Lecture 16

Recognition, kNN and PCA

Ruta Desai, Chun-Liang Li

Administrative

A4 should be out soon

- Due May 30th

Memorial day:

- No class on May 26th.
- We will cover some dimensionality reduction today (PCA)

Recitation this week:

- Will cover LDA for dimensionality reduction

Final exam:

- June 9th, Make up on June 6th
- T/F, MCQ, Short answers

Ruta Desai, Chun-Liang Li

So far: Segmentation

cluster meaningful groups of pixels

Ruta Desai, Chun-Liang Li

Lecture 16 - 3

So far: Segmentation

Segmentation using graph cuts

Ruta Desai, Chun-Liang Li

Lecture 16 - 4

Today's agenda

- Introduction to recognition
- A object recognition pipeline
- Choosing the right features
- A training algorithm: KNN
- Testing an algorithm
- Challenges with kNN
- Dimensionality reduction: PCA

Ruta Desai, Chun-Liang Li

Lecture 16 - 5

Today's agenda

- Introduction to recognition
- A object recognition pipeline
- Choosing the right features
- A training algorithm: KNN
- Testing an algorithm
- Challenges with kNN
- Dimensionality reduction: PCA

Ruta Desai, Chun-Liang Li

Lecture 16 - 6

What do we mean by recognition?

Ruta Desai, Chun-Liang Li

Classification: Does this image contain a building? [yes/no]

Ruta Desai, Chun-Liang Li

Classification: Is this an beach?

Ruta Desai, Chun-Liang Li

Applications: Image Search & Organizing photo collections

Ruta Desai, Chun-Liang Li

Detection: Does this image contain a car? [where?]

Ruta Desai, Chun-Liang Li

Detection: Which object does this image contain? [where?]

Ruta Desai, Chun-Liang Li

Lecture 16 - 12

Detection: Accurate localization (segmentation)

Ruta Desai, Chun-Liang Li

Detection: Estimating object semantic & geometric attributes

Ruta Desai, Chun-Liang Li

Lecture 16 - 14

Levels of recognition: Category-level vs instance-level

Does this image contain the Chicago Macy's building?

Ruta Desai, Chun-Liang Li

Categorization vs Single instance recognition

We have seen a form of single instance categorization already: Where is the crunchy nut?

Ruta Desai, Chun-Liang Li

Applications of computer vision

Recognizing landmarks in mobile devices

Ruta Desai, Chun-Liang Li

Activity recognition: What are these people doing?

Ruta Desai, Chun-Liang Li

Visual Recognition

- Design algorithms that can:
 - $\circ \text{Classify}$ images or videos
 - $\circ \text{Detect}$ and localize objects
 - Estimate semantic and geometrical attributes
 - Classify human activities and events

Why is this challenging?

Ruta Desai, Chun-Liang Li

How many object categories are there?

Ruta Desai, Chun-Liang Li

Lecture 16 - 20

Challenges: viewpoint variation

Michelangelo 1475-1564

Ruta Desai, Chun-Liang Li

Challenges: illumination

image credit: J. Koenderink

Ruta Desai, Chun-Liang Li

Lecture 16 - 22

Challenges: scale

Ruta Desai, Chun-Liang Li

Lecture 16 - 23

Challenges: deformation

Ruta Desai, Chun-Liang Li

Challenges: occlusion

Magritte, 1957

Ruta Desai, Chun-Liang Li

Lecture 16 - 25

Art Segway - <u>Magritte</u>

Ruta Desai, Chun-Liang Li

Lecture 16 - 26

Challenges: background clutter

Kilmeny Niland. 1995

Ruta Desai, Chun-Liang Li

Lecture 16 - 27

Challenges: intra-class variation

Ruta Desai, Chun-Liang Li

Lecture 16 - 28

Today's agenda

- Introduction to recognition
- A object recognition pipeline
- Choosing the right features
- A training algorithm: KNN
- Testing an algorithm
- Challenges with kNN
- Dimensionality reduction: PCA

Ruta Desai, Chun-Liang Li Lecture 16 - 29

Object recognition: a classification framework

• Apply a prediction function to a feature representation of the image to get the desired output:

Ruta Desai, Chun-Liang Li

A simple pipeline - Training

Ruta Desai, Chun-Liang Li

Lecture 16 - 32

Lecture 16 - 35

What we will learn today?

- Introduction to recognition
- A object recognition pipeline
- Choosing the right features
- A training algorithm: KNN
- Testing an algorithm
- Challenges with kNN
- Dimensionality reduction: PCA

Ruta Desai, Chun-Liang Li

Ruta Desai, Chun-Liang Li

Lecture 16 - 37

May 21, 2025

	Invariances									
	Translation	Scale	Rotation (relative to camera plane)	Rotation (unconstrained)	Partial Occlusion	Illumination	Gaussian Noise			
RGB-histogram	?									

Ruta Desai, Chun-Liang Li

	Invariances									
	TranslationScaleRotation (relative to camera plane)Rotation (unconstrained)Partial OcclusionIlluminationGaussian Noise									
RGB-histogram										

✓ (global color counts don't change if the image shifts)

Ruta Desai, Chun-Liang Li

	Invariances									
	Translation	Scale	Rotation (relative to camera plane)	Rotation (unconstrained)	Partial Occlusion	Illumination	Gaussian Noise			
RGB-histogram		?								

Ruta Desai, Chun-Liang Li

	Invariances									
	TranslationScaleRotation (relative to camera plane)Rotation (unconstrained)Partial OcclusionIlluminationGaussian Noise									
RGB-histogram		X								

✓ (if the *entire* image is uniformly scaled, the color distribution remains the same)

Ruta Desai, Chun-Liang Li

	Invariances									
	TranslationScaleRotation (relative to camera plane)Rotation (unconstrained)Partial OcclusionIllumination									
RGB-histogram	\checkmark	×	?	?						

