Lecture 17

Object Detection

Ruta Desai, Chun-Liang Li

Administrative

A4 is due May 30

A5 (bonus A6) out next week

- Due Jun 10

Ruta Desai, Chun-Liang Li

Lecture 17 - 2

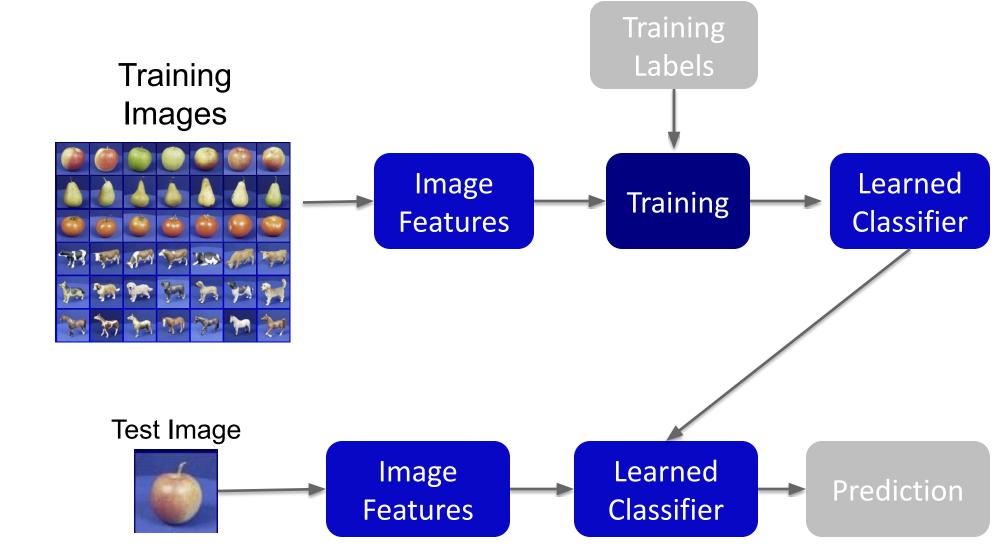
Administrative

- Final Exam on 6/9 at 2:30 pm
- Makeup exam on 6/6
 - See EdStem for details

Ruta Desai, Chun-Liang Li

Lecture 17 - 3

So far: A simple recognition pipeline



Ruta Desai, Chun-Liang Li

Lecture 17 - 4

Today's agenda

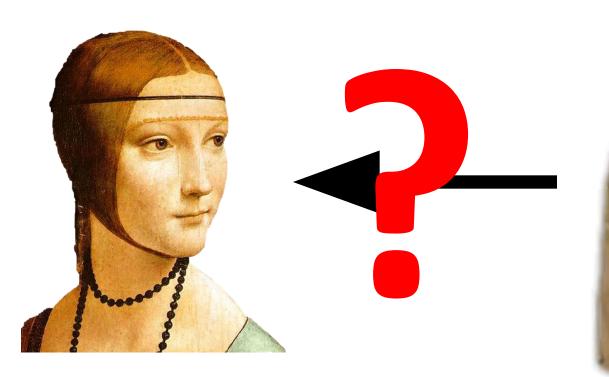
- Object detection
 - \circ Task and evaluation
- A simple detector
- Deformable parts model

Ruta Desai, Chun-Liang Li

Lecture 17 - 5

How do we choose the size of the patches?

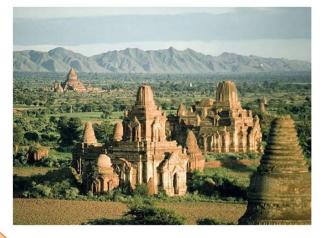
- If the object is close to the camera, larger patches are better
- If the object is really far away, smaller patches are better for finding it.



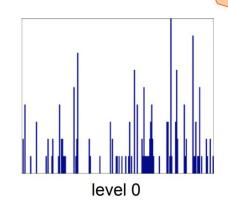
Ruta Desai, Chun-Liang Li

Lecture 17 - 6

Bag of words + pyramids



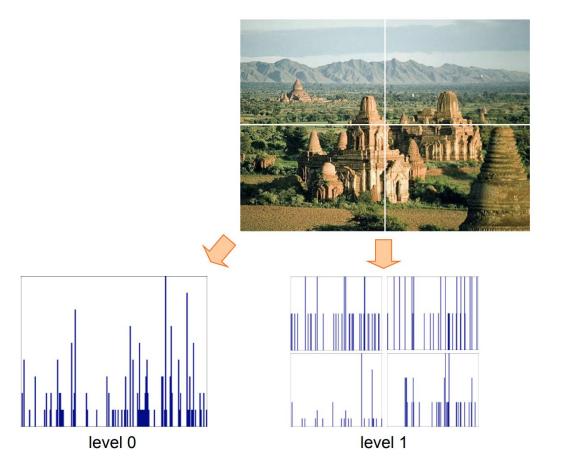
Locally orderless representation at several levels of spatial resolution



Ruta Desai, Chun-Liang Li

Lecture 17 - 7

Bag of words + pyramids

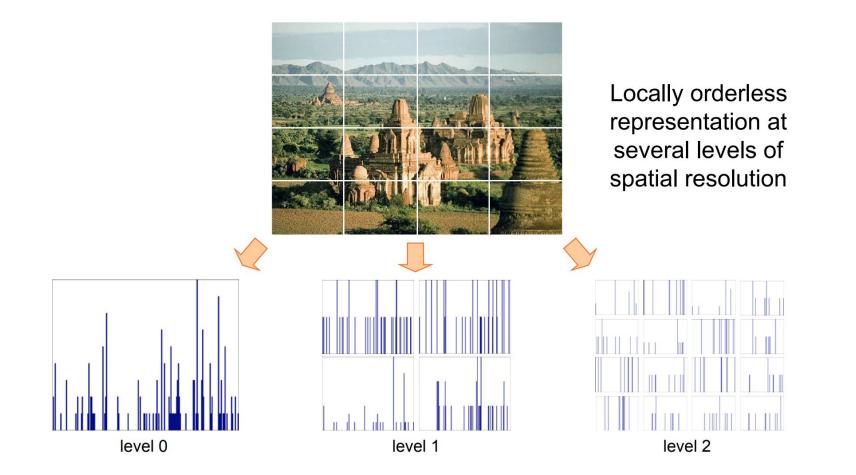


Locally orderless representation at several levels of spatial resolution

Ruta Desai, Chun-Liang Li

Lecture 17 - 8

Bag of words + pyramids



Ruta Desai, Chun-Liang Li

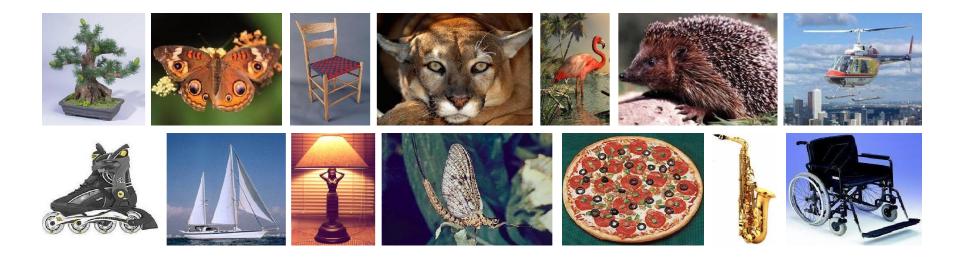
Lecture 17 - 9

Pyramids are a general idea that is used in all vision models today (including swin transformers)

- Very useful for representing images.
- Pyramid is built by using multiple copies of image.
- Each level in the pyramid is 1/4 of the size of previous level.

