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Lecture 16
Recognition, kNN and PCA
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Administrative
A4 should be out soon
- Due May 30th

Memorial day:
- No class on May 26th. 
- We will cover some dimensionality reduction today (PCA)

Recitation this week:
- Will cover LDA for dimensionality reduction

Final exam:
- June 9th, Make up on June 6th
- T/F, MCQ, Short answers
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So far: Segmentation
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cluster meaningful groups of pixels
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So far: Segmentation
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K-Means and 
Mean-shift

Segmentation 
using graph 
cuts
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● Introduction to recognition
● A object recognition pipeline
● Choosing the right features
● A training algorithm: KNN
● Testing an algorithm
● Challenges with kNN
● Dimensionality reduction: PCA

Today’s agenda
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Today’s agenda
● Introduction to recognition
● A object recognition pipeline
● Choosing the right features
● A training algorithm: KNN
● Testing an algorithm
● Challenges with kNN
● Dimensionality reduction: PCA
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What do we mean by recognition?
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Yes!

Classification:  Does this image contain a building? [yes/no]
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Classification: Is this an beach?
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Applications: Image Search & Organizing photo collections
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Detection: Does this image contain a car? [where?]

car
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Building

clock

person car

Detection: Which object does this image contain? [where?]
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clock

Detection: Accurate localization (segmentation)
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Object: Person, back;
1-2 meters away

Object: Police car, side view, 4-5 m away

Object: Building, 45º pose, 
8-10 meters away
It has bricks

Detection: Estimating object semantic & geometric attributes
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Levels of recognition: Category-level vs instance-level
Does this image contain the Chicago Macy’s building?
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We have seen a form of single instance categorization 
already: Where is the crunchy nut?

Categorization vs Single instance recognition
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Recognizing landmarks 
in mobile devices

Applications of computer vision
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Activity recognition: What are these people doing?

18



Ruta Desai, Chun-Liang Li May 21, 2025Lecture 16 -

Visual Recognition

●Design algorithms that can:
○Classify images or videos
○Detect and localize objects
○Estimate semantic and geometrical attributes
○Classify human activities and events

Why is this challenging?
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How many 
object 
categories are 
there?
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Challenges: viewpoint variation

Michelangelo 1475-1564
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Challenges: illumination

image credit: J. Koenderink
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Challenges: scale
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Challenges: deformation
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Challenges: occlusion

Magritte, 1957 
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Art Segway - Magritte
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http://www.mattesonart.com/1961-1967-later-years.aspx
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Challenges: background clutter

Kilmeny Niland. 1995 
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Challenges: intra-class variation
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Today’s agenda
● Introduction to recognition
● A object recognition pipeline
● Choosing the right features
● A training algorithm: KNN
● Testing an algorithm
● Challenges with kNN
● Dimensionality reduction: PCA
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Object recognition: 
a classification framework

• Apply a prediction function to a feature representation of the image to get 
the desired output:

f(    ) = “apple”
f(    ) = “tomato”
f(    ) = “cow”
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A simple pipeline - Training

Training 
Images

Image 
Features
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A simple pipeline - Training
Training 
LabelsTraining 

Images

Training
Image 

Features
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A simple pipeline - Training
Training 
LabelsTraining 

Images

Training
Image 

Features
Learned 
Classifier
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A simple pipeline - Training
Training 
LabelsTraining 

Images

Training
Image 

Features

Image 
Features

Test Image

Learned 
Classifier
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Prediction

A simple pipeline - Training
Training 
LabelsTraining 

Images

Training
Image 

Features

Image 
Features

Test Image

Learned 
Classifier

Learned 
Classifier
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What we will learn today?
● Introduction to recognition
● A object recognition pipeline
● Choosing the right features
● A training algorithm: KNN
● Testing an algorithm
● Challenges with kNN
● Dimensionality reduction: PCA
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Prediction

A simple pipeline - Training
Training 
LabelsTraining 

Images

Training
Image 

Features

Image 
Features

Test Image

Learned 
Classifier

Learned 
Classifier
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Choices of features

38

Invariances

Translation Scale Rotation 
(relative to 

camera plane)

Rotation 
(unconstrained)

Partial 
Occlusion

Illumination Gaussian 
Noise

RGB-histogram ?
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Choices of features

39

Invariances

Translation Scale Rotation 
(relative to 

camera plane)