Ruta Desai, Chun-Liang Li

	Invariances									
	Translation	Scale	Rotation (relative to camera plane)	Rotation (unconstrained)	Partial Occlusion	Illumination	Gaussian Noise			
RGB-histogram		×		X						

✓ (rotating the entire image does not change overall color distribution)

X (appearance/colors can change if out-of-plane rotation reveals different surfaces)

Ruta Desai, Chun-Liang Li

	Invariances									
	Translation	Scale	Rotation (relative to camera plane)	Rotation (unconstrained)	Partial Occlusion	Illumination	Gaussian Noise			
RGB-histogram		×		×	?					

Ruta Desai, Chun-Liang Li

	Invariances									
	Translation	Scale	Rotation (relative to camera plane)	Rotation (unconstrained)	Partial Occlusion	Illumination	Gaussian Noise			
RGB-histogram		×		×	X					

X (removing part of the image can significantly alter color histogram)

Ruta Desai, Chun-Liang Li

	Invariances									
	Translation	Scale	Rotation (relative to camera plane)	Rotation (unconstrained)	Partial Occlusion	Illumination	Gaussian Noise			
RGB-histogram		×		×	×	?	?			

Ruta Desai, Chun-Liang Li

	Invariances									
	Translation	Scale	Rotation (relative to camera plane)	Rotation (unconstrained)	Partial Occlusion	Illumination	Gaussian Noise			
RGB-histogram	\checkmark	×		×	×	X	X			

X (shifts in illumination change color intensities/distribution)

X (noise directly alters pixel distribution)

Ruta Desai, Chun-Liang Li

	Invariances									
	Translation	Scale	Rotation (relative to camera plane)	Rotation (unconstrained)	Partial Occlusion	Illumination	Gaussian Noise			
RGB-histogram		×		×	×	×	×			
HoG	?	?	?	?						

Ruta Desai, Chun-Liang Li

	Invariances									
	Translation	Scale	Rotation (relative to camera plane)	Rotation (unconstrained)	Partial Occlusion	Illumination	Gaussian Noise			
RGB-histogram		×		×	×	×	×			
HoG	X	X	X	X						

X (local bins move)

X (needs re-computation at multiple scales)

- X (oriented gradients are tied to an image grid)
- X (same reason as the ^)

Ruta Desai, Chun-Liang Li

	Invariances									
	Translation	Scale	Rotation (relative to camera plane)	Rotation (unconstrained)	Partial Occlusion	Illumination	Gaussian Noise			
RGB-histogram		×		×	×	×	×			
HoG	×	×	×	×	?	?	?			

Ruta Desai, Chun-Liang Li

	Invariances									
	Translation	Scale	Rotation (relative to camera plane)	Rotation (unconstrained)	Partial Occlusion	Illumination	Gaussian Noise			
RGB-histogram		×		×	×	×	×			
HoG	×	×	×	×	X		X			

- **X** (partial occlusion would result in no match)
- ✓ (gradients are more stable under monotonic intensity changes)
- X (gradient orientations can be disrupted by significant noise)

Ruta Desai, Chun-Liang Li

	Invariances									
	Translation	Scale	Rotation (relative to camera plane)	Rotation (unconstrained)	Partial Occlusion	Illumination	Gaussian Noise			
RGB-histogram		×		×	×	×	×			
HoG	X	×	×	×	X		×			
SIFT	?	?	?	?						

Ruta Desai, Chun-Liang Li

	Invariances									
	Translation	Scale	Rotation (relative to camera plane)	Rotation (unconstrained)	Partial Occlusion	Illumination	Gaussian Noise			
RGB-histogram		×		×	×	×	×			
HoG	×	×	×	×	×		×			
SIFT				X						

- ✓ (keypoint-based, unaffected by shift)
- ✓ (built-in scale normalization)
- ✓ (SIFT normalizes orientation)
- X (local keypoints might disappear if the object rotates)

Ruta Desai, Chun-Liang Li

	Invariances									
	Translation	Scale	Rotation (relative to camera plane)	Rotation (unconstrained)	Partial Occlusion	Illumination	Gaussian Noise			
RGB-histogram	\checkmark	×		×	×	×	×			
HoG	X	×	×	×	×		×			
SIFT	\checkmark		\checkmark	×	?	?	?			

Ruta Desai, Chun-Liang Li

	Invariances									
	Translation	Scale	Rotation (relative to camera plane)	Rotation (unconstrained)	Partial Occlusion	Illumination	Gaussian Noise			
RGB-histogram	\checkmark	×		×	×	×	×			
HoG	×	×	×	×	X		X			
SIFT	\checkmark			×						
Deep learning										

- ✓ (local keypoints can still match if some are visible)
- ✓ (gradient-based + normalization)
- ✓ (SIFT is relatively robust to moderate noise)

Ruta Desai, Chun-Liang Li

	Invariances									
	Translation	Scale	Rotation (relative to camera plane)	Rotation (unconstrained)	Partial Occlusion	Illumination	Gaussian Noise			
RGB-histogram		×		×	×	×	×			
HoG	X	×	×	×	×		X			
SIFT	\checkmark	\checkmark		×	\checkmark		\checkmark			
Deep learning	?	?	?	?						

Ruta Desai, Chun-Liang Li

	Invariances										
	Translation	Scale	Rotation (relative to camera plane)	Rotation (unconstrained)	Partial Occlusion	Illumination	Gaussian Noise				
RGB-histogram		×	\checkmark	×	×	×	×				
HoG	X	×	X	X	×		×				
SIFT			\checkmark	×							
Deep learning	usually	usually	usually	X							

Deep learning features are usually invariant to translation, scale, and planar rotation if the training data has these translations. It is not invariant to other rotations.
Aside: ImageNet has objects centered in the middle of images. So models trained on ImageNet are not translation or scale invariant.