Caltech101 dataset

Multi-class classification results (30 training images per class)



Level	Single-level	Pyramid	Single-level	Pyramid
0	15.5 ± 0.9		41.2 ± 1.2	
1	31.4 ± 1.2	32.8 ± 1.3	55.9 ± 0.9	57.0 ± 0.8
2	47.2 ± 1.1	49.3 ± 1.4	63.6 ± 0.9	64.6 ±0.8
3	52.2 ± 0.8	$\textbf{54.0} \pm 1.1$	60.3 ± 0.9	$64.6\pm\!0.7$

Ruta Desai, Chun-Liang Li

Lecture 17 - 11

Today's agenda

- Object detection

 Task and evaluation
- A simple detector
- Deformable parts model

Ruta Desai, Chun-Liang Li

Lecture 17 - 12

Object Detection

Ruta Desai, Chun-Liang Li

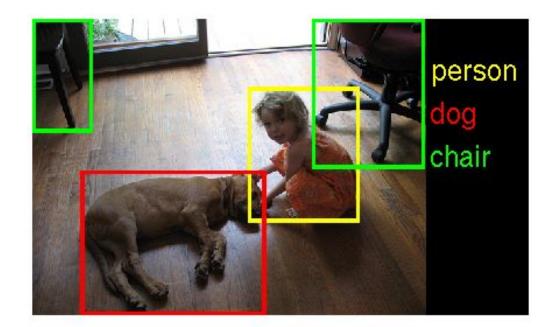
Credit: Flickr user neilalderney123

• What do you see in the image?

Object Detection

- **Problem**: Detecting and localizing objects from various categories, such as cars, people, etc.
- Challenges:

 Illumination,
 viewpoint,
 deformations,
 Intra-class variability

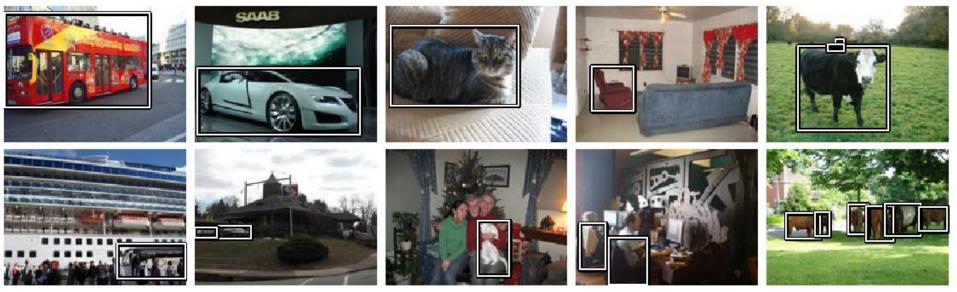


Ruta Desai, Chun-Liang Li

Lecture 17 - 14

Object Detection Benchmarks

• PASCAL VOC Challenge



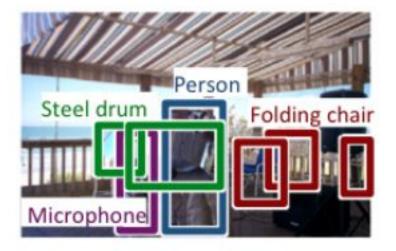
- 20 categories
- Annual classification, detection, segmentation, ... challenges

Ruta Desai, Chun-Liang Li

Lecture 17 - 15

Object Detection Benchmarks

- PASCAL VOC Challenge
- ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
 200 Categories for detection



Ruta Desai, Chun-Liang Li

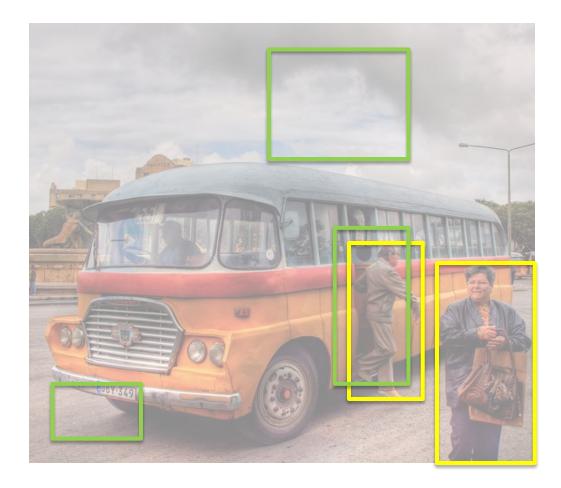
Lecture 17 - 16

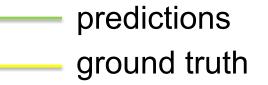
Object Detection Benchmarks

- PASCAL VOC Challenge
- ImageNet Large Scale Visual Recognition Challenge (ILSVR)
- Common Objects in Context (COCO)
 - \circ 80 Object categories

Ruta Desai, Chun-Liang Li

Lecture 17 - 17





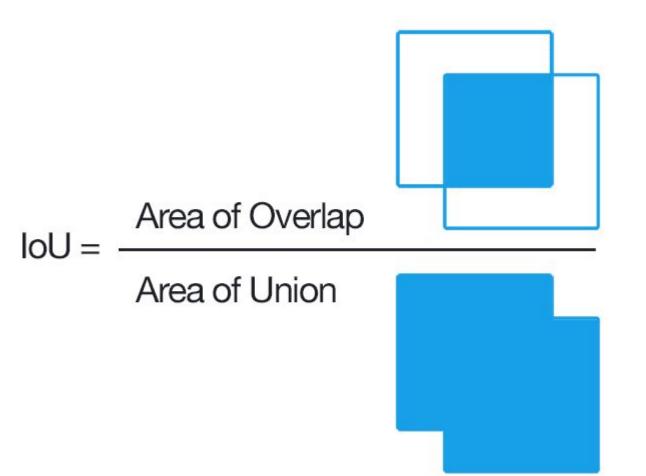
Ruta Desai, Chun-Liang Li

Defining what is a good versus bad detection

IoU is a metric used to decide good from bad predictions.

Given a predicted box and and ground truth box:

IoU = intersection between the two boxes over (divided by) the union of the two



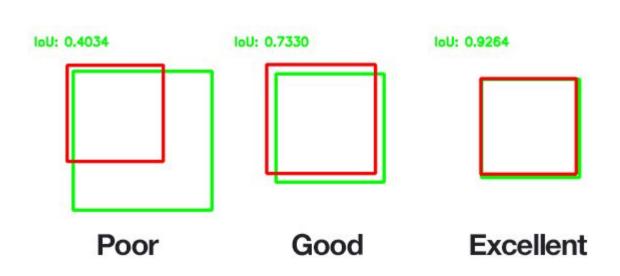
Ruta Desai, Chun-Liang Li

Lecture 17 - 19

Defining what is a good versus bad detection

We say a prediction was good if it has IoU > 0.5 with any of the ground truth boxes

0.5 is a threshold that is generally accepted as a good heuristic.