Rotation 
(unconstrained)

Partial 
Occlusion

Illumination Gaussian 
Noise

RGB-histogram ✅

✓ (global color counts don’t change if the image shifts)
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Choices of features

40

Invariances

Translation Scale Rotation 
(relative to 

camera plane)

Rotation 
(unconstrained)

Partial 
Occlusion

Illumination Gaussian 
Noise

RGB-histogram ✅ ?
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Choices of features

41

Invariances

Translation Scale Rotation 
(relative to 

camera plane)

Rotation 
(unconstrained)

Partial 
Occlusion

Illumination Gaussian 
Noise

RGB-histogram ✅ ❌

✓ (if the entire image is uniformly scaled, the color distribution remains the same)
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Choices of features

42

Invariances

Translation Scale Rotation 
(relative to 

camera plane)

Rotation 
(unconstrained)

Partial 
Occlusion

Illumination Gaussian 
Noise

RGB-histogram ✅ ❌ ? ?
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✓ (rotating the entire image does not change overall color distribution)
✗ (appearance/colors can change if out-of-plane rotation reveals different surfaces)

Choices of features

43

Invariances

Translation Scale Rotation 
(relative to 

camera plane)

Rotation 
(unconstrained)

Partial 
Occlusion

Illumination Gaussian 
Noise

RGB-histogram ✅ ❌ ✅ ❌
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Choices of features

44

Invariances

Translation Scale Rotation 
(relative to 

camera plane)

Rotation 
(unconstrained)

Partial 
Occlusion

Illumination Gaussian 
Noise

RGB-histogram ✅ ❌ ✅ ❌ ?
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✗ (removing part of the image can significantly alter color histogram)

Choices of features

45

Invariances

Translation Scale Rotation 
(relative to 

camera plane)

Rotation 
(unconstrained)

Partial 
Occlusion

Illumination Gaussian 
Noise

RGB-histogram ✅ ❌ ✅ ❌ ❌
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Choices of features

46

Invariances

Translation Scale Rotation 
(relative to 

camera plane)

Rotation 
(unconstrained)

Partial 
Occlusion

Illumination Gaussian 
Noise

RGB-histogram ✅ ❌ ✅ ❌ ❌ ? ?
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Choices of features

47

Invariances

Translation Scale Rotation 
(relative to 

camera plane)

Rotation 
(unconstrained)

Partial 
Occlusion

Illumination Gaussian 
Noise

RGB-histogram ✅ ❌ ✅ ❌ ❌ ❌ ❌

✗ (shifts in illumination change color intensities/distribution)
✗ (noise directly alters pixel distribution)



Ruta Desai, Chun-Liang Li May 21, 2025Lecture 16 -

Choices of features

48

Invariances

Translation Scale Rotation 
(relative to 

camera plane)

Rotation 
(unconstrained)

Partial 
Occlusion

Illumination Gaussian 
Noise

RGB-histogram ✅ ❌ ✅ ❌ ❌ ❌ ❌
HoG ? ? ? ?
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Choices of features

49

Invariances

Translation Scale Rotation 
(relative to 

camera plane)

Rotation 
(unconstrained)

Partial 
Occlusion

Illumination Gaussian 
Noise

RGB-histogram ✅ ❌ ✅ ❌ ❌ ❌ ❌
HoG ❌ ❌ ❌ ❌

✗ (local bins move)
✗ (needs re-computation at multiple scales)
✗ (oriented gradients are tied to an image grid)
✗ (same reason as the ^)



Ruta Desai, Chun-Liang Li May 21, 2025Lecture 16 -

Choices of features

50

Invariances

Translation Scale Rotation 
(relative to 

camera plane)

Rotation 
(unconstrained)

Partial 
Occlusion

Illumination Gaussian 
Noise

RGB-histogram ✅ ❌ ✅ ❌ ❌ ❌ ❌
HoG ❌ ❌ ❌ ❌ ? ? ?
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Choices of features

51

Invariances

Translation Scale Rotation 
(relative to 

camera plane)

Rotation 
(unconstrained)

Partial 
Occlusion

Illumination Gaussian 
Noise

RGB-histogram ✅ ❌ ✅ ❌ ❌ ❌ ❌
HoG ❌ ❌ ❌ ❌ ❌ ✅ ❌

✗ (partial occlusion would result in no match)
✓ (gradients are more stable under monotonic intensity changes)
✗ (gradient orientations can be disrupted by significant noise)
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Choices of features

