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Vectors and matrices are just 
collections of ordered numbers that 
represent something: movements 
in space, scaling factors, pixel 
brightness, etc. We’ll define some 
common uses and standard 
operations on them.



Vector

• A column vector                    where

• A row vector                    where

        denotes the transpose operation



Vector
• We’ll default to column vectors in this class

• You’ll want to keep track of the orientation of your vectors 
when programming in python

• You can transpose a vector V in python by writing V.t. (But 
in class materials, we will always use VT to indicate 
transpose, and we will use V’ to mean “V prime”)



Vectors have two main uses

• Vectors can represent 
an offset in 2D or 3D 
space.

• Points are just vectors 
from the origin.

• Data (pixels, gradients at an 
image keypoint, etc) can 
also be treated as a vector.

• Such vectors don’t have a 
geometric interpretation, 
but calculations like 
“distance” can still have 
value.



Matrix

• A matrix                       is an array of numbers with size   by  , 
i.e.  m rows and n columns.

• If               , we say that       is square.
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Images

8

• Python represents an image as a matrix of pixel 
brightnesses

• Note that the upper left corner is [y,x] = (0,0)

=



Images as both a matrix as well as a vector



Color Images
• Grayscale images have one number per pixel, and are 

stored as an m × n matrix.
• Color images have 3 numbers per pixel – red, green, 

and blue brightnesses (RGB)
• Stored as an m × n × 3 matrix

=



Basic Matrix Operations

• We will discuss:
– Addition

– Scaling

– Dot product

– Multiplication

– Transpose

– Inverse / pseudoinverse

– Determinant / trace



Matrix Operations
• Addition

– Can only add a matrix with matching dimensions, 
or a scalar. 

• Scaling



•Norm

• More formally, a norm is any function 
that satisfies 4 properties: 

• Non-negativity: For all 
• Definiteness: f(x) = 0 if and only if x = 0. 
• Homogeneity: For all 
• Triangle inequality: For all

  

Vectors



• Example Norms

• General       norms:

Norms



Matrix Operations
• Inner product (dot product) of vectors
– Multiply corresponding entries of two vectors and 

add up the result

– x·y is also |x||y|Cos( the angle between x and y )



Matrix Operations

• Inner product (dot product) of vectors
– If B is a unit vector, then A·B gives the length of A 

which lies in the direction of B



Matrix Operations
• The product of two matrices



Matrix Operations
• Multiplication

• The product AB is:

• Each entry in the result is (that row of A) dot 
product with (that column of B)

• Many uses, which will be covered later



Matrix Operations
• Multiplication example:

– Each entry of the matrix 
product is made by taking the 
dot product of the 
corresponding row in the left 
matrix, with the corresponding 
column in the right one.



Matrix Operations
• The product of two matrices



Matrix Operations

• Powers
– By convention, we can refer to the matrix product 

AA as A2, and AAA as A3, etc.

– Obviously only square matrices can be multiplied 
that way



Matrix Operations
• Transpose – flip matrix, so row 1 becomes 

column 1

• A useful identity: 



• Determinant
–               returns a scalar

– Represents area (or volume) of the 
parallelogram described by the vectors 
in the rows of the matrix

– For                  ,                

– Properties:

Matrix Operations



• Trace

– Invariant to a lot of transformations, so it’s used 
sometimes in proofs. (Rarely in this class though.)

– Properties:

Matrix Operations



• Vector Norms

• Matrix norms: Norms can also be defined for 
matrices, such as the Frobenius norm:

Matrix Operations



Special Matrices

• Identity matrix I
– Square matrix, 1’s along diagonal, 0’s 

elsewhere
– I  ·  [another matrix] = [that matrix]

• Diagonal matrix
– Square matrix with numbers along 

diagonal, 0’s elsewhere
– A diagonal · [another matrix] scales the 

rows of that matrix



Special Matrices

• Symmetric matrix

• Skew-symmetric matrix
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Matrix multiplication can be used 
to transform vectors. A matrix used 
in this way is called a 
transformation matrix.



