Lecture 18-2

Neural networks and CNN
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Administrative

A5 & A6 (bonus) are out

Final Exam on 6/9 at 2:30 pm

Makeup exam on 6/6

Exam practice is out
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Recall Linear Model

f(x, W)= Wx
x=3072x 1
W=3x3072

‘output’ layer
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Recall: Softmax Classifier

L; = —log Prob|f (x;, W) == y;]

We need a mechanism to convert or normalize the output into probability range [0, 1]

Recall: SOFTMAX: Prob(f (x;, W) ==
24.57 lhorm! [0.13° dog
164 0.87 cat
0.181 | 0.00/ ; | bird
model outputs probabilities correct outputs
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Recall: Gradient Descent through Backprop

N\

W\y y=Wx

iL 49 L = Loss(¥,y)
o a5 aw X

/ dL  dL dy

X daw  dydw

y

Key Insight:

- visualize the computation as a graph flow

- Compute the forward pass to calculate the loss.

- Compute all gradients for each pair of nodes backwards
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Recall: we can featurize images into a vector

Image
Vector

Raw pixels

Raw pixels + (x,y)

PCA

LDA

BoW

BoW + spatial pyramids
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Interpreting the linear weights geometrically

car classifier

airplane classifi
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https://sandbox.open.wolframcloud.com/app/objects/26bc9cd9-50a8-42a9-8dbf-7a265d9e79c8

Features sometimes might not be linearly separable

Ruta Desai, Chun-Liang Li

f,y) = (r(x,),0(x,y))

=

but some mappings are!
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Remember our linear classifier

cat

dog

bird
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Let's change the features by adding another layer

Feature
transformation

W;

Linear classifier

cat

' dog

RS
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2-layer network: mathematical formula

e Linear classifier: y = Wx

1 if Wiz >0

e 2-layer network: y = W, - binarize(W;,z), where binarize(W z) = .
0 otherwise

e 3-layer network: y = Wjs - binarize(W> - binarize(W; z))

The number of layers is a new hyperparameter!
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2-layer network: mathematical formula

e Linear classifier: y = Wx

1 if Wiz >0

e 2-layer network: y = W, - binarize(W;,z), where binarize(W z) = .
0 otherwise

We know the size of x =1 x 3072 andy =10 x 1, so what are W_and W,

W, = hx3072 W, = 10xh

h is a new hyperparameter!
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2-layer network: mathematical formula

e Linear classifier: y = Wx

1 if Wiz >0

e 2-layer network: y = W, - binarize(W;,z), where binarize(W z) = .
0 otherwise

Why is the binarize necessary? Let's see what happen when we remove it:
Yy = Wz Wlx = Wx
Where: W = W, W,

Activation is necessary to go from linear to non-linear models
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2-layer network: mathematical formula

e Linear classifier: y = Wx
e 2-layer network: y = W> sigmoid(W;z)

Why is the binarize necessary?

- Neural science inspiration
- Non-differentiable

Let’s approximate it with sigmoid

B 1
N l+e®

f(z)
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2-layer network: mathematical formula

e Linear classifier: y = Wx

e 2-layer network: y = W2 ReLU(Wx)

Why is the sigmoid necessary?
- Vanishing gradient /
Let’s replace it with ReLU

RelLU
max(0, )
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RelLU v.s. Sigmoid

RelLU is not from nowhere

- Connection between RelLU & Sigmoid

Ruta Desai, Chun-Liang Li
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Rectified Linear Units Improve Restricted Boltzmann Machines

Vinod Nair
Geoffrey E. Hinton

VNAIRGC:
HINTON@

Department of Computer Science, University of Toronto, Toronto, ON M5S 2G4, Canada

Abstract

ricted Boltzmann machines were devel-

ng binary stochastic hidden units.
These can be generalized by replacing each
binary unit by an infinite number of copies
that all have the same weights but have pro-
gressively more negative biases. The learning
and inference rules for these “Stepped Sig-
moid Units” are unchanged. They can be ap-
proximated efficiently by noisy, rectified lin-
ear units. Compared with binary units, these
units learn features that are better for object

recognition on the NORB dataset and face
verification on the Labeled Faces in the Wild
dataset. Unlike bin: its, rectified linear

units preserve information about relative in-
tensities as information travels through mul-
tiple layers of feature detectors.

