j=1




Exercise

L oy 22 Auei

i=1 4=1



Exercise

i=1 j=1
9,
B | itk £k itk j#k

Divide the summation into 3 parts depending on whether:
e i==kor

0j==



Exercise

Ba(sf) = 8_xk g ; Aij T

i=1 4=1
0
B Witk £k ik j#k

= Z Air; + Z Apjj + 24k
ik itk



Exercise

(9:1(:::) = 8—% g ; Aij T

i=1 4=1
0
k| itk £k ik j#k

= Z Airx; | Z Ap;t; + 2AkTs
T e




Exercise

(9:1(:::) = B g ; Aty

i=1 4=1
0
= 5 Z Z Agmibisiis < Z Aipzizr + Z ApjTri;
B Litk £k ik j7k

- AppTs

i#k j7k




Exercise

Ba(:f) = B g ; A%

i=1 4=1
0
= 8—% Z Z Agmibisiis < Z Aipzizr + Z ApjTr; +
itk £k i#k JF#k

= Z Air; + Z Apjj H2ArTk
i#k J7k

Akkxil




Exercise

Ba(sf) = 8_xk ; ; A;j it

i=1 4=1
0
k| itk £k ik j#k

= Z Air; + Z Apjj + 24k
ik itk



Exercise

Ba(sf) = 8_xk ; ; A;j it

i=1 4=1
0
B | itk £k ik j#k
= Z Air; + Z Apjtj + 24k
itk j#k

i=1 j=1 i=1



Exercise

3 (:13) = 2T Ax
fl@)=) ) Az,

i=1 j=1

& f(x) 9,

0f (x)

020Xy - 0%

|

8.CL'g

|

0

8.’1%

- _
E Aez'CUz'
i=1 .




Exercise

3 (:1:) = 2T Ax
fl@)=) ) Az,

i=1 j=1

Pf@) 0 [0f@)] _ 0 |~, .
= = T Apx;
0x,0xy  OILi [ Oxy ] 0%y ; G

= QAgk = 2Akg.



Exercise

3 (:c) = 2T Ax

fl@)=> > Ay

i=1 j=1

oo~ 5o | 35| = 5a

020Xy B 0% B

= QAgk = 2Akg.

V2f(z) = 24

iQAez'CUz’
g1 !




What we have learned

e VVectors and matrices
— Basic Matrix Operations
— Special Matrices

* Transformation Matrices
— Homogeneous coordinates
— Translation

* Matrix inverse

e Matrix rank

* Eigenvalues and Eigenvectors
* Matrix Calculate