Transformation

• Matrices can be used to transform vectors in useful ways, 
through multiplication: x’= Ax

• Simplest is scaling:

(Verify to yourself that the matrix multiplication works out this way)



Transformation



Rotation

 



Rotation
• How can you convert a vector represented in frame 

“0” to a new, rotated coordinate frame “1”?



Rotation
• How can you convert a vector represented in frame 

“0” to a new, rotated coordinate frame “1”?

• Remember what a vector is:
[component in direction of the frame’s x axis, component in direction of y axis]



Rotation
• So to rotate it we must produce this vector:

[component in direction of new x axis, component in direction of new y axis]
• We can do this easily with dot products!
• New x coordinate is [original vector] dot [the new x axis]
• New y coordinate is [original vector] dot [the new y axis]



Rotation
• Insight: this is what happens in a matrix*vector 

multiplication
– Result x coordinate is:

[original vector] dot [matrix row 1]
– So matrix multiplication can rotate a vector p:



Rotation
• Suppose we express a point in the new 

coordinate system which is rotated left
• If we plot the result in the original coordinate 

system, we have rotated the point right
– Thus, rotation matrices 

can be used to rotate 
vectors. We’ll usually 
think of them in that 
sense-- as operators to 
rotate vectors



2D Rotation Matrix Formula
Counter-clockwise rotation by an 
angle θ

P

x

y’
P’

θ

x’

y



Transformation Matrices
• Multiple transformation matrices can be used to transform a 

point: 
p’=R

2 
R

1 
S p

• The effect of this is to apply their transformations one after 
the other, from right to left.

• In the example above, the result is 
(R

2 
(R

1 
(S p)))

• The result is exactly the same if we multiply the matrices 
first, to form a single transformation matrix:
p’=(R

2 
R

1 
S) p



Homogeneous system

• In general, a matrix multiplication lets us linearly 
combine components of a vector

– This is sufficient for scale, rotate, skew transformations.

– But notice, we can’t add a constant! ☹



Homogeneous system

– The (somewhat hacky) solution? Stick a “1” at the end of every 
vector:

– Now we can rotate, scale, and skew like before, AND translate 
(note how the multiplication works out, above)

– This is called “homogeneous coordinates”



Homogeneous system
– In homogeneous coordinates, the multiplication works out 

so the rightmost column of the matrix is a vector that gets 
added.

– Generally, a homogeneous transformation matrix will have a 
bottom row of [0 0 1], so that the result has a “1” at the 
bottom too.



Homogeneous system

• One more thing we might want: to divide the result by 
something
– For example, we may want to divide by a coordinate, to make 

things scale down as they get farther away in a camera image
– Matrix multiplication can’t actually divide
– So, by convention, in homogeneous coordinates, we’ll divide the 

result by its last coordinate after doing a matrix multiplication



2D Translation
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Scaling
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Scaling Equation
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Scaling Equation

P

x

y

sx x

P’
s

y
 y



Scaling Equation
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P

P’=S∙P
P’’=T∙P’

P’’=T · P’=T ·(S · P)= T · S ·P

Scaling & Translating

P’’



Scaling & Translating

A



Scaling & Translating



Translating & Scaling != Scaling & Translating



Translating & Scaling != Scaling & Translating



Translating & Scaling != Scaling & Translating



Rotation

P
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Rotation Equations

Counter-clockwise rotation by an 
angle θ
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Rotation Matrix Properties

A 2D rotation matrix is 2x2 

Note: R belongs to the category of normal 
matrices 
and satisfies many interesting properties:



Rotation Matrix Properties

• Transpose of a rotation matrix produces a 
rotation in the opposite direction

• The rows of a rotation matrix are always 
mutually perpendicular (a.k.a. orthogonal) 
unit vectors
– (and so are its columns)



Scaling + Rotation + Translation

P’= (T R S) P

This is the form of the 
general-purpose 
transformation matrix
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The inverse of a transformation 
matrix reverses its effect



• Given a matrix A, its inverse A-1  is a matrix such 
that AA-1 = A-1A = I

• E.g.