Ruta Desai, Chun-Liang Li

	Invariances									
	Translation	Scale	Rotation (relative to camera plane)	Rotation (unconstrained)	Partial Occlusion	Illumination	Gaussian Noise			
RGB-histogram	\checkmark	×		×	×	×	×			
HoG	×	×	×	×	×		×			
SIFT	\checkmark	\checkmark		×	\checkmark					
Deep learning	usually	usually	usually	×	?	?	?			

Ruta Desai, Chun-Liang Li

	Invariances									
	Translation	Scale	Rotation (relative to camera plane)	Rotation (unconstrained)	Partial Occlusion	Illumination	Gaussian Noise			
RGB-histogram	\checkmark	×		X	×	×	×			
HoG	×	×	×	X	×		×			
SIFT	\checkmark	\checkmark		X	\checkmark					
Deep learning	usually	usually	usually	×	X					

- X (standard CNNs are not strictly occlusion-invariant; partial robustness depends on training)
- ✓ (can learn robustness if trained on varied lighting)
- ✓ (CNNs can learn to be noise-robust with proper training)

Ruta Desai, Chun-Liang Li

So, which features should we choose?

	Invariances									
	Translation	Scale	Rotation (relative to camera plane)	Rotation (unconstrained)	Partial Occlusion	Illumination	Gaussian Noise			
RGB-histogram	\checkmark	×		×	×	×	×			
HoG	×	×	×	×	×		×			
SIFT	\checkmark			×	\checkmark					
Deep learning	usually	usually	usually	×	×		\checkmark			

Ruta Desai, Chun-Liang Li

What we will learn today?

- Introduction to recognition
- A simple Object Recognition pipeline
- Choosing the right features
- A training algorithm: KNN
- Testing an algorithm
- Challenges with kNN
- Dimensionality reduction: PCA

Ruta Desai, Chun-Liang Li

Learning a classifier to map inputs to outputs

- Training: given a *training set* of labeled examples {(x₁,y₁), ..., (x_N,y_N)}, estimate the prediction function f by minimizing the prediction error on the training set
- Testing: apply f to a never before seen test example x and output the predicted value y = f(x)

Ruta Desai, Chun-Liang Li

A simple pipeline - Training Training Labels Training Images Image Learned Training Classifier Features 1997 IN 1998 Test Image Image Learned Prediction Classifier Features

Ruta Desai, Chun-Liang Li

Lecture 16 - 63

May 21, 2025

Many classifiers to choose from

- K-nearest neighbor
- SVM
- Neural networks
- Naïve Bayes
- Bayesian network
- Logistic regression
- Randomized Forests
- Boosted Decision Trees
- RBMs
- Etc.

Which is the best one?

Ruta Desai, Chun-Liang Li

An example training dataset

Training set (labels known)

Ruta Desai, Chun-Liang Li

Apples Pear Tomatos Cow Dog Horse For kNN classifier, training simply means to store all training data.

A stored training set

Slide credit: L. Lazebnik

Ruta Desai, Chun-Liang Li

During testing, we assign the label of the nearest neighbot in feature space

Slide credit: L. Lazebnik

Ruta Desai, Chun-Liang Li

What we will learn today?

- Introduction to recognition
- A simple Object Recognition pipeline
- Choosing the right features
- A training algorithm: kNN
- Testing an algorithm
- Challenges with kNN
- Dimensionality reduction

Ruta Desai, Chun-Liang Li

A simple pipeline - Training

Ruta Desai, Chun-Liang Li

Lecture 16 - 69

May 21, 2025

Generalization

Training set (labels known)

Test set (labels unknown)

• How well does a learned model generalize from the data it was trained on to a new test set?

Ruta Desai, Chun-Liang Li

Intuition for Nearest Neighbor Classifier

Given a training dataset, simply store each image's features and their corresponding label.

Ruta Desai, Chun-Liang Li

Intuition for Nearest Neighbor Classifier

Given a training dataset, simply store each image's features and their corresponding label.

Ruta Desai, Chun-Liang Li

Lecture 16 - 72

May 21, 2025
Nearest Neighbor Classifier

• Assign label of majority of K=3 nearest neighbors

Ruta Desai, Chun-Liang Li

Lecture 16 - 73

Classification

- Assign input vector to one of many classes (categories)
- Geometric interpretation of classifiers: A classifier divides input space into *decision regions* separated by *decision boundaries*

Ruta Desai, Chun-Liang Li

Lecture 16 - 74

Nearest Neighbor Classifier

• Assign label of nearest training data point to each test data point

from Duda et al.

Partitioning of feature space for two-category 2D and 3D data

Ruta Desai, Chun-Liang Li

How do we find the nearest neighbors in feature space?

Distance measure (same as the ones from segmentation)

Euclidean:

$$Dist(X^n, X^m) = \sqrt{\sum_{i=1}^{D} (X_i^n - X_i^m)^2}$$

Where Xⁿ and X^m are the n-th and m-th data points

Ruta Desai, Chun-Liang Li

1-nearest neighbor

Distance measure (same as the ones from segmentation)

Euclidean:

$$Dist(X^n, X^m) = \sqrt{\sum_{i=1}^{D} (X_i^n - X_i^m)^2}$$

Where Xⁿ and X^m are the n-th and m-th data points

Ruta Desai, Chun-Liang Li

Lecture 16 - 77

3-nearest neighbor

Distance measure (same as the ones from segmentation)

Euclidean:

$$Dist(X^n, X^m) = \sqrt{\sum_{i=1}^{D} (X_i^n - X_i^m)^2}$$

Where Xⁿ and X^m are the n-th and m-th data points

Ruta Desai, Chun-Liang Li

5-nearest neighbor

Distance measure (same as the ones from segmentation)