Ruta Desai, Chun-Liang Li

Lecture 17 - 20

predictions
ground truth

True positive:

- The overlap of the prediction with the ground truth is MORE than 0.5

Ruta Desai, Chun-Liang Li

Lecture 17 - 21

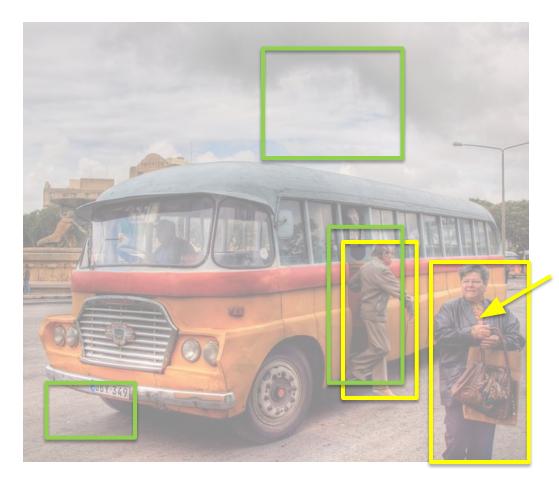
predictions
ground truth

True positive: False positive:

- The overlap of the prediction with the ground truth is LESS than 0.5

Ruta Desai, Chun-Liang Li

Lecture 17 - 22

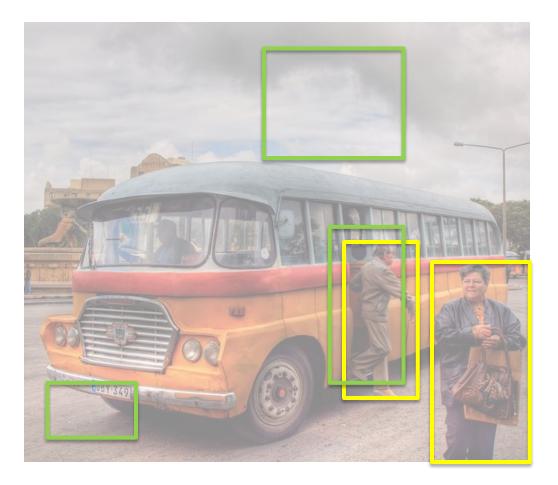


predictions
ground truth

True positive: False positive: False negative: - The objects that our model doesn't find

May 28, 2025

Ruta Desai, Chun-Liang Li



predictions
ground truth

True positive: False positive: False negative:

- The objects that our model doesn't find

What is a True Negative?

Ruta Desai, Chun-Liang Li

Lecture 17 - 24

	Predicted 1	Predicted 0
True 1	true positive	false negative
True 0	false positive	true negative

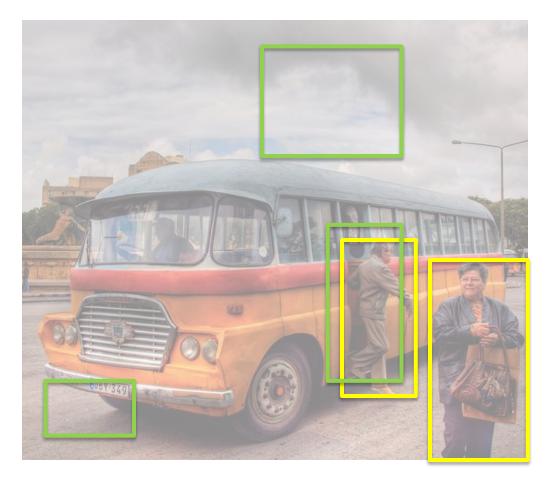
Precision:

how many of the predicted detections are correct?
Precision = TP/TP + FP

Recall:

how many of the ground truth objects are detected?
recall = TP/TP + FN

Ruta Desai, Chun-Liang Li
Lecture 17 - 25
May 28, 2025



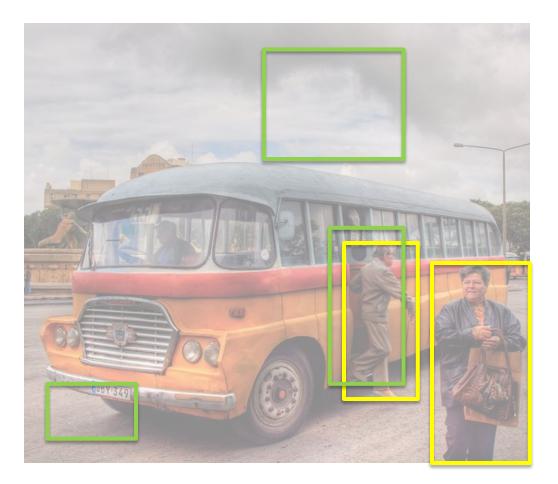
predictions
ground truth

True positive: 1 False positive: 2 False negative: 1

Q. What is the precision?

Ruta Desai, Chun-Liang Li

Lecture 17 - 26



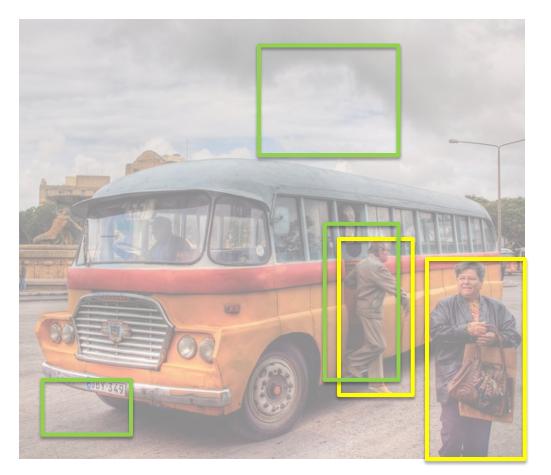
predictions
ground truth

True positive: 1 False positive: 2 False negative: 1

Q. What is the precision? 1/3

Ruta Desai, Chun-Liang Li

Lecture 17 - 27



predictions
ground truth

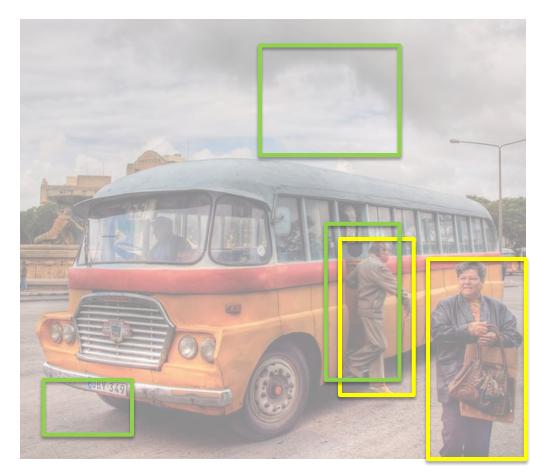
True positive: 1 False positive: 2 False negative: 1