1. Introduction

Restricted Boltzmann machines (RBMs) have been
used as generative models of many different types
of data including labeled or unlabeled images
(Hinton et al., 2006), sequences of mel-cepstral coef-
ficients that represent speech (Mohamed & Hinton,
2010), bags of words that represent documents
(Salakhutdinov & Hinton, 2009), and user ratings of
movies (Salakhutdinov et al., 2007). In their con-
ditional form they can be used to model high-
dimensional temporal sequences such as video or mo-
tion capture data (Taylor et al., 2006). Their most im-
portant use is as learning modules that are composed
to form deep belief nets (Hinton et 2006).

Appearing in Proceedings of the 27'" International Confer-
ence on Machine Learning, Haifa, Israel, 2010. Copyright
2010 by the author(s) /owner(s

1.1. Learning a Restricted Boltzmann Machine

Images composed of binary pixels can be modeled by
an RBM that uses a layer of binary hidden units (fea-
ture detectors) to model the higher-order correlations
between pixels. If there are no direct interactions be-
tween the hidden units and no direct interactions be-
tween the visible units that represent the pixels, there
is a simple and efficient method called “Contrastive

Divergence” to learn a good set of feature detectors
from a set of training images (Hinton, 2002). We start
with small, random weights on the symmetric connec-
tions between each pixel i and each feature detector j.
Then we repeatedly update each weight, w;;, using the
difference between two measured, pairwise correlations

Awy = ((<vih>auta — <Vh>recn) (1)

where ¢ is a learning rate, <vih;>data is the frequency
with which visible unit i and hidden unit j are on to-
gether when the feature detectors are being driven by
images from the training set and <uv;h;>,. the
corresponding frequency when the hidden units are be-
ing driven by reconstructed images. A similar learning
rule can be used for the biases.

Given a training image, we set the binary state, h;, of
each feature detector to be 1 with probability

1
T Trexp(—b; - 3,

where b; is the bias of j and v; is the binary state
of pixel i. Once binary states have been chosen for
the hidden units we produce a “reconstruction” of the
training image by setting the state of each pixel to be
1 with probability

plh; =1) @

vis Uitis)

1

“TFoh=1 @

plvi=1)
jehia hiws;)

The learned weights and biases implicitly define a
probability distribution over all possible binary images
via the energy, E(v,h), of a joint configuration of the
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2-layer Neural Network
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Take-Home Exercise

Backprop on 2-layer neural network

W\f’

_dL dy
dW ~dagaw @ » O-layer case ?7?
dL
/ ay T
X

1-layer case
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Fully Connected Layer

32x32x3 Image -> stretch to 3072 x 1

inout activation
P W (ReLU)
1 hx 3072 1 ﬁ)
3072 X //’ h
1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)
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FC Layer Issues

What if we are processing higher resolution image?

input activation
W o (ReLU)
1 — — 1 (O
256x256x3 h x (256x256x3) h
weights

Q: If h=128x128x3, how many parameters of
a single layer?

256x256x3 h
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FC Layer Issues

What if we are processing higher resolution image?

input activation
W o (ReLU)
1 — — 1 (O
256x256x3 h x (256x256x3) h
weights

Q: If h=128x128x3, how many parameters of
a single layer?