Euclidean:

$$Dist(X^n, X^m) = \sqrt{\sum_{i=1}^{D} (X_i^n - X_i^m)^2}$$

Where Xⁿ and X^m are the n-th and m-th data points

Ruta Desai, Chun-Liang Li

Choosing the right features is important but dataset-dependent

	Color	$D_x D_y$	Mag-Lap	PCA Masks	PCA Gray	Cont. Greedy	Cont. DynProg	Avg.
apple	57.56%	85.37%	80.24%	78.78%	88.29%	77.07%	76.34%	77.66%
pear	66.10%	90.00%	85.37%	99.51%	99.76%	90.73%	91.71%	89.03%
tomato	98.54%	94.63%	97.07%	67.80%	76.59%	70.73%	70.24%	82.23%
cow	86.59%	82.68%	94.39%	75.12%	62.44%	86.83%	86.34%	82.06%
dog	34.63%	62.44%	74.39%	72.20%	66.34%	81.95%	82.93%	67.84%
horse	32.68%	58.78%	70.98%	77.80%	77.32%	84.63%	84.63%	69.55%
cup	79.76%	66.10%	77.80%	96.10%	96.10%	99.76%	99.02%	87.81%
car	62.93%	98.29%	77.56%	100.0%	97.07%	99.51%	100.0%	90.77%
total	64.85%	79.79%	82.23%	83.41%	82.99%	86.40%	86.40%	80.87%

Dataset: ETH-80, by B. Leibe, 2003

May 21, 2025

Ruta Desai, Chun-Liang Li

Results

					0				Ó
	Ò		6						
0	Ó	٢	Ó	٢		•			0
-7PI	1	1	1	<u>IS</u>	1	7	1		1.7
**	% ?-	92:	73	33	7933	Ħ	M	35	Yn:
M	77	1	37	77	1	27	To	1	1
Þ			P			V	_	9	
		<u>~</u>	-	1			1		~

Category	Primary feature(s)	Secondary reature(s)
apple	PCA Gray	Texture $D_x D_y$
pear	PCA Gray / Masks	
tomato	Color	Texture Mag-Lap
cow	Texture Mag-Lap	Contour / Color
dog	Contour	
horse	Contour	
cup	Contour	PCA Gray / Masks
car	PCA Masks / Contour	Texture $D_x D_y$

Dataset: ETH-80, by B. Leibe, 2003

May 21, 2025

Ruta Desai, Chun-Liang Li

K-NN: a very useful algorithm

- Simple, a good one to try first
- Very flexible decision boundaries

Ruta Desai, Chun-Liang Li

What we will learn today?

- Introduction to recognition
- A simple Object Recognition pipeline
- Choosing the right features
- A training algorithm: kNN
- Testing an algorithm
- Challenges with kNN
- Dimensionality reduction

Ruta Desai, Chun-Liang Li

- Choosing the value of k:
 - \circ If too small, sensitive to noise points
 - If too large, neighborhood may include points from other classes

Ruta Desai, Chun-Liang Li

- Choosing the value of k:
 - \circ If too small, sensitive to noise points
 - If too large, neighborhood may include points from other classes

Ruta Desai, Chun-Liang Li

Lecture 16 - 85

- Choosing the value of k:
 - \circ If too small, sensitive to noise points

 If too large, neighborhood may include points from other classes

Solution: Cross validate

Ruta Desai, Chun-Liang Li

Lecture 16 - 86

All Data

Training data Test data

Ruta Desai, Chun-Liang Li

All Data	
Training data	Test data

	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5
Split 1	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5

Ruta Desai, Chun-Liang Li

	All Data							
		Г	Test data					
	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5			
Split 1	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5			
Split 2	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5			

Ruta Desai, Chun-Liang Li

Ruta Desai, Chun-Liang Li

- Choosing the value of k:
 - If too small, sensitive to noise points
 - If too large, neighborhood may include points from other classes
 - Solution: cross validate!
- Curse of Dimensionality

Ruta Desai, Chun-Liang Li

Curse of dimensionality

- As the dimensionality increases, the number of data points required for good performance increases exponentially.
- Let's say that for a model to perform well, we need at least 10 data points for each combination of feature values.

Need for Data Points with Increase in Dimensions

Ruta Desai, Chun-Liang Li

Lecture 16 - 92

• Choosing the value of k:

○ If too small, sensitive to noise points

 If too large, neighborhood may include points from other classes

• Solution: cross validate!

• Curse of Dimensionality

Solution: dimensionality reduction

Ruta Desai, Chun-Liang Li

What we will learn today

- Introduction to recognition
- A simple Object Recognition pipeline
- Choosing the right features
- A training algorithm: kNN
- Testing an algorithm
- Challenges with kNN
- Dimensionality reduction

Ruta Desai, Chun-Liang Li

Singular Value Decomposition (SVD)

$\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\mathsf{T}} = \mathbf{A}$

• Where **U** and **V** are rotation matrices, and $\boldsymbol{\Sigma}$ is a scaling matrix. For example:

$$\begin{bmatrix} U & \Sigma & V^T & A \\ -.40 & .916 \\ .916 & .40 \end{bmatrix} \times \begin{bmatrix} 5.39 & 0 \\ 0 & 3.154 \end{bmatrix} \times \begin{bmatrix} -.05 & .999 \\ .999 & .05 \end{bmatrix} = \begin{bmatrix} 3 & -2 \\ 1 & 5 \end{bmatrix}$$

Ruta Desai, Chun-Liang Li

Singular Value Decomposition (SVD)

- Beyond 2x2 matrices:
 - In general, if A is m x n, then U will be m x m, Σ will be m x n, and V^T will be n x n.
 - (Note the dimensions work out to produce *m* x *n* after multiplication)

$$\begin{bmatrix} U & \Sigma & V^T \\ -.39 & -.92 \\ -.92 & .39 \end{bmatrix} \times \begin{bmatrix} 9.51 & 0 & 0 \\ 0 & .77 & 0 \end{bmatrix} \times \begin{bmatrix} -.42 & -.57 & -.70 \\ .81 & .11 & -.58 \\ .41 & -.82 & .41 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