Q. What is the precision? 1/3

May 28, 2025

Q. What is the recall?

Ruta Desai, Chun-Liang Li



predictions
ground truth

True positive: 1 False positive: 2 False negative: 1

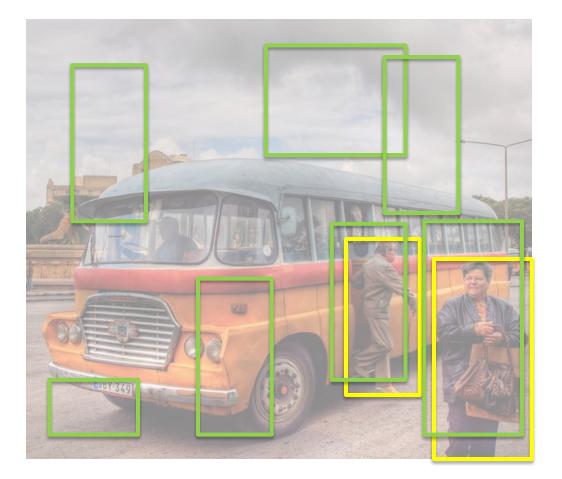
Q. What is the precision? 1/3

May 28, 2025

Q. What is the recall? 1/2

Ruta Desai, Chun-Liang Li

In reality, our model makes a lot of predictions with varying scores between 0 and 1



predictions
ground truth

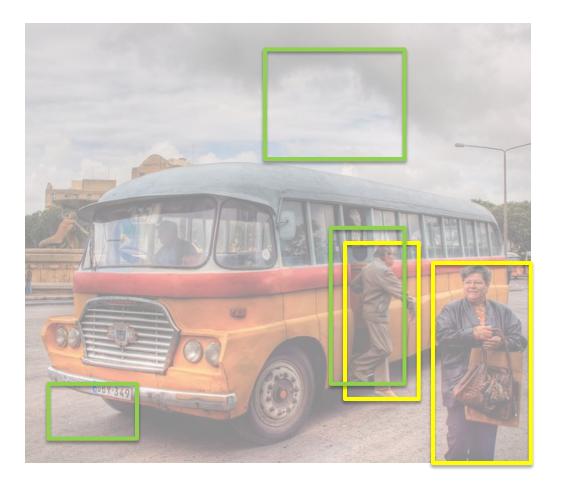
Here are all the boxes that are predicted with score > 0.

From this, we see that:

- Recall is perfect!
- But our precision is BAD!

Ruta Desai, Chun-Liang Li

Lecture 17 - 30



predictions
ground truth

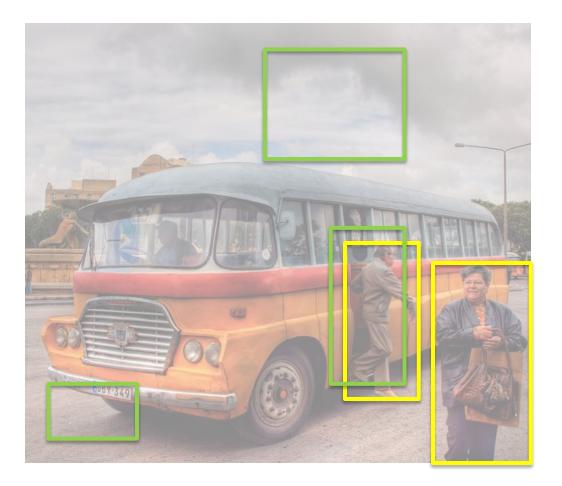
Here are all the boxes that are predicted with score > 0.5

We are using a threshold of 0.5

May 28, 2025

Q. Is precision high or low if threshold is high?

Ruta Desai, Chun-Liang Li



predictions
ground truth

Here are all the boxes that are predicted with score > 0.5

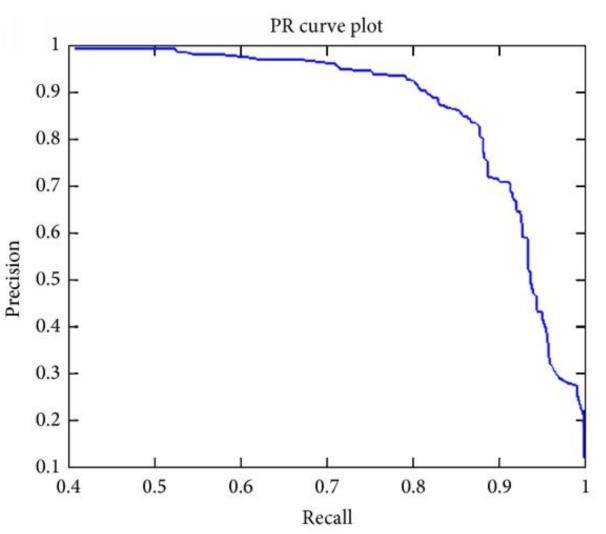
We are using a threshold of 0.5

Q. What happens to recall if threshold is high?

Ruta Desai, Chun-Liang Li

Lecture 17 - 32

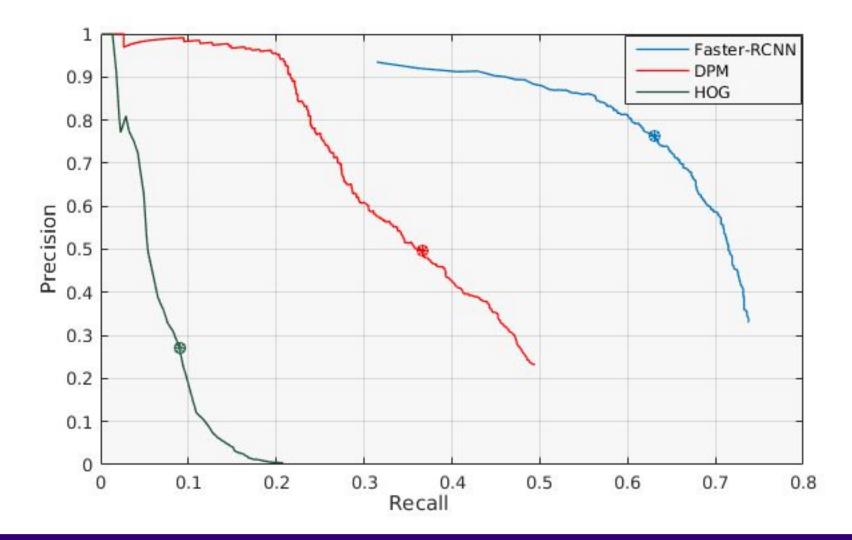
Precision – recall curve (PR curve)



Ruta Desai, Chun-Liang Li

Lecture 17 - 33

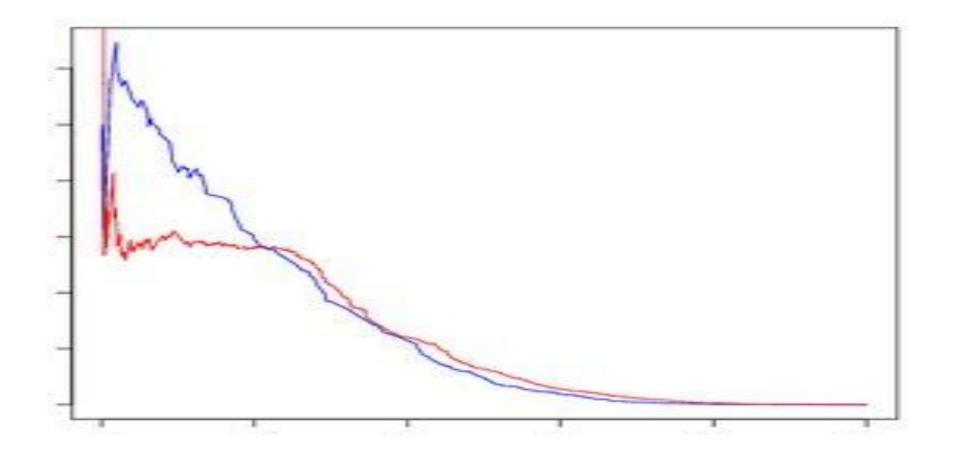
Which model is the best?