A: (256x256x3)x(128x128x3) = 9.6 B
Too large to handle

256x256x3 h
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Convolution Layer — A Special FC Layer

32x32x3 iImage -> preserve spatial structure

32 height looks—atthe-whetetmage

Main idea: every output only
looks at small patches with small
o width & shared number of parameters

3 depth
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Convolution Layer

32x32x3 image

5x5x3 filter
32
Convolve the filter with the image
~ i.e. “slide over the image spatially,

computing dot products”

32
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ConVOI Ution Layer Filters always extend the full
S depth of the input volume

32x32x3 image /
5x5x3 filter
32
Convolve the filter with the image
~ i.e. “slide over the image spatially,

computing dot products”

32
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Convolution Layer

_— 32x32x3 image

5x5x3 filter w
2
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

] wlz + b

1 number:
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Convolution Layer

32

=0

32
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Convolution Layer

32

=9
=

:

32
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Convolution Layer

—

32
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Convolution Layer
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Convolution Layer

activation map

_— 32x32x3 image

5x5x3 filter /
2
t>© ”

convolve (slide) over all

spatial locations
32 28

3 1
Remark: A special case of a (32x32x3) x (28x28x1) linear layer!!
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Convolution Layer consider a second, green filter

— 32x32x3 image activation maps

5x5x3 filter %
2

convolve (slide) over all

spatial locations
32 / 28
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For example, if we had 6 5x5 filters, we’'ll get 6 separate activation maps:

activation maps

32

28

Convolution Layer

g .

3 6

We stack these up to get a “new image” of size 28x28x0!
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ConvNet: Sequence of Convolution Layers, interspersed with activation functions

32 28

CONYV,
RelLU
e.g.6
OX5Xx3
filters

32 28
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ConvNet: Sequence of Convolution Layers, interspersed with activation functions

32 28 o
CONYV, CONV, CONV,
RelLU RelLU RelLU
2-95- % e.g. 10
XOX 5x5x6
32 filters 28 it ors 24
3 6 10
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ConvNet: Sequence of Convolution Layers, interspersed with activation functions

32 28 24
CONV, CONV, CONV,
RelLU ReLU ReLU
ggﬁ% e.g. 10
XOX 5x5x6
3 Kernel Size: 5 6 Kernel Size: ?? 1 O

Input Channel: 3
Output Channel: 6
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ConvNet: Sequence of Convolution Layers, interspersed with activation functions

32 28 24
CONYV, CONYV, CONV,
RelLU Rel U RelLU
2-95- % e.g. 10
XX 5x5x6
32 filters 28 filters 24
3 Kernel Size: 5 6 Kernel Size: 5 1 O
Input Channel: 3 Input Channel: ??

Output Channel: 6
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ConvNet: Sequence of Convolution Layers, interspersed with activation functions

32 28 24
CONYV, CONV, CONV,
RelLU RelLU RelLU
2-95- % e.g. 10
XX 5x5x6
32 filters 28 filters 24
3 Kernel Size: 5 6 Kernel Size: 5 1 O
Input Channel: 3 Input Channel: 6
Output Channel: 6 Output Channel: ??
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ConvNet: Sequence of Convolution Layers, interspersed with activation functions

32 28 24
CONYV, CONV, CONV,
RelLU RelLU RelLU
2-95- % e.g. 10
XX 5x5x6
32 filters 28 filters 24
3 Kernel Size: 5 6 Kernel Size: 5 1 O
Input Channel: 3 Input Channel: 6
Output Channel: 6 Output Channel: 10
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A closer look at spatial dimensions:

Activation map

_— 32x32x3 image (Output)

5x5x3 filter /
2
i>@ ”

convolve (slide) over all

spatial locations
32 28
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A closer look at spatial dimensions:

(Step 1) 7

/X7 input (spatially)
assume 3x3 filter
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A closer look at spatial dimensions:

(Step 2) 7

/X7 input (spatially)
assume 3x3 filter
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A closer look at spatial dimensions:

(Step 3) 7

/X7 input (spatially)
assume 3x3 filter
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A closer look at spatial dimensions:

(Step 4) 7

/X7 input (spatially)
assume 3x3 filter
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A closer look at spatial dimensions:

(Step 5) 7

/X7 input (spatially)
assume 3x3 filter

=> 5x5 output

(7-3+1) X (7-3+1) =5 x 5

I4
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A closer look at spatial dimensions:

(Step 1) 7

/x7 input (spatially)
assume 3x3 filter
applied with stride 2
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A closer look at spatial dimensions:

(Step 2) 7

/x7 input (spatially)
assume 3x3 filter
applied with stride 2
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A closer look at spatial dimensions:

(Step 3) 7

/x7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!
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A closer look at spatial dimensions:

(Step 1) 7

/x7 input (spatially)
assume 3x3 filter
applied with stride 37
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A closer look at spatial dimensions:

(Step 2) 7

/x7 input (spatially)
assume 3x3 filter
applied with stride 37

Next?
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Output size:
(N - K) / stride + 1

N eg.N=7,K=3:

F stride 1=>(7-3)1+1=5
stride2=>(7-3)/2+1=3
stride 3 => (7 -3)/3+1=2.33:\
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In practice: Common to zero pad the border

0|0|0|0|0]0O .
e.g. input 7x7
0 3x3 filter, applied with stride 1
0 pad with 1 pixel border => what is the output?
0
0
(recall:)
(N - K) / stride + 1
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In practice: Common to zero pad the border

0/0|0|0|0]O .
e.g. input 7x7
0 3x3 filter, applied with stride 1
0 pad with 1 pixel border => what is the output?
° 7x7 output!
0
(recall:)
(N + 2P - K) / stride + 1
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In practice: Common to zero pad the border

0/0/0(0|0]|O0

e.g. input 7x7
0 3x3 filter, applied with stride 1
0 pad with 1 pixel border => what is the output?
° 7x7 output!
L in general, common to see CONV layers with

stride 1, filters of size KxK, and zero-padding with
(K-1)/2. (will preserve size spatially)

e.g. K= 3 => zero pad with 1

K =5 => zero pad with 2

K =7 => zero pad with 3
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Why zero padding?
E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!
(32->28->24 ..)

- can't stack deeply

- use stride to reduce size whenever we really wants

32 28 24
CONYV, CONYV, CONYV,
RelLU RelLU RelLU
e.g.6 e.g. 10
OX5X3 SXx5x6
32 filters 28 filters 24
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Examples time:

Input volume: 32x32x3
10 5x95 filters with stride 1, pad 2

Let's assume output size is HXWxD.
What is D?
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Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Let's assume output size is HXWxD.
Whatis D? 10
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Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Let's assume output size is HxWxC.
Whatis C? 10
What is H or W?
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Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Let's assume output size is HxWxC.
Whatis C? 10
What is H or W? (32+2*2-5)/1+1 = 32
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Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Let's assume output size is HXWxD.
What is D? 10

What is H or W? (32+2*2-5)/1+1 = 32
So the total output size is: 32x32x10
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Examples time:

Input volume: 32x32x3
10 5x95 filters with stride 1, pad 2

Number of parameters in this layer?
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Exercise:

Input volume: 32x32Xx
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?
each filter has 5*5*3 + 1 = 76 params  (+1 for bias)
=> /6*10 = 760
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Convolution layer: summary

Let's assume inputis W, x H, x C,
Conv layer needs 4 hyperparameters:
- Number of filters C, (output channels)
- Thefilter size K
- The stride S
- The zero padding P
This will produce an output of W, x H, x C, where:
- W, =(W,-K+2P)/S +1
- H,=(H, -K+2P)/S + 1

2
Number of parameters: KZC1C2 and C, biases
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Receptive field

32
k\ 28 An activation map is a 28x28 sheet of neuron
_— | outputs:
— 1. Each is connected to a small region in the input
2. All of them share parameters
32 28 “5xb filter” -> “5x5 receptive field for each neuron”
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The brain/neuron view of CONV Layer

32

28 E.g. with 5 filters,
Zj CONV layer consists of

O O O O CD neurons arranged in a 3D grid

(28x28x5)

There will be 5 different
32 28 neurons all looking at the same
3 5 region in the input volume
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The brain/neuron view of CONV Layer

Stack of Conv layers v.s. hierarchical organization in the visual processing system.

32 28
— pkrs
| \#IIII -
CONYV, CONYV, X (
RelLU RelLU v
| N
e.g.6 e.g. 10 L N |— —
5X5x3 5x5x6 L e
32 filters 28 filters
3 6
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What CNN learns?
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What CNN learns?