Ruta Desai, Chun-Liang Li

Lecture 16 - 96

Singular Value Decomposition (SVD)

- U and V are always rotation matrices.
 - Geometric rotation may not be an applicable concept, depending on the matrix. So we call them "unitary" matrices – each column is a unit vector.
- Σ is a diagonal matrix
 - The number of nonzero entries = rank of **A**
 - \circ The algorithm always sorts the entries high to low

$$\begin{bmatrix} U & \Sigma & V^T \\ -.39 & -.92 \\ -.92 & .39 \end{bmatrix} \times \begin{bmatrix} 9.51 & 0 & 0 \\ 0 & .77 & 0 \end{bmatrix} \times \begin{bmatrix} -.42 & -.57 & -.70 \\ .81 & .11 & -.58 \\ .41 & -.82 & .41 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

Ruta Desai, Chun-Liang Li

Lecture 16 - 97

SVD Applications

- We've discussed SVD in terms of geometric transformation matrices
- But SVD of an image matrix can also be very useful
- To understand this, we'll look at a less geometric interpretation of what SVD is doing

What is SVD actually doing for images?

$$\begin{bmatrix} U & \Sigma & V^T \\ -.39 & -.92 \\ -.92 & .39 \end{bmatrix} \times \begin{bmatrix} 9.51 & 0 & 0 \\ 0 & .77 & 0 \end{bmatrix} \times \begin{bmatrix} -.42 & -.57 & -.70 \\ .81 & .11 & -.58 \\ .41 & -.82 & .41 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

- Look at how the multiplication works out, left to right:
- Column 1 of **U** gets scaled by the first value from **Σ**.

Ruta Desai, Chun-Liang Li

What is SVD actually doing for images?

$$\begin{bmatrix} U & \Sigma & V^T \\ -.39 & -.92 \\ -.92 & .39 \end{bmatrix} \times \begin{bmatrix} 9.51 & 0 & 0 \\ 0 & .77 & 0 \end{bmatrix} \times \begin{bmatrix} -.42 & -.57 & -.70 \\ .81 & .11 & -.58 \\ .41 & -.82 & .41 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

- Look at how the multiplication works out, left to right:
- Column 1 of **U** gets scaled by the first value from Σ .

$$\begin{bmatrix} U\Sigma & V^T \\ -3.67 & -.71 & 0 \\ -8.8 & .30 & 0 \end{bmatrix} \times \begin{bmatrix} -.42 & -.57 & -.70 \\ .81 & .11 & -.58 \\ .41 & -.82 & .41 \end{bmatrix}$$

Ruta Desai, Chun-Liang Li

What is SVD actually doing for images?

$$\begin{bmatrix} U & \Sigma & V^T \\ -.39 & -.92 \\ -.92 & .39 \end{bmatrix} \times \begin{bmatrix} 9.51 & 0 & 0 \\ 0 & .77 & 0 \end{bmatrix} \times \begin{bmatrix} -.42 & -.57 & -.70 \\ .81 & .11 & -.58 \\ .41 & -.82 & .41 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

- Look at how the multiplication works out, left to right:
- Column 1 of **U** gets scaled by the first value from **Σ**.

$$\begin{bmatrix} -3.67 & -.71 & 0 \\ -8.8 & .30 & 0 \end{bmatrix} \times \begin{bmatrix} -.42 & -.57 & -.70 \\ .81 & .11 & -.58 \\ .41 & -.82 & .41 \end{bmatrix} \xrightarrow{A_{partial}} \begin{bmatrix} 1.6 & 2.1 & 2.6 \\ 3.8 & 5.0 & 6.2 \end{bmatrix}$$

 The resulting vector gets scaled by row 1 of V^T to produce a contribution to the columns of A

Ruta Desai, Chun-Liang Li

Each product of (column i of U)·(value i from Σ)·(row i of V^T) produces a component of the final A.

Ruta Desai, Chun-Liang Li

- We're building **A** as a linear combination of the columns of **U**
- Using all columns of **U**, we'll rebuild the original matrix perfectly
- But, in real-world data, often we can just use the first few columns of *U* and we'll get something close (e.g. the first *A*_{partial}, above)

Ruta Desai, Chun-Liang Li

- We can call those first few columns of *U* the Principal Components of the data
- They show the major patterns that can be added to produce the columns of the original matrix
- The rows of V^T show how the *principal components* are mixed to produce the columns of the matrix

Ruta Desai, Chun-Liang Li

Lecture 16 - 104

$$\begin{bmatrix} U & \Sigma & V^T \\ -.39 & -.92 \\ -.92 & .39 \end{bmatrix} \times \begin{bmatrix} 9.51 & 0 & 0 \\ 0 & .77 & 0 \end{bmatrix} \times \begin{bmatrix} -.42 & -.57 & -.70 \\ .81 & .11 & -.58 \\ .41 & -.82 & .41 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

We can look at Σ to see that the first column has a large effect

while the second column has a much smaller effect in this example

Ruta Desai, Chun-Liang Li

Lecture 16 - 105

Image compression

Ruta Desai, Chun-Liang Li

May 21, 2025

• For this image, using **only the first 16** of 300 principal components produces a recognizable reconstruction

Lecture 16 - 106

 Using the first 64 almost perfectly reconstructs the image

Intuition behind PCA: high dimensional data usually lives in some lower dimensional space

Covariance between the two dimensions of features is high. Can we reduce the number of dimensions to just 1?

Ruta Desai, Chun-Liang Li

Lecture 16 - 107

Geometric interpretation of PCA

Ruta Desai, Chun-Liang Li

Geometric interpretation of PCA

- Let's say we have a set of 2D data points x. But we see that all the points lie on a line in 2D.
- So, 2 dimensions are redundant to express the data. We can express all the points with just one dimension.