52

Invariances

Translation Scale Rotation 
(relative to 

camera plane)

Rotation 
(unconstrained)

Partial 
Occlusion

Illumination Gaussian 
Noise

RGB-histogram ✅ ❌ ✅ ❌ ❌ ❌ ❌
HoG ❌ ❌ ❌ ❌ ❌ ✅ ❌
SIFT ? ? ? ?
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Choices of features

53

Invariances

Translation Scale Rotation 
(relative to 

camera plane)

Rotation 
(unconstrained)

Partial 
Occlusion

Illumination Gaussian 
Noise

RGB-histogram ✅ ❌ ✅ ❌ ❌ ❌ ❌
HoG ❌ ❌ ❌ ❌ ❌ ✅ ❌
SIFT ✅ ✅ ✅ ❌

✓ (keypoint-based, unaffected by shift)
✓ (built-in scale normalization)
✓ (SIFT normalizes orientation)
✗ (local keypoints might disappear if the object rotates)
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Choices of features

54

Invariances

Translation Scale Rotation 
(relative to 

camera plane)

Rotation 
(unconstrained)

Partial 
Occlusion

Illumination Gaussian 
Noise

RGB-histogram ✅ ❌ ✅ ❌ ❌ ❌ ❌
HoG ❌ ❌ ❌ ❌ ❌ ✅ ❌
SIFT ✅ ✅ ✅ ❌ ? ? ?
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Choices of features

55

Invariances

Translation Scale Rotation 
(relative to 

camera plane)

Rotation 
(unconstrained)

Partial 
Occlusion

Illumination Gaussian 
Noise

RGB-histogram ✅ ❌ ✅ ❌ ❌ ❌ ❌
HoG ❌ ❌ ❌ ❌ ❌ ✅ ❌
SIFT ✅ ✅ ✅ ❌ ✅ ✅ ✅
Deep learning

✓ (local keypoints can still match if some are visible)
✓ (gradient-based + normalization)
✓ (SIFT is relatively robust to moderate noise)
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Choices of features

56

Invariances

Translation Scale Rotation 
(relative to 

camera plane)

Rotation 
(unconstrained)

Partial 
Occlusion

Illumination Gaussian 
Noise

RGB-histogram ✅ ❌ ✅ ❌ ❌ ❌ ❌
HoG ❌ ❌ ❌ ❌ ❌ ✅ ❌
SIFT ✅ ✅ ✅ ❌ ✅ ✅ ✅
Deep learning ? ? ? ?
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~ Deep learning features are usually invariant to translation, scale, and planar rotation 
if the training data has these translations. It is not invariant to other rotations.
Aside: ImageNet has objects centered in the middle of images. So models trained on ImageNet are not translation 
or scale invariant.

Choices of features

57

Invariances

Translation Scale Rotation 
(relative to 

camera plane)

Rotation 
(unconstrained)

Partial 
Occlusion

Illumination Gaussian 
Noise

RGB-histogram ✅ ❌ ✅ ❌ ❌ ❌ ❌
HoG ❌ ❌ ❌ ❌ ❌ ✅ ❌
SIFT ✅ ✅ ✅ ❌ ✅ ✅ ✅
Deep learning usually usually usually ❌
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Choices of features

58

Invariances

Translation Scale Rotation 
(relative to 

camera plane)

Rotation 
(unconstrained)

Partial 
Occlusion

Illumination Gaussian 
Noise

RGB-histogram ✅ ❌ ✅ ❌ ❌ ❌ ❌
HoG ❌ ❌ ❌ ❌ ❌ ✅ ❌
SIFT ✅ ✅ ✅ ❌ ✅ ✅ ✅
Deep learning usually usually usually ❌ ? ? ?
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✗ (standard CNNs are not strictly occlusion-invariant; partial robustness depends on training)
✓ (can learn robustness if trained on varied lighting)
✓ (CNNs can learn to be noise-robust with proper training)

Choices of features

59

Invariances

Translation Scale Rotation 
(relative to 

camera plane)

Rotation 
(unconstrained)

Partial 
Occlusion

Illumination Gaussian 
Noise

RGB-histogram ✅ ❌ ✅ ❌ ❌ ❌ ❌
HoG ❌ ❌ ❌ ❌ ❌ ✅ ❌
SIFT ✅ ✅ ✅ ❌ ✅ ✅ ✅
Deep learning usually usually usually ❌ ❌ ✅ ✅
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So, which features should we choose?