[Zeiler and Fergus 20 1 3] Visualization of VGG-16 by Lane Mclntosh. VGG-16

architecture from [Simonyan and Zisserman 2014].

Linearly
—| separable —
classifier

Low-level Mid-level High-level
features features features

“.,’ W= J‘ ") e ﬂ" i B

VGG-16 Convi 1 VGG-16 Conv3_ VGG-16 Convs 3
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HESESORSETMRSNERESRG

example 5x5 filters
(32 total)

one filter =>
one activation map

YRCINEESDONIITN
|-

Activations:

We call the layer convolutional
because it is related to convolution
of two signals:

flxyl=gleyl = Y, Y fla,nl-glx—n,y—n,l

nl =—00 n2 —_——00 T

elementwise multiplication and sum of
a filter and the signal (image)

Figure copyright Andrej Karpathy.
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Recall:

Feature
Vector

Featurize
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Recall:

Feature
Vector

Featurize

e
ENNIAE
ENNEZe
=NNTZ =~
. . . - - »
e.g. 24 edge & blog filters
(Human priors)
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With CNN:

Feature
Vector

Featurize

)
ta

R

B
s

23

bz sl ) iy

CNN: Learning (more diverse) filters for you!!
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CNN (or Neural Network)

Feature

Representation (feature) learning + linear classifier
Vector

Featurize

cat

I3 dog

Linear classifier (FC layer)
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Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

224x224x64

pool

—.’

\

'

112x112x64

224

|

i 112
downsampling

112

Ruta Desai, Chun-Liang Li
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Single depth slice

MAX POOLING

11112 | 4
5 6| 7|8
32|10
1123 | 4

y

Ruta Desai, Chun-Liang Li

max pool with 2x2 filters

and stride 2
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Pooling layer: summary

Let's assume inputis W, x H, x C
Pooling layer needs 2 hyperparameters:
- The kernel size K
- The stride S

This will produce an output of W, x H,, x C where:
- W, =(W, -K)/S+1
- H,=(H, -K)/S+1

Number of parameters: 0
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RELU RELU RELU RELU RELU RELU

CONV |CONV CONV | CONV CONV | CONV EC
IRy bhd |
WSS R ()
el -1== - =L - -]
el -iml=l == == a
] [ || i )~
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AlexNet (2012) — The start of modern deep learning

224

22@5 e

27

128

192

192

128 2048 204

Max
pooling

27

13

13

RN 2

13
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128

Max
pooling

192

192
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3 dense

dense’

128 Max
pooling

dense

1000

2048 204

Jun 02, 2025

8




AlexNet (2012) — The start of modern deep learning

| N >
1-~1.
. = B
L 3 dense
" 192 192 128 2048 2048 \°€
55 gy 128 A K SN
X" AN 13 \ 13
SNB 3 - AN
224 || | L[] & 3y - 2 > > >
. » 13 = ’ dense’| [dense i
27 AT s fF =
3| . 1000
192 192 128 Max
, 2048 2048
Max. 128 Max pooling
pooling pooling

Common Practice:
- Reduce the spatial dimension while increasing channels (why?)
- Output size is no larger than the input size (why?)
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AlexNet (2012) — The start of modern deep learning

224x224x3 v.s. 55x55x48

Common Practice:

| N N >
5 T‘\‘ %
. = N
oot 3 d
" 192 192 128 2048 2048 \(EN>€
55 27 128 ,,” ’," ,J‘\\\‘::‘\\
X A A e 13 \ 13
X 3 - 3 Y-
. N 3} . 3 > > >
. » 13 = ’ dense’| [dense i
¢ 27 AT e &
_______ e 3 1000
et 192 192 128 Max
L . 2048 2048
Stride ) 128 Max pacling
Uof 4 pooling pooling
3 48

- Reduce the spatial dimension while increasing channels
- Output size is no larger than the input size
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AlexNet (2012) — The start of modern deep learning
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27x27x128 v.s. 13x13x192
Reduction ratio: (1/2)x(1/2)*1.5=0.375

Common Practice:
- Reduce the spatial dimension while increasing channels
- Output size is no larger than the input size
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Example: DPM is CNN