Ruta Desai, Chun-Liang Li

PCA: Principal Component Analysis

- Given a dataset of images, can we compressed them like we can compress a single image?
 - Yes, the trick is to look into the correlation between the dimensions of the image
 - \circ The tool for doing this is called PCA

PCA can be used to compress image RGB pixel values or also be used to compress their features!

Ruta Desai, Chun-Liang Li

Toy example to explain covariance

- What is covariance between dimensions?
- Let's say we have a dataset of students

 each student is represented with 3 dimensions
 x: number of hours studied for a class
 y: grades obtained in that class
 z: number of lectures attended

 covariance value between x and y is say: 104.53
 - what does this value mean?

Ruta Desai, Chun-Liang Li

Covariance interpretation

- \circ **x**: number of hours studied for a subject
- y: marks obtained in that subject
- covariance value between **x** and **y** is say: 104.53

 \circ what does this value mean?

Ruta Desai, Chun-Liang Li

Lecture 16 - 112

Visualizing this covariance matrix

- We can represent these covariance correlation numbers in a matrix
- e.g. for 3 dimensions:

- Diagonal is the **variances** of x, y and z
- cov(x,y) = cov(y,x) hence C is symmetrical about the diagonal
- N-dimensional data will result in NxN covariance matrix

Ruta Desai, Chun-Liang Li

Covariance interpretation

- Exact value is not as important as it's sign.
- A **positive value** of covariance indicates both dimensions increase or decrease together e.g. as the number of hours studied increases, the marks in that subject increase.
- A **negative value** indicates while one increases the other decreases, or vice-versa e.g. active social life at PSU vs performance in CS dept.
- If covariance is zero: the two dimensions are independent of each other e.g. heights of students vs the marks obtained in a subject

• To relate this to PCA, we consider the <u>image (or feature) matrix</u>

$$X = \begin{bmatrix} 1 & 1 \\ x_1 & \dots & x_n \\ 1 & 1 \end{bmatrix}$$

 The sample mean of this dataset (or in plain english, the average image) is:

$$\mu = \frac{1}{n} \sum_{i} x_{i} = \frac{1}{n} \begin{bmatrix} 1 & 1 & 1 \\ x_{1} & \dots & x_{n} \\ 1 & 1 \end{bmatrix} = \frac{1}{n} X 1$$

Ruta Desai, Chun-Liang Li

- Center the data by subtracting the mean to each column of X
- The <u>centered dataset matrix</u> is

$$X_{c} = \begin{bmatrix} 1 & 1 \\ x_{1} & \dots & x_{n} \\ 1 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 1 \\ \mu & \dots & \mu \\ 1 & 1 \end{bmatrix}$$

• The sample <u>covariance</u> matrix is

$$C = \frac{1}{n} \sum_{i} (x_i - \mu) (x_i - \mu)^T = \frac{1}{n} \sum_{i} x_i^c (x_i^c)^T$$

where x_i^{c} is the ith column of X_c

• This can be written as

Ruta Desai, Chun-Liang Li

Lecture 16 - 117

• The matrix

$$\boldsymbol{X}_{c}^{T} = \begin{bmatrix} - & \boldsymbol{X}_{1}^{c} & - \\ \vdots & \\ - & \boldsymbol{X}_{n}^{c} & - \end{bmatrix}$$

is real (n x d). Assuming n>d it has SVD decomposition

$$X_c^T = U\Sigma V^T \qquad \qquad U^T U = I \qquad \qquad V^T V = I$$

and

$$C = \frac{1}{n} X_c X_c^T$$

Ruta Desai, Chun-Liang Li

Calculating covariance matrix

$$C = \frac{1}{n} X_c X_c^T$$
$$= \frac{1}{n} U \Sigma V^T (U \Sigma V^T)^T$$
$$= \frac{1}{n} U \Sigma V^T V \Sigma U^T$$
$$= \frac{1}{n} U \Sigma^2 U^T$$

n

Ruta Desai, Chun-Liang Li

$$C = \frac{1}{n} U \Sigma^2 U^T$$

- Note that U is (d x d) and orthonormal, and Σ² is diagonal.
 This is just the eigenvalue decomposition of C
- This means that we can calculate the eigenvectors of C using the eigenvectors of X_c
- It follows that
 - $\circ\,$ The eigenvectors of C are the columns of U
 - \circ The eigenvalues of C are the diagonal entries of Σ^2 : λ_i^2

Ruta Desai, Chun-Liang Li

- In summary, computation of PCA by SVD
- Given X with one image (or feature) per column

Create the centered data matrix

$$\boldsymbol{X}_{c} = \begin{bmatrix} \boldsymbol{I} & \boldsymbol{I} \\ \boldsymbol{X}_{1} & \boldsymbol{I} & \boldsymbol{X}_{n} \\ \boldsymbol{I} & \boldsymbol{I} \end{bmatrix} - \begin{bmatrix} \boldsymbol{I} & \boldsymbol{I} \\ \boldsymbol{\mu} & \boldsymbol{I} & \boldsymbol{\mu} \\ \boldsymbol{I} & \boldsymbol{I} \end{bmatrix}$$

• Compute its SVD

Ruta Desai, Chun-Liang Li

$$X_c^T = U\Sigma V^T$$

Principal components of the covariance matrix C are columns of U

To compress an image dataset, pick the largest eigenvalues and their corresponding eigenvectors

Pick the eigenvectors that explain p% of the image data variability
 Can be done by plotting the ratio r_k as a function of k

 $r_{k} = \sum_{i=1}^{k} \lambda_{i}^{2}$ $\sum_{i=1}^{n} \lambda_{i}^{2}$

 \circ E.g. we need k=3 eigenvectors to cover 70% of the variability of this dataset

Ruta Desai, Chun-Liang Li

What exactly is the covariance

- Variance and Covariance are a measure of the "**spread**" of a set of points around their center of mass (mean)
- Variance measure of the deviation from the mean for points in one dimension e.g. heights
- **Covariance** as a measure of how much each of the dimensions vary from the mean with respect to each other.
- Covariance is measured between 2 dimensions to see if there is a relationship between the 2 dimensions e.g. number of hours studied & marks obtained.
- The covariance between one dimension and itself is the variance

Ruta Desai, Chun-Liang Li

What happens with PCA during training?