60

Invariances

Translation Scale Rotation 
(relative to 

camera plane)

Rotation 
(unconstrained)

Partial 
Occlusion

Illumination Gaussian 
Noise

RGB-histogram ✅ ❌ ✅ ❌ ❌ ❌ ❌
HoG ❌ ❌ ❌ ❌ ❌ ✅ ❌
SIFT ✅ ✅ ✅ ❌ ✅ ✅ ✅
Deep learning usually usually usually ❌ ❌ ✅ ✅
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● Introduction to recognition
● A simple Object Recognition pipeline
● Choosing the right features
● A training algorithm: KNN
● Testing an algorithm
● Challenges with kNN
● Dimensionality reduction: PCA

What we will learn today?

61
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Learning a classifier to map inputs to outputs

y = f(x)

● Training: given a training set of labeled examples {(x1,y1), 
…, (xN,yN)}, estimate the prediction function f by minimizing 
the prediction error on the training set

● Testing: apply f to a never before seen test example x and 
output the predicted value y = f(x)

output prediction 
function

Image 
feature

Slide credit: L. Lazebnik62
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Prediction

A simple pipeline - Training
Training 
LabelsTraining 

Images

Training
Image 

Features

Image 
Features

Test Image

Learned 
Classifier

Learned 
Classifier
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● K-nearest neighbor

● SVM

● Neural networks

● Naïve Bayes

● Bayesian network

● Logistic regression

● Randomized Forests

● Boosted Decision Trees

● RBMs

● Etc.

Many classifiers to choose from

Which is the best one?
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An example training dataset

For kNN classifier, 
training simply 
means to store all 
training data.

65

Training set (labels known)

Apples

Pear

Tomatos

Cow

Dog

Horse
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A stored training set

Training 
examples 

from class 1

Training 
examples 

from class 2

Slide credit: L. Lazebnik
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During testing, we assign the label of the 
nearest neighbot in feature space

Test 
example

Training 
examples 

from class 1

Training 
examples 

from class 2

Slide credit: L. Lazebnik
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● Introduction to recognition
● A simple Object Recognition pipeline
● Choosing the right features
● A training algorithm: kNN
● Testing an algorithm
● Challenges with kNN
● Dimensionality reduction

What we will learn today?

68



Ruta Desai, Chun-Liang Li May 21, 2025Lecture 16 -

Prediction

A simple pipeline - Training
Training 
LabelsTraining 

Images

Training
Image 

Features

Image 
Features

Test Image

Learned 
Classifier

Learned 
Classifier
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Generalization

● How well does a learned model generalize from the data it 
was trained on to a new test set?

Training set (labels known) Test set (labels unknown)

Slide credit: L. Lazebnik70
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Given a training dataset, simply store each image’s features 
and their corresponding label.

Intuition for Nearest Neighbor Classifier

Source: N. Goyal

Training 
images

71
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Given a training dataset, simply store each image’s features 
and their corresponding label.

Intuition for Nearest Neighbor Classifier

Source: N. Goyal

Training 
images

Test 
image

Compute 
Distance

Choose k=1 
“nearest” neighbor
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● Assign label of majority of K=3 nearest neighbors

Nearest Neighbor Classifier

Source: N. Goyal

Training 
images

Test 
image

Compute 
Distance

Choose k=3 “nearest” 
neighbors

73



Ruta Desai, Chun-Liang Li May 21, 2025Lecture 16 -

Classification
● Assign input vector to one of many classes (categories)
● Geometric interpretation of classifiers: A classifier divides input 

space into decision regions separated by decision boundaries

Slide credit: L. Lazebnik74
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Nearest Neighbor Classifier

● Assign label of nearest training data point to each test data point 

Partitioning of feature space 
for two-category 2D and 3D data

from Duda et al.