• Inverse does not always exist. If A-1 exists, A is 
invertible or non-singular. Otherwise, it’s singular.

• Useful identities, for matrices that are invertible:

Inverse



• Pseudoinverse
– Fortunately, there are workarounds to solve AX=B in these 

situations. And python can do them!

– Instead of taking an inverse, directly ask python to solve for X in 
AX=B, by typing np.linalg.solve(A, B)

– Python will try several appropriate numerical methods (including 
the pseudoinverse if the inverse doesn’t exist)

– Python will return the value of X which solves the equation
• If there is no exact solution, it will return the closest one

• If there are many solutions, it will return the smallest one

Matrix Operations



• Python example:

Matrix Operations

>> import numpy as np
>> x = np.linalg.solve(A,B)
x =
    1.0000
   -0.5000
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The rank of a transformation matrix 
tells you how many dimensions it 
transforms a vector to.



Linear independence

• Suppose we have a set of vectors v1, …, vn
• If we can express v

1
 as a linear combination of the other 

vectors v
2
…vn, then v

1
 is linearly dependent on the other 

vectors. 
– The direction v

1
 can be expressed as a combination of the 

directions v
2
…vn. (E.g. v

1
 = .7 v

2 
-.7 v
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Linear independence

• Suppose we have a set of vectors v1, …, vn
• If we can express v

1
 as a linear combination of the other 

vectors v
2
…vn, then v

1
 is linearly dependent on the other 

vectors. 
– The direction v

1
 can be expressed as a combination of the 

directions v
2
…vn. (E.g. v

1
 = .7 v

2 
-.7 v

4
)

• If no vector is linearly dependent on the rest of the set, the 
set is linearly independent.
– Common case: a set of vectors v1, …, vn is always linearly 

independent if each vector is perpendicular to every other 
vector (and non-zero) 



Linear independence

Not linearly independentLinearly independent set



Matrix rank

• Column/row rank

– Column rank always equals row rank

• Matrix rank



Matrix rank
• For transformation matrices, the rank tells you the 

dimensions of the output
• E.g. if rank of A is 1, then the transformation

p’=Ap
maps points onto a line. 

• Here’s a matrix with rank 1:

All points get 
mapped to 
the line y=2x



Matrix rank
• If an m x m matrix is rank m, we say it’s “full rank”
– Maps an m x 1 vector uniquely to another m x 1 vector

– An inverse matrix can be found

• If rank < m, we say it’s “singular”
– At least one dimension is getting collapsed. No way to look at 

the result and tell what the input was

– Inverse does not exist

• Inverse also doesn’t exist for non-square matrices
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Eigenvector and Eigenvalue

• An eigenvector x of a linear transformation A is a non-zero 
vector that, when A is applied to it, does not change 
direction.



Eigenvector and Eigenvalue

• An eigenvector x of a linear transformation A is a non-zero 
vector that, when A is applied to it, does not change 
direction.

• Applying A to the eigenvector only scales the eigenvector by 
the scalar value λ, called an eigenvalue.



Eigenvector and Eigenvalue

• We want to find all the eigenvalues of A:

• Which can we written as:

• Therefore:



Eigenvector and Eigenvalue

• We can solve for eigenvalues by solving:

• Since we are looking for non-zero x, we can instead solve the 
above equation as:



Properties

• The trace of a A is equal to the sum of its eigenvalues:

• The determinant of A is equal to the product of its eigenvalues

• The rank of A is equal to the number of non-zero eigenvalues of 
A.

• The eigenvalues of a diagonal matrix D = diag(d1, . . . dn) are 
just the diagonal entries d1, . . . dn



Spectral theory

• We call an eigenvalue λ and an associated eigenvector 
an eigenpair. 