Deformable Part Models are Convolutional Neural Networks
Tech report

Ross Girshick  Forrest Iandola  Trevor Darrell  Jitendra Malik
UC Berkeley

{rbg, forresti,trevor,malik}@eecs.berkeley.edu

Abstract

Deformable part models (DPMs) and convolutional neu-
ral networks (CNNs) are two widely used tools for vi-
sual recognition. They are typically viewed as distinct ap-
proaches: DPMs are graphical models (Markov random
fields), while CNNs are “black-box” non-linear classifiers.
In this paper, we show that a DPM can be formulated as
a CNN, thus providing a novel synthesis of the two ideas.
Our construction involves unrolling the DPM inference al-
gorithm and mapping each step to an equivalent (and at
times novel) CNN layer. From this perspective, it becomes
natural to replace the standard image features used in DPM
with a learned feature extractor. We call the resulting model
DeepPyramid DPM and experimentally validate it on PAS-
CAL VOC. DeepPyramid DPM signifi ly

providing a novel synthesis of these ideas. This formulation
(DPM-CNN) relies on a new CNN layer, distance transform
pooling, that generalizes max pooling. Another innovation
of our approach is that rather than using histograms of ori-
ented gradients (HOG) features [4], we apply DPM-CNN to
a feature pyramid that is computed by another CNN. Since
the end-to-end system is the function composition of two
networks, it is equivalent to a single, unified CNN. We call
this end-to-end model DeepPyramid DPM.

We also show that DeepPyramid DPM works well in
practice. In terms of object detection mean average pre-
cision, DeepPyramid DPM slightly outperforms a compa-
rable version of the recently proposed R-CNN [14] (specif-
ically, R-CNN on the same convs features, without fine-
tuning), while running about 20x faster. This experimental

DPMs based on histograms of oriented gradients features
(HOG) and slightly outperforms a comparable version of
the recently introduced R-CNN detection system, while run-
ning an order of magnitude faster.

1. Introduction

Part-based representations are widely used for visual
recognition tasks. In particular, deformable part models
(DPMs) [7] have been especially useful for generic object
category detection. DPMs update pictorial structure models
[%, 11] (which date back to the 1970s) with modern image
features and machine learning algorithms. Convolutional
neural networks (CNN) [ ] are another influential
class of models for visual recognition. CNNs also have a
long history, and have come back into popular use in the
last two years due to good performance on image classi
tion [5, 22] and object detection [14, 28] tasks.

These two models, DPMs and CNNs, are typically
viewed as distinct approaches to visual recognition. DPMs
are graphical models (Markov random fields), while CNNs
are “black-box” non-linear classifiers. In this paper we de-
scribe how a DPM can be formulated as an equivalent CNN,

ica-

also provides a greater understanding of the
relative merits of region-based detection methods, such as
R-CNN, and sliding-window methods like DPM. We find
that regions and sliding windows are complementary meth-
ods that will likely benefit each other if used in an ensemble.

HOG-based detectors are currently used in a wide range
of models and applications, especially those where region-
based methods are ill-suited (poselets [1] being a prime ex-
ample). Our results show that sliding-window detectors on
deep feature pyramids significantly outperform equivalent
models on HOG. Therefore, we believe that the model pre-
sented in this paper will be of great practical interest to the
visual i ity. An source impl
tation will be made available, which will allow researchers
to casily build on our work.

2. DeepPyramid DPM

In this section we describe the DeepPyramid DPM archi-
tecture. DeepPyramid DPM is a convolutional neural net-
work that takes as input an image pyramid and produces as
output a pyramid of object detection scores. Although the
model is a single CNN, for pedagogical reasons we describe
itin terms of two smaller networks whose function compo-
sition yields the full network. A schematic diagram of the

image

pyramid level 1 level 2 level 3

Lecture 18 - 81

level 4

level 5

level 6 level 7

Jun 02, 2025




Next time

Last Lecture: CV Frontier

Ruta Desai, Chun-Liang Li L ecture 18 - 82 Jun 02, 2025