Ruta Desai, Chun-Liang Li

Lecture 17 - 34

Which model is the best?



Ruta Desai, Chun-Liang Li

Lecture 17 - 35

True positives - detecting person

UoCTTI_LSVM-MDPM

MIZZOU_DEF-HOG-LBP

NECUIUC_CLS-DTCT

Ruta Desai, Chun-Liang Li

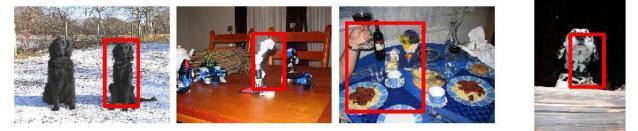
Lecture 17 - 36

False positives - detecting person

UoCTTI_LSVM-MDPM

MIZZOU_DEF-HOG-LBP

NECUIUC_CLS-DTCT



Ruta Desai, Chun-Liang Li

Lecture 17 - 37

Near misses: IoU falls short of 0.5

UoCTTI_LSVM-MDPM

MIZZOU_DEF-HOG-LBP

NECUIUC_CLS-DTCT

Ruta Desai, Chun-Liang Li

Lecture 17 - 38

True positives - detecting bicycle

UoCTTI_LSVM-MDPM

May 28, 2025

OXFORD_MKL

NECUIUC_CLS-DTCT

Ruta Desai, Chun-Liang Li

False positives - detecting bicycle

UoCTTI_LSVM-MDPM

OXFORD_MKL

NECUIUC_CLS-DTCT

Ruta Desai, Chun-Liang Li

Lecture 17 - 40

Today's agenda

- Spatial pyramids
- Object detection
 - Task and evaluation
- A simple detector
- Deformable parts model

Ruta Desai, Chun-Liang Li

Lecture 17 - 41

Dalal-Triggs method

Sliding window (Convolution)

Ruta Desai, Chun-Liang Li

At every patch as the window slides

- 1. Convert the image patch into your favorite feature representation
 - a. For example:
 - i. HoG,
 - ii. HoG with PCA,
 - iii. Bag of words on RGB
 - iv. etc.
 - 2. Use a trained classifier to determine if it is a specific class
 - a. e.g. kNN classifier
- 3. Accumulate the predictions over all the patches

Ruta Desai, Chun-Liang Li

Lecture 17 - 43

 Slide through the image and check if there is an object at every location

No person here

Ruta Desai, Chun-Liang Li

 Slide through the image and check if there is an object at every location

YES!! Person match found

Ruta Desai, Chun-Liang Li

• But what if we were looking for buses?

No bus found

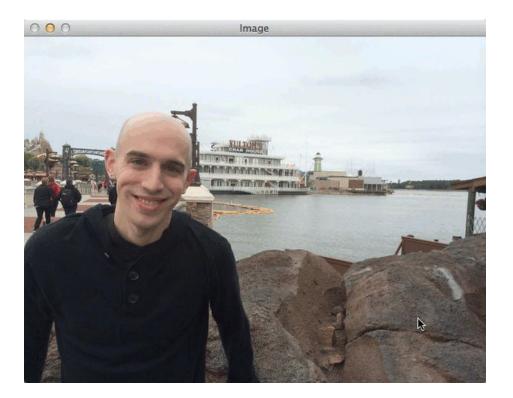
Ruta Desai, Chun-Liang Li

• We will never find the object if we don't choose our window size wisely!

No bus found

Ruta Desai, Chun-Liang Li

Ruta Desai, Chun-Liang Li



• We need to do multi-scale sliding windows with pyramids

Computationally, we first resize the image to different sizes and then extract features at each size.

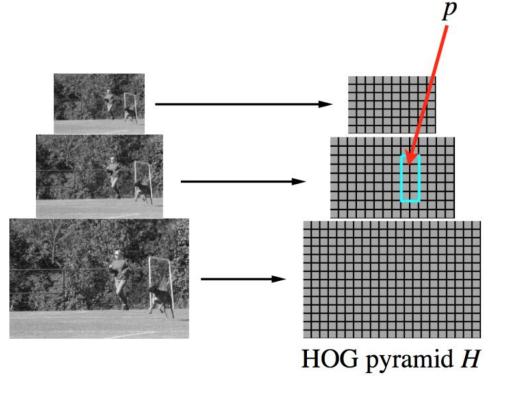


Image Pyramid: An important idea even as of today!!

May 28, 2025

Ruta Desai, Chun-Liang Li

Today's agenda

- Spatial pyramids
- Object detection
 - Task and evaluation
- A simple detector

Ruta Desai, Chun-Liang Li

• Deformable parts model

Recap – bag of words

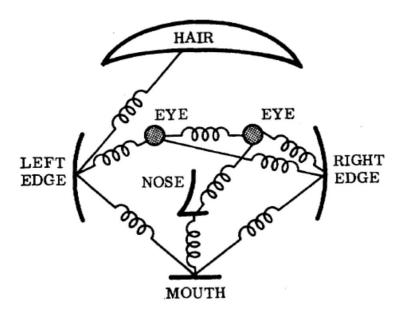
We can present images as a set of "words"
 Where each word represents a part of the image.

 Can we use the location of these patches to find objects within those images?

Ruta Desai, Chun-Liang Li

Deformable Parts Model

- Represents an object as a "collection of parts"
- Each part represents local appearances
- Make prediction jointly

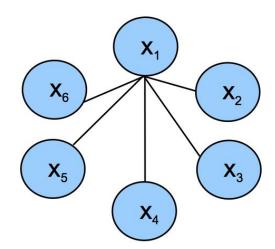


Fischler and Elschlager, Pictoral Structures, 1973

Ruta Desai, Chun-Liang Li

Detecting a person with their parts

- Star model: every part is defined relative to a root.
- Example: a person can be modelled as having a head, left arm, right arm, etc.
- All parts can be modelled relative to the global person detector, which acts as the root.