• The space of vectors where (A − λI) = 0 is often called 
the eigenspace of A associated with the eigenvalue λ. 

• The set of all eigenvalues of A is called its spectrum:



Spectral theory

• The magnitude of the largest eigenvalue (in 
magnitude) is called the spectral radius

– Where C is the space of all eigenvalues of A



Spectral theory

• The spectral radius is bounded by infinity norm of a 
matrix:

• Proof: Turn to a partner and prove this!



Spectral theory

• The spectral radius is bounded by infinity norm of a 
matrix:

• Proof: Let λ and v be an eigenpair of A:



Diagonalization

• An n × n matrix A is diagonalizable if it has n linearly 
independent eigenvectors. 

• Most square matrices (in a sense that can be made 
mathematically rigorous) are diagonalizable: 
– Normal matrices are diagonalizable 
– Matrices with n distinct eigenvalues are diagonalizable

Lemma: Eigenvectors associated with distinct eigenvalues are 
linearly independent.



Diagonalization

• An n × n matrix A is diagonalizable if it has n linearly 
independent eigenvectors. 

• Most square matrices are diagonalizable: 
– Normal matrices are diagonalizable 

– Matrices with n distinct eigenvalues are diagonalizable

Lemma: Eigenvectors associated with distinct eigenvalues are 
linearly independent.



Diagonalization

• Eigenvalue equation:

– Where D is a diagonal matrix of the eigenvalues



Diagonalization

• Eigenvalue equation:

• Assuming all λ
i
’s are unique:

• Remember that the inverse of an orthogonal matrix is just its 
transpose and the eigenvectors are orthogonal



Symmetric matrices

• Properties:
– For a symmetric matrix A, all the eigenvalues are real.

– The eigenvectors of A are orthonormal.



Symmetric matrices

• Therefore:

– where

• So, what can you say about the vector x that satisfies the 
following optimization?



Symmetric matrices

• Therefore:

– where

• So, what can you say about the vector x that satisfies the 
following optimization?
– Is the same as finding the eigenvector that corresponds to the 

largest eigenvalue of A.



Some applications of Eigenvalues

• PageRank 

• Schrodinger’s equation 

• PCA

• We are going to use it to compress images in future classes
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Matrix Calculus – The Gradient

• Let a function                        take as input a matrix A of size 
m × n and return a real value.

• Then the gradient of f:



Matrix Calculus – The Gradient

• Every entry in the matrix is:

• the size of ∇
A
f(A) is always the same as the size of A. So if A 

is just a vector x:



Exercise

• Example:

• Find:



Exercise

• Example:

• From this we can conclude that:



Matrix Calculus – The Gradient

• Properties



Matrix Calculus – The Hessian

• The Hessian matrix with respect to x, written             or 
simply as H:

• The Hessian of n-dimensional vector is the n × n matrix.



Matrix Calculus – The Hessian

• Each entry can be written as:

• Exercise: Why is the Hessian always symmetric?



Matrix Calculus – The Hessian

• Each entry can be written as:

• The Hessian is always symmetric, because

• This is known as Schwarz's theorem: The order of partial 
derivatives don’t matter as long as the second derivative 
exists and is continuous.



Matrix Calculus – The Hessian

• Note that the hessian is not the gradient of whole gradient 
of a vector (this is not defined). It is actually the gradient of 
every entry of the gradient of the vector.



Matrix Calculus – The Hessian

• Eg, the first column is the gradient of 



Exercise

• Example:



Exercise



Exercise

Divide the summation into 3 parts depending on whether:
• i == k or
• j == k



Exercise



Exercise
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Exercise



What we have learned

• Vectors and matrices
– Basic Matrix Operations
– Special Matrices

• Transformation Matrices
– Homogeneous coordinates
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• Matrix inverse
• Matrix rank
• Eigenvalues and Eigenvectors
• Matrix Calculate