Source: D. Lowe75
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How do we find the nearest neighbors in feature space?

x x

x x

x

x
x

x
o

o
o

o

o

o
o

x2

x1

+

Where Xn and Xm are the n-th 
and m-th data points

Distance measure (same as the ones 
from segmentation)

Euclidean:
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1-nearest neighbor

x x

x x

x

x
x

x
o

o
o

o

o

o
o

x2

x1

+

Where Xn and Xm are the n-th 
and m-th data points

Distance measure (same as the ones 
from segmentation)

Euclidean:
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3-nearest neighbor

x x

x x

x

x
x

x
o

o
o

o

o

o
o

x2

x1

+

Where Xn and Xm are the n-th 
and m-th data points

Distance measure (same as the ones 
from segmentation)

Euclidean:
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5-nearest neighbor

x x

x x

x

x
x

x
o

o
o

o

o

o
o

x2

x1

+

Where Xn and Xm are the n-th 
and m-th data points

Distance measure (same as the ones 
from segmentation)

Euclidean:
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Choosing the right features is 
important but dataset-dependent

Dataset: ETH-80, by B. Leibe, 2003
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Results

Dataset: ETH-80, by B. Leibe, 2003
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K-NN: a very useful algorithm

● Simple, a good one to try first

● Very flexible decision boundaries
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What we will learn today?
● Introduction to recognition
● A simple Object Recognition pipeline
● Choosing the right features
● A training algorithm: kNN
● Testing an algorithm
● Challenges with kNN
● Dimensionality reduction
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K-NN: issues to keep in mind

● Choosing the value of k:
○ If too small, sensitive to noise points

○ If too large, neighborhood may include points from other 
classes

84



Ruta Desai, Chun-Liang Li May 21, 2025Lecture 16 -

K-NN: issues to keep in mind

● Choosing the value of k:
○ If too small, sensitive to noise points

○ If too large, neighborhood may include points from other 
classes

K=1 K=15
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K-NN: issues to keep in mind

● Choosing the value of k:
○ If too small, sensitive to noise points

○ If too large, neighborhood may include points from other 
classes

○ Solution: Cross validate

86
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Cross validation
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Cross validation
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Cross validation
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Cross validation
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K-NN: issues to keep in mind

● Choosing the value of k:
○ If too small, sensitive to noise points

○ If too large, neighborhood may include points from other classes

○ Solution: cross validate!

● Curse of Dimensionality
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● As the dimensionality increases, the number of data points required for 
good performance increases exponentially. 

● Let’s say that for a model to perform well, we need at least 10 data points 
for each combination of feature values.

Curse of dimensionality
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K-NN: issues to keep in mind

● Choosing the value of k:
○ If too small, sensitive to noise points

○ If too large, neighborhood may include points from other 
classes

○ Solution: cross validate!

● Curse of Dimensionality
○ Solution: dimensionality reduction
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What we will learn today
● Introduction to recognition
● A simple Object Recognition pipeline
● Choosing the right features
● A training algorithm: kNN
● Testing an algorithm
● Challenges with kNN
● Dimensionality reduction
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Singular Value Decomposition (SVD)

UΣVT = A
● Where U and V are rotation matrices, and Σ is a scaling matrix. For 

example:
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Singular Value Decomposition (SVD)
● Beyond 2x2 matrices:

○ In general, if A is m x n, then U will be m x m, Σ will be m x n, and 
VT will be n x n. 

○ (Note the dimensions work out to produce m x n after 
multiplication)
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Singular Value Decomposition (SVD)

● U and V are always rotation matrices. 
○ Geometric rotation may not be an applicable concept, depending 

on the matrix. So we call them “unitary” matrices – each column 
is a unit vector. 

● Σ is a diagonal matrix
○ The number of nonzero entries = rank of A
○ The algorithm always sorts the entries high to low
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SVD Applications

● We’ve discussed SVD in terms of geometric transformation 
matrices

● But SVD of an image matrix can also be very useful
● To understand this, we’ll look at a less geometric interpretation of 

what SVD is doing
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● Look at how the multiplication works out, left to right:
● Column 1 of U gets scaled by the first value from Σ.

What is SVD actually doing for images?
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● Look at how the multiplication works out, left to right:
● Column 1 of U gets scaled by the first value from Σ.

What is SVD actually doing for images?
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What is SVD actually doing for images?

● Look at how the multiplication works out, left to right:
● Column 1 of U gets scaled by the first value from Σ.

● The resulting vector gets scaled by row 1 of VT to produce a contribution 
to the columns of A
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SVD is a type dimensionality reduction

● Each product of (column i of U)∙(value i from Σ)∙(row i of 
VT) produces a component of the final A.