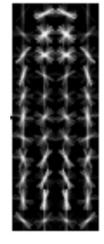


Ruta Desai, Chun-Liang Li

Lecture 17 - 53

Deformable parts model

 Each model will have a global model. And a set of part models. Here is an example of a global person HoG filter with it's 'head' part filter:



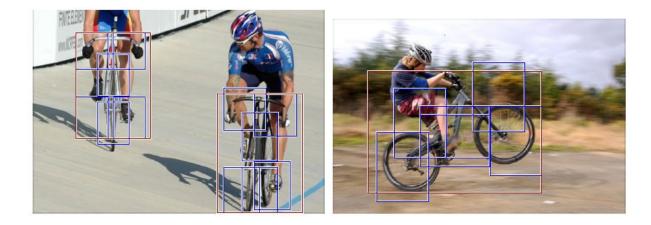
Part filter

Global/root filter

Ruta Desai, Chun-Liang Li

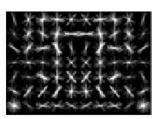
Lecture 17 - 54

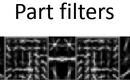
5-part bicycle model



"side view" bike model component

Root filter



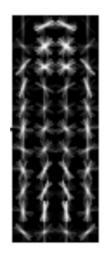


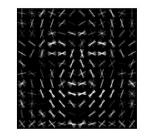
Ruta Desai, Chun-Liang Li

Deformable parts model

• Mixture of deformable part models

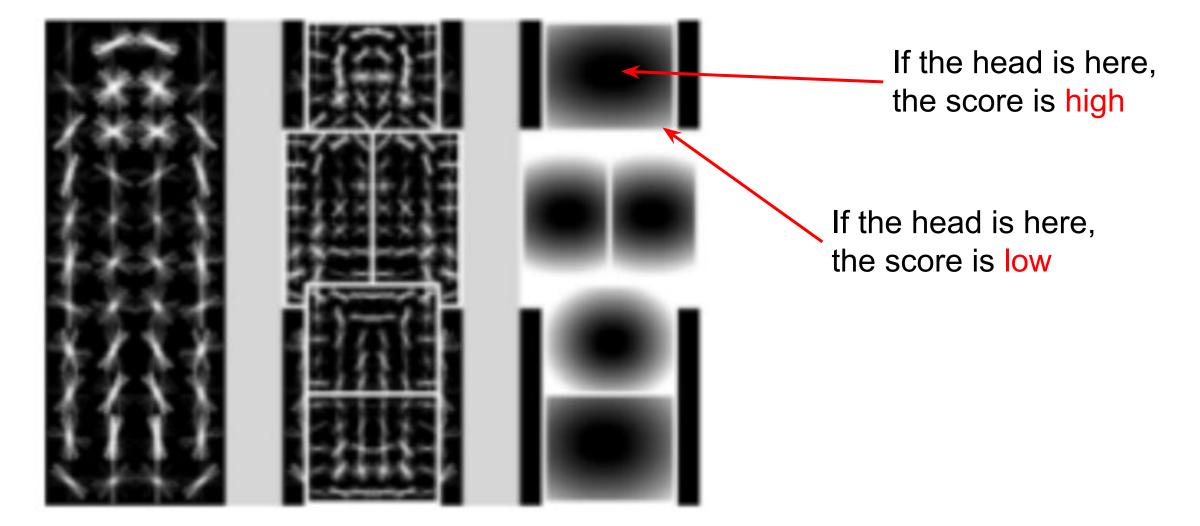
- Each component has global component + deformable parts
- Part filters have finer details





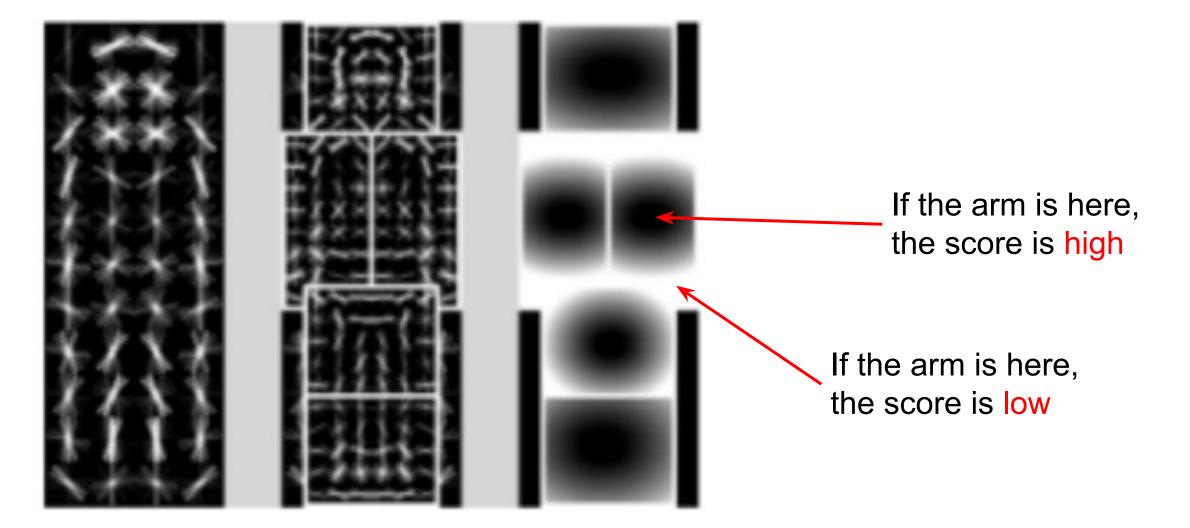
Ruta Desai, Chun-Liang Li

DPM for person model with 5 parts



Ruta Desai, Chun-Liang Li

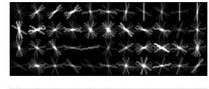
DPM for person model with 5 parts



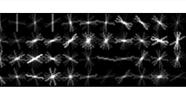
Ruta Desai, Chun-Liang Li

Lecture 17 - 58

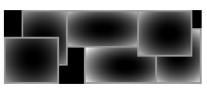
DPM for car with 6 parts

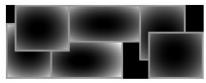


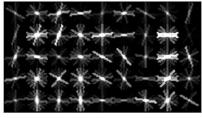
side view



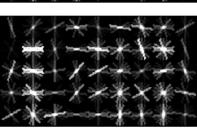
	10-1	-+++	in the	ofer?
1++++	1111	-xx-		₹¥
1	× × * +	11+-		<u>4</u> 21
1. A.	77-5	1-1-	目公	1-

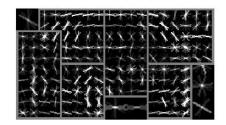


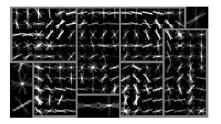


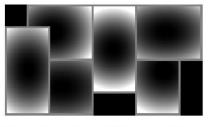


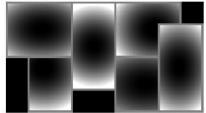
frontal view











deformation models

May 28, 2025

root filters (coarse)

Ruta Desai, Chun-Liang Li

part filters (fine) Lecture 17 - 59

How do we use the parts to make a detection?