Ruta Desai, Chun-Liang Li

Lecture 16 - 124

Ruta Desai, Chun-Liang Li

Lecture 16 - 125

PCA during training

Let's say that we choose k top eigenvalues and their corresponding eigenvectors: $[u_1, ..., u_k]$

Replace all image features x with:

$$\hat{x} = \begin{bmatrix} u_1^T x \\ u_2^T x \\ \dots \\ u_k^T x \end{bmatrix}$$

Ruta Desai, Chun-Liang Li

Ruta Desai, Chun-Liang Li

Lecture 16 - 127

Ruta Desai, Chun-Liang Li

Lecture 16 - 128

How PCA was originally used in vision: To identify celebrities using their faces

- An image is a point in a high dimensional space
 - \circ In grayscale, an N x M image is a point in R^{NM}
 - E.g. 100x100 images lives in a 10,000-dimensional space

Ruta Desai, Chun-Liang Li

Lecture 16 - 129

SVD for symmetric matrices

• If A is a symmetric matrix, it can be decomposed as the following:

• Compared to a traditional $A=\Phi\Sigma\Phi^T\quad \mathbf{V}^{\mathrm{T}}$ and is an orthogonal matrix.

Ruta Desai, Chun-Liang Li

What we have learned today?

- Introduction to recognition
- A simple Object Recognition pipeline
- Choosing the right features
- A training algorithm: kNN
- Testing an algorithm
- Challenges with kNN
- Dimensionality reduction: PCA

Ruta Desai, Chun-Liang Li

Next lecture

Object detection

Ruta Desai, Chun-Liang Li

Extra slides (out of scope)

for those of you curious about how SVD is calculated and what PCA is usually used for outside of computer vision

Ruta Desai, Chun-Liang Li

Principal Component Analysis

- Remember, columns of **U** are the *Principal Components* of the data: the major patterns that can be added to produce the columns of the original matrix
- One use of this is to construct a matrix where each column is a separate data sample
- Run SVD on that matrix, and look at the first few columns of U to see patterns that are common among the columns
- This is called *Principal Component Analysis* (or PCA) of the data samples

Ruta Desai, Chun-Liang Li

Principal Component Analysis

- Often, raw data samples have a lot of redundancy and patterns
- PCA can allow you to represent data samples as weights on the principal components, rather than using the original raw form of the data
- By representing each sample as just those weights, you can represent just the "meat" of what's different between samples.
- This minimal representation makes machine learning and other algorithms much more efficient

Ruta Desai, Chun-Liang Li

How is SVD computed?

- For this class: tell PYTHON to do it. Use the result.
- But, if you're interested, one computer algorithm to do it makes use of Eigenvectors!

Ruta Desai, Chun-Liang Li

Eigenvector definition

- Suppose we have a square matrix **A**. We can solve for vector x and scalar λ such that Ax= λ x
- In other words, find vectors where, if we transform them with **A**, the only effect is to scale them with no change in direction.
- These vectors are called eigenvectors (German for "self vector" of the matrix), and the scaling factors λ are called eigenvalues

Lecture 16 - 137

May 21, 2025

• An $m \ge m$ matrix will have $\le m$ eigenvectors where λ is nonzero

Ruta Desai, Chun-Liang Li

Finding eigenvectors

- Computers can find an x such that $Ax = \lambda x$ using this iterative algorithm:
 - \circ X = random unit vector
 - while(x hasn't converged)
 - X = Ax
 - normalize x
- x will quickly converge to an eigenvector
- Some simple modifications will let this algorithm find all eigenvectors

Ruta Desai, Chun-Liang Li

Finding SVD

- Eigenvectors are for square matrices, but SVD is for all matrices
- To do svd(A), computers can do this:
 - \circ Take eigenvectors of AA^T (matrix is always square).
 - These eigenvectors are the columns of **U**.
 - Square root of eigenvalues are the singular values (the entries of Σ).
 - \circ Take eigenvectors of A^TA (matrix is always square).
 - These eigenvectors are columns of **V** (or rows of **V**^T)

Lecture 16 - 139

May 21, 2025

Ruta Desai, Chun-Liang Li

Finding SVD

- Moral of the story: SVD is fast, even for large matrices
- It's useful for a lot of stuff
- There are also other algorithms to compute SVD or part of the SVD
 - Python's np.linalg.svd() command has options to efficiently compute only what you need, if performance becomes an issue

A detailed geometric explanation of SVD is here: http://www.ams.org/samplings/feature-column/fcarc-svd

Ruta Desai, Chun-Liang Li

Bias-Variance Trade-off

- Models with too few parameters are inaccurate because of a large bias (not enough flexibility).
- Models with too many parameters are inaccurate because of a large variance (too much sensitivity to the sample).

Ruta Desai, Chun-Liang Li

Bias versus variance

- Components of generalization error
 - Bias: how much the average model over all training sets differ from the true model?
 - Error due to inaccurate assumptions/simplifications made by the model
 - Variance: how much models estimated from different training sets differ from each other
- **Underfitting:** model is too "simple" to represent all the relevant class characteristics
 - $\circ\,$ High bias and low variance
 - $\circ\,$ High training error and high test error
- **Overfitting:** model is too "complex" and fits irrelevant characteristics (noise) in the data
 - \circ Low bias and high variance
 - $\circ\,$ Low training error and high test error

Ruta Desai, Chun-Liang Li

Bias versus variance trade off

Ruta Desai, Chun-Liang Li

No Free Lunch Theorem

In a supervised learning setting, we can't tell which classifier will have best generalization

Ruta Desai, Chun-Liang Li

Remember...