+

=
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SVD is a type dimensionality reduction

● We’re building A as a linear combination of the columns of U
● Using all columns of U, we’ll rebuild the original matrix perfectly
● But, in real-world data, often we can just use the first few columns 

of U and we’ll get something close (e.g. the first Apartial, above)
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SVD is a type dimensionality reduction

● We can call those first few columns of U the Principal 
Components of the data

● They show the major patterns that can be added to produce the 
columns of the original matrix

● The rows of VT show how the principal components are mixed 
to produce the columns of the matrix

104



Ruta Desai, Chun-Liang Li May 21, 2025Lecture 16 -

SVD is a type dimensionality reduction

We can look at 
Σ to see that 
the first column 
has a large 
effect

while the second 
column has a 
much smaller 
effect in this 
example
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Image compression
● For this image, using only the first 16 of 300 principal 

components produces a recognizable reconstruction
● Using the first 64 almost perfectly reconstructs the 

image
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Intuition behind PCA: high dimensional data usually lives 
in some lower dimensional space

Covariance between the two 
dimensions of features is high. 
Can we reduce the number of 
dimensions to just 1?
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Geometric interpretation of PCA
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Geometric interpretation of PCA
● Let’s say we have a set of 2D data points x. But we 

see that all the points lie on a line in 2D. 
● So, 2 dimensions are redundant to express the data. 

We can express all the points with just one 
dimension.

1D subspace in 2D
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PCA: Principal Component Analysis
● Given a dataset of images, can we compressed them like we can 

compress a single image? 
○ Yes, the trick is to look into the correlation between the dimensions of the 

image 
○ The tool for doing this is called PCA

PCA can be used to compress image RGB pixel values or also be used to 
compress their features!
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Toy example to explain covariance
● What is covariance between dimensions? 
● Let’s say we have a dataset of students

○ each student is represented with 3 dimensions
○ x: number of hours studied for a class 
○ y: grades obtained in that class
○ z: number of lectures attended

● covariance value between x and y is say: 104.53 
○ what does this value mean?
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Covariance interpretation

112

○ x: number of hours studied for a subject 
○ y: marks obtained in that subject 

● covariance value between x and y is say: 104.53 
○ what does this value mean?
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● We can represent these covariance correlation numbers in a matrix
● e.g. for 3 dimensions:

● Diagonal is the variances of x, y and z 
● cov(x,y) = cov(y,x) hence C is symmetrical about the diagonal 
● N-dimensional data will result in NxN covariance matrix

Visualizing this covariance matrix
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Covariance interpretation
● Exact value is not as important as it’s sign. 
● A positive value of covariance indicates both dimensions increase or 

decrease together e.g. as the number of hours studied increases, the 
marks in that subject increase. 

● A negative value indicates while one increases the other decreases, or 
vice-versa e.g. active social life at PSU vs performance in CS dept. 

● If covariance is zero: the two dimensions are independent of each other 
e.g. heights of students vs the marks obtained in a subject
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PCA by SVD
● To relate this to PCA, we consider the image (or feature) matrix

● The sample mean of this dataset (or in plain english, the average image) 
is:
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PCA by SVD
● Center the data by subtracting the mean to each column of X
● The centered dataset matrix is
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PCA by SVD
● The sample covariance matrix is

where xi
c is the ith column of Xc

● This can be written as
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PCA by SVD
● The matrix

is real (n x d). Assuming n>d it has SVD decomposition

and

118118



Ruta Desai, Chun-Liang Li May 21, 2025Lecture 16 -

Calculating covariance matrix
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PCA by SVD

● Note that U is (d x d) and orthonormal, and Σ2 is diagonal. 
This is just the eigenvalue decomposition of C

● This means that we can calculate the eigenvectors of C 
using the eigenvectors of Xc

● It follows that
○ The eigenvectors of C are the columns of U
○ The eigenvalues of C are the diagonal entries of Σ2: 𝝀i

2
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PCA by SVD
● In summary, computation of PCA by SVD
● Given X with one image (or feature) per column

○ Create the centered data matrix

○ Compute its SVD

○ Principal components of the covariance matrix C are columns of U
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To compress an image dataset, pick the largest eigenvalues 
and their corresponding eigenvectors

● Pick the eigenvectors that explain p% of the image data variability
○ Can be done by plotting the ratio rk as a function of k

○ E.g. we need k=3 eigenvectors to cover 70% of the variability of this 
dataset
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What exactly is the covariance
● Variance and Covariance are a measure of the “spread” of a set of points 

around their center of mass (mean) 
● Variance – measure of the deviation from the mean for points in one 

dimension e.g. heights 
● Covariance as a measure of how much each of the dimensions vary from 

the mean with respect to each other. 
● Covariance is measured between 2 dimensions to see if there is a 

relationship between the 2 dimensions e.g. number of hours studied & 
marks obtained. 