Intuition:

- 1. First, use the sliding windows at different pyramid scales to detect each part (and the root).
- 2. Each part gives you a score for where the person might be
- 3. Accumulate the global and part

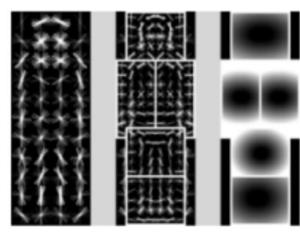
SCOICS (and penalize the deformation of the parts.)

Ruta Desai, Chun-Liang Li

Lecture 17 - 60

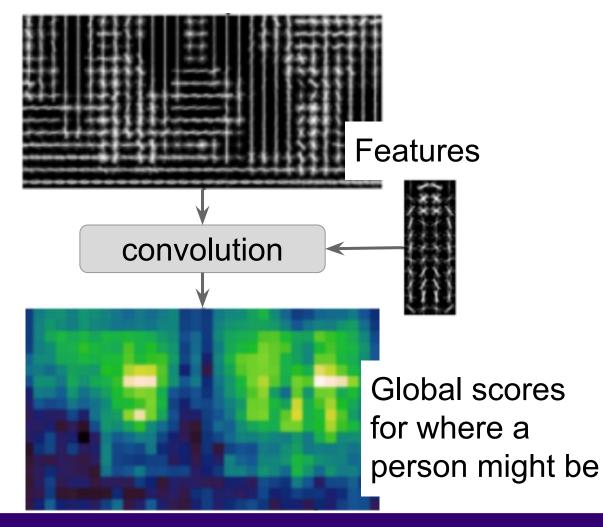
Example for detecting people

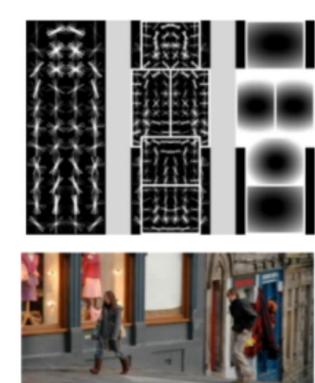
A feature template for person



Ruta Desai, Chun-Liang Li

Calculate scores for global template





May 28, 2025

Ruta Desai, Chun-Liang Li

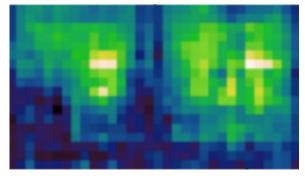
Calculate scores for part templates Features at 2x resolution convolution convolution Scores for Scores for right arm head

Ruta Desai, Chun-Liang Li

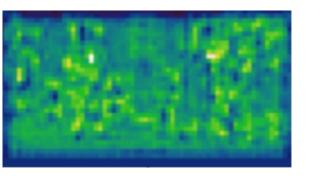
Lecture 17 - 63

After step 1, we have scores for all parts and global template

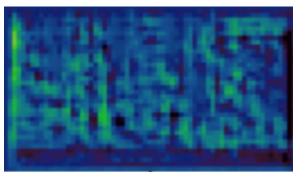
Global scores

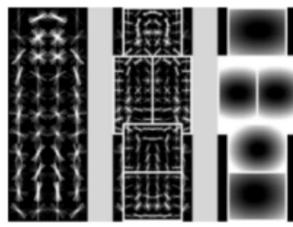


Head scores



Right arm scores





Ruta Desai, Chun-Liang Li

Allowing each part to deform and guess where the entire body is.

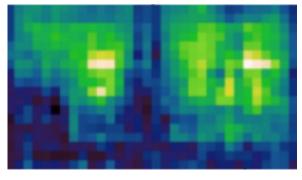
- Given the location for the detected head, we can guess where the body should be.
- The body should be in the direction (v_i) predefined in the model
- Bodies can be of different sizes and shapes. So we allow it to deform by some variable d_i
- This deformation spreads the scores to potential locations of the body

Ruta Desai, Chun-Liang Li

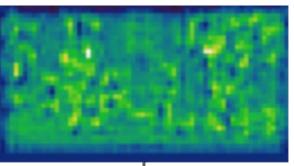
Lecture 17 - 65

Step 2: each part gives you a score for where the person might be

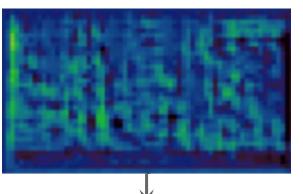
Global scores

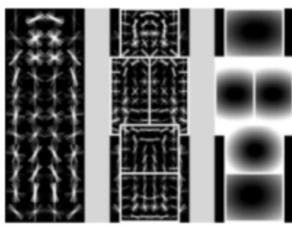


Scores for head

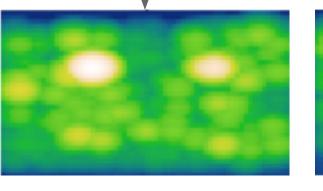


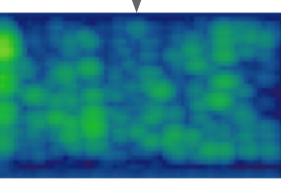
Scores for right arm





Each part is allowed to deform. So it deforms to where the person might be.

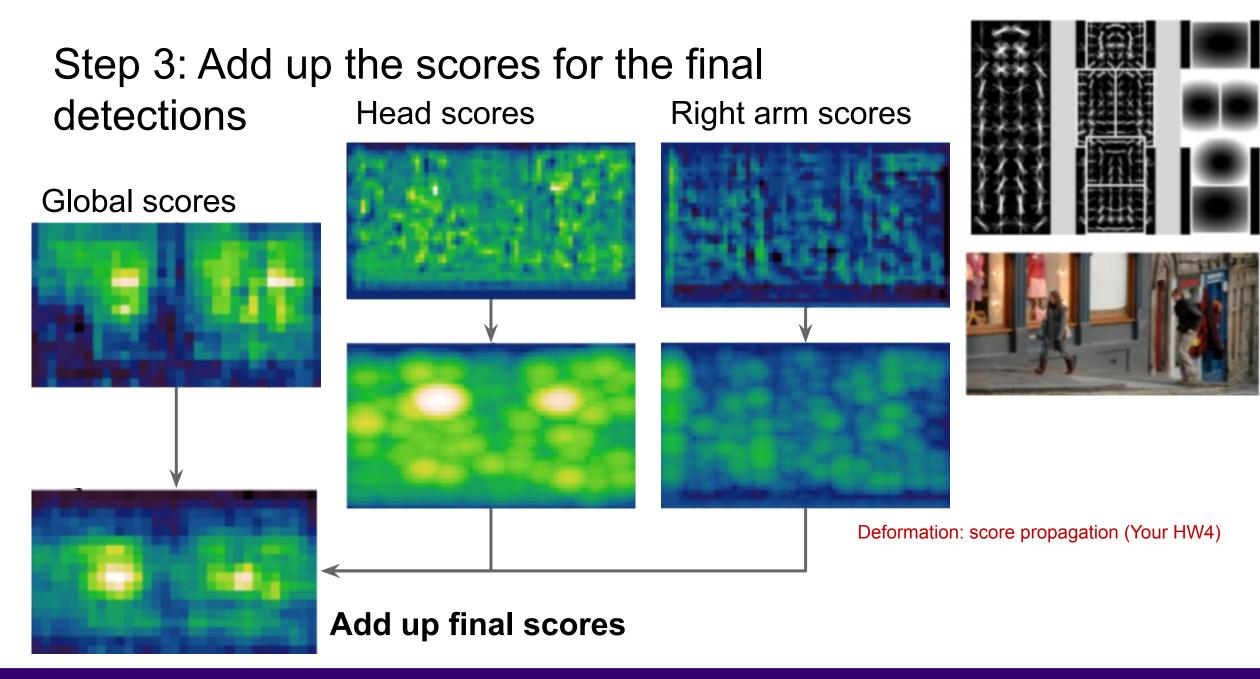




Intuition: If the head is here, where is the whole person likely to be?