- No classifier is inherently better than any other: you need to make assumptions to generalize
- Three kinds of error
 Inherent: unavoidable
 - Bias: due to over-simplifications
 - Variance: due to inability to perfectly estimate parameters from limited data

Ruta Desai, Chun-Liang Li

Lecture 16 - 145

May: 21:, 2025

How to reduce variance?

- Choose a simpler classifier
- Regularize the parameters
- Get more training data

How do you reduce bias?

Ruta Desai, Chun-Liang Li

Last remarks about applying machine learning methods to object recognition

- There are machine learning algorithms to choose from
- Know your data:
 - o How much supervision do you have?
 - \circ How many training examples can you afford?
 - How noisy?
- Know your goal (i.e. task):
 - \circ Affects your choices of representation
 - Affects your choices of learning algorithms
 - Affects your choices of evaluation metrics
- Understand the math behind each machine learning algorithm under consideration!

Ruta Desai, Chun-Liang Li

PCA by SVD

- An alternative manner to compute the principal components, based on singular value decomposition
- Quick reminder: SVD
 - Any real n x m matrix (n>m) can be decomposed as

 $A = M\Pi N^T$

- Where M is an (n x m) column orthonormal matrix of left singular vectors (columns of M)
- $\circ~\Pi$ is an (m x m) diagonal matrix of singular values
- \circ N^T is an (m x m) row orthonormal matrix of right singular vectors (columns of N)

$$\mathbf{M}^{\mathsf{T}}\mathbf{M} = \mathbf{I} \qquad \mathbf{N}^{\mathsf{T}}\mathbf{N} = \mathbf{I}$$

Ruta Desai, Chun-Liang Li

Lecture 16 - 148

<u>May 21, 2025</u>

PCA Formulation

• Basic idea:

 If the images (or their features) live in a subspace, it is going to look very flat when viewed from the full feature space, e.g.

Slide inspired by N. Vasconcelos

Ruta Desai, Chun-Liang Li

Alternative PCA Formulation

- Assume images x is Gaussian with covariance Σ.
- Recall that a gaussian is defined with it's mean and variance:

 $\mathbf{X}~\sim~\mathcal{N}(oldsymbol{\mu},\,oldsymbol{\Sigma})$

• Recall that μ and Σ of a gaussian are defined as:

$$\boldsymbol{\mu} = \mathrm{E}[\mathbf{X}]$$

$$oldsymbol{\Sigma} =: \mathrm{E}[(oldsymbol{X} - oldsymbol{\mu})^{\mathrm{T}}] = [\mathrm{Cov}[X_i, X_j]; 1 \leq i,j \leq k]$$

May 21, 2025

Ruta Desai, Chun-Liang Li

Alternative PCA formulation

 Since gaussians are symmetric, it's covariance matrix is also a symmetric matrix. So we can express it as:

 $\circ \boldsymbol{\Sigma} = \boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{\mathsf{T}} = \boldsymbol{U} \boldsymbol{\Lambda}^{1/2} (\boldsymbol{U} \boldsymbol{\Lambda}^{1/2})^{\mathsf{T}}$

$$\mathbf{X} \sim \mathcal{N}(oldsymbol{\mu}, oldsymbol{\Sigma}) \iff \mathbf{X} \sim oldsymbol{\mu} + \mathbf{U} \mathbf{\Lambda}^{1/2} \mathcal{N}(0, \mathbf{I})$$

 $\iff \mathbf{X} \sim \boldsymbol{\mu} + \mathbf{U} \mathcal{N}(0, \boldsymbol{\Lambda}).$

May 21, 2025

Ruta Desai, Chun-Liang Li

Alternative PCA Formulation

- If x is Gaussian with covariance Σ ,
 - Principal components φ_i are the eigenvectors of Σ
 Principal lengths λ_i are the eigenvalues of Σ
- by computing the eigenvalues we know the data is
 Not flat if λ₁ ≈ λ₂
 Flat if λ₁ >> λ₂

Ruta Desai, Chun-Liang Li

Alternative PCA Algorithm (training)

▶ Given sample
$$\mathcal{D} = {\mathbf{x}_1, ..., \mathbf{x}_n}, x_i \in \mathcal{R}^d$$

- compute sample mean: $\hat{\mu} = \frac{1}{n} \sum_{i} (\mathbf{x}_i)$
- compute sample covariance: $\hat{\Sigma} = \frac{1}{n} \sum_i (\mathbf{x}_i \hat{\mu}) (\mathbf{x}_i \hat{\mu})^T$
- \bullet compute eigenvalues and eigenvectors of $\widehat{\Sigma}$

$$\hat{\Sigma} = \Phi \Lambda \Phi^T, \ \Lambda = diag(\sigma_1^2, \dots, \sigma_n^2) \ \Phi^T \Phi = I$$

• order eigenvalues
$$\sigma_1^2 > ... > \sigma_n^2$$

• if, for a certain k, $\sigma_k \ll \sigma_1$ eliminate the eigenvalues and eigenvectors above k.

Ruta Desai, Chun-Liang Li

Lecture 16 - 153

May 21, 2025

Alternative PCA Algorithm (testing)

▶ Given principal components $\phi_i, i \in 1, ..., k$ and a test sample $\mathcal{T} = \{\mathbf{t}_1, ..., \mathbf{t}_n\}, t_i \in \mathcal{R}^d$

- subtract mean to each point $\mathbf{t}'_i = \mathbf{t}_i \hat{\mu}$
- project onto eigenvector space $\mathbf{y}_i = \mathbf{A}\mathbf{t}'_i$ where

$$\mathbf{A} = \begin{bmatrix} \phi_1^T \\ \vdots \\ \phi_k^T \end{bmatrix}$$

use \$\mathcal{T}' = {y_1, ..., y_n}\$ to estimate class conditional densities and do all further processing on \$\mathcal{y}\$.

Ruta Desai, Chun-Liang Li