Ruta Desai, Chun-Liang Li

Lecture 17 - 66



Ruta Desai, Chun-Liang Li

Lecture 17 - 67

Calculating the score for a detection

The score for a detection is defined as the sum of scores for the global and part detectors *minus* the sum of deformation costs for each part.

detection score
=
$$\sum_{i=0}^{n} F_i \phi(p_i, H) - \sum_{i=1}^{n} d_i (\Delta x_i, \Delta y_i, \Delta x_i^2, \Delta y_i^2)$$

Ruta Desai, Chun-Liang Li

Lecture 17 - 68

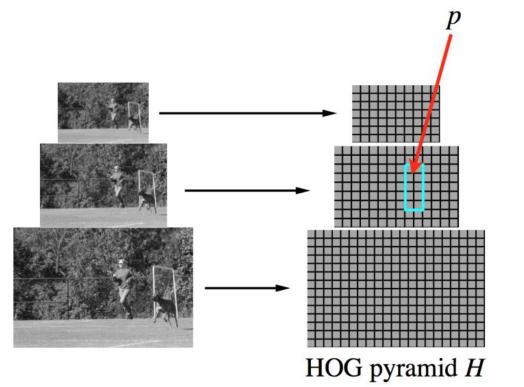
Calculating the score for a detection

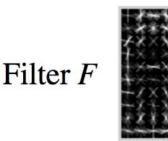
detection score
=
$$\sum_{i=0}^{n} F_i \phi(p_i, H) - \sum_{i=1}^{n} d_i (\Delta x_i, \Delta y_i, \Delta x_i^2, \Delta y_i^2)$$

Scores for each part filter + global filter (similar to Dalal and Triggs).

Ruta Desai, Chun-Liang Li

Remember from Dalal and Triggs





Score of *F* at position *p* is $F \cdot \phi(p, H)$

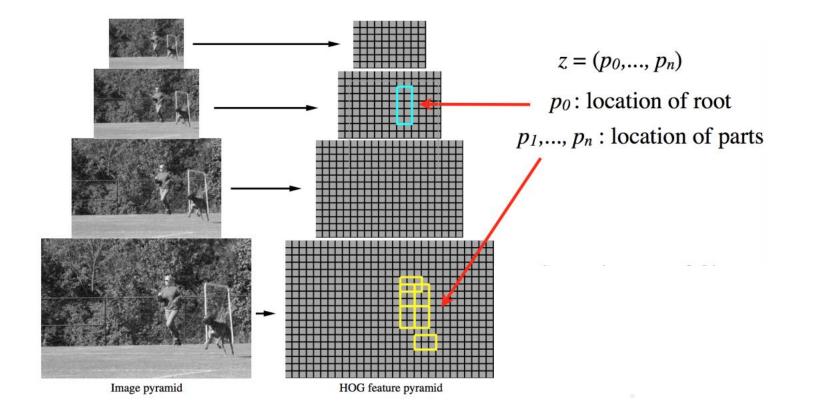
 $\phi(p, H)$ = concatenation of HOG features from subwindow specified by p

Ruta Desai, Chun-Liang Li

Lecture 17 - 70

Deformable parts calculates a score for each part along with a global score

 $p_i = (x_i, y_i, l_i)$ specifies the level and position of the *i*-th filter



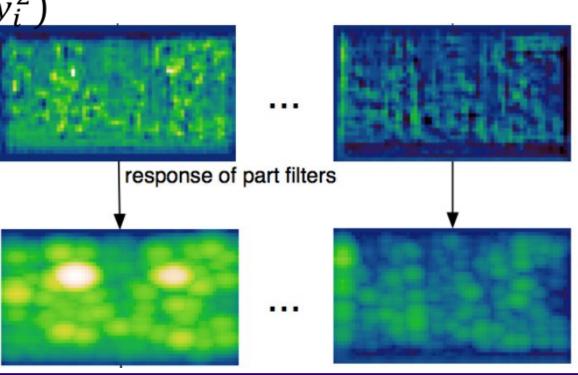
Ruta Desai, Chun-Liang Li

Lecture 17 - 71

Detection pipeline

Now apply the spatial costs for each part:

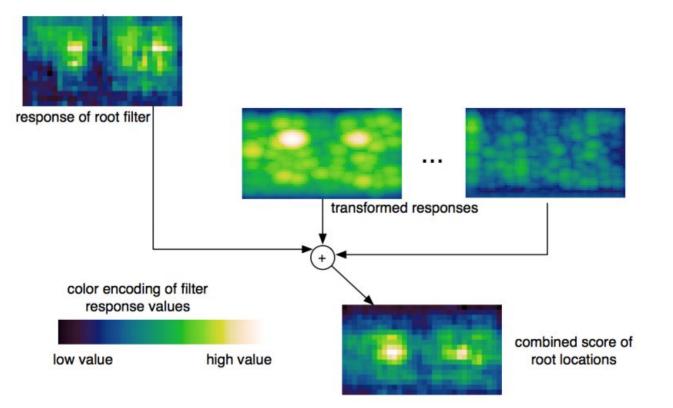
detection score = $F_i \phi(p_i, H) - d_i (\Delta x_i, \Delta y_i, \Delta x_i^2, \Delta y_i^2)$



May 28, 2025

Ruta Desai, Chun-Liang Li

Detection pipeline



Now add the global filter:

detection score

$$=F_0\phi(p_i,H)+\sum_{i=1}^n F_i\phi(p_i,H)-\sum_{i=1}^n d_i(\Delta x_i,\Delta y_i,\Delta x_i^2,\Delta y_i^2)$$

Ruta Desai, Chun-Liang Li

Lecture 17 - 73

Calculating the score for a detection

detection score
=
$$\sum_{i=0}^{n} F_i \phi(p_i, H) - \sum_{i=1}^{n} d_i (\Delta x_i, \Delta y_i, \Delta x_i^2, \Delta y_i^2)$$

The deformation costs for each part.

 Δx_i measures the distance in the x-direction from where part *i* should be.

 Δy_i measures the same in the y-axis direction.

 d_i is the weight associated for part *i* that penalizes the part for being away.

Ruta Desai, Chun-Liang Li

Lecture 17 - 74

Calculating the score for a detection

detection score
=
$$\sum_{i=0}^{n} F_i \phi(p_i, H) - \sum_{i=1}^{n} d_i (\Delta x_i, \Delta y_i, \Delta x_i^2, \Delta y_i^2)$$

If $d_i = (0, 0, 1, 0)$. What does this mean?

Ruta Desai, Chun-Liang Li