● The covariance between one dimension and itself is the variance
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Prediction

What happens with PCA during training?
Training 
LabelsTraining 

Images

Training
Image 

Features

Image 
Features

Test Image

Learned 
Classifier

Learned 
Classifier

124124



Ruta Desai, Chun-Liang Li May 21, 2025Lecture 16 -

Prediction

What happens with PCA during training?
Training 
LabelsTraining 

Images

Training
Image 

Features

Image 
Features

Test Image

Learned 
Classifier

Learned 
Classifier

PCA
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PCA during training
Let’s say that we choose k top eigenvalues and their corresponding 
eigenvectors: [u1, …, uk]

Replace all image features x with:
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Prediction

What happens with PCA during testing?
Training 
LabelsTraining 

Images

Training
Image 

Features

Image 
Features

Test Image

Learned 
Classifier

Learned 
Classifier

PCA

127127



Ruta Desai, Chun-Liang Li May 21, 2025Lecture 16 -

Prediction

What happens with PCA during testing?
Training 
LabelsTraining 

Images

Training
Image 

Features

Image 
Features

Test Image

Learned 
Classifier

Learned 
Classifier

PCA

PCA
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How PCA was originally 
used in vision: 
To identify celebrities 
using their faces

● An image is a point in a high 
dimensional space
○ In grayscale, an N x M 

image is a point in RNM

○ E.g. 100x100 images lives in 
a 10,000-dimensional space
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SVD for symmetric matrices
● If A is a symmetric matrix, it can be decomposed as the following:

● Compared to a traditional SVD decomposition, U = VT and is an orthogonal 
matrix.
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What we have learned today?
● Introduction to recognition
● A simple Object Recognition pipeline
● Choosing the right features
● A training algorithm: kNN
● Testing an algorithm
● Challenges with kNN
● Dimensionality reduction: PCA

131



Ruta Desai, Chun-Liang Li May 21, 2025Lecture 16 -

Next lecture

132

Object detection
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Extra slides (out of scope)
for those of you curious about how SVD is calculated
and what PCA is usually used for outside of computer vision
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Principal Component Analysis

● Remember, columns of U are the Principal Components of the data: 
the major patterns that can be added to produce the columns of the 
original matrix

● One use of this is to construct a matrix where each column is a 
separate data sample

● Run SVD on that matrix, and look at the first few columns of U to see 
patterns that are common among the columns

● This is called Principal Component Analysis (or PCA) of the data 
samples
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Principal Component Analysis

● Often, raw data samples have a lot of redundancy and patterns
● PCA can allow you to represent data samples as weights on the principal 

components, rather than using the original raw form of the data
● By representing each sample as just those weights, you can represent just 

the “meat” of what’s different between samples.
● This minimal representation makes machine learning and other algorithms 

much more efficient
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How is SVD computed?
● For this class: tell PYTHON to do it. Use the result.
● But, if you’re interested, one computer algorithm to do it makes use of 

Eigenvectors!
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Eigenvector definition
● Suppose we have a square matrix A. We can solve for vector x and scalar 

λ such that Ax= λx
● In other words, find vectors where, if we transform them with A, the only 

effect is to scale them with no change in direction.
● These vectors are called eigenvectors (German for “self vector” of the 

matrix), and the scaling factors λ are called eigenvalues
● An m x m matrix will have ≤ m eigenvectors where λ is nonzero
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Finding eigenvectors
● Computers can find an x such that Ax= λx using this iterative algorithm:

○ X = random unit vector
○ while(x hasn’t converged)

■ X = Ax
■ normalize x 

● x will quickly converge to an eigenvector
● Some simple modifications will let this algorithm find all eigenvectors
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Finding SVD

● Eigenvectors are for square matrices, but SVD is for all matrices
● To do svd(A), computers can do this:

○ Take eigenvectors of AAT (matrix is always square). 
■ These eigenvectors are the columns of U. 
■ Square root of eigenvalues are the singular values (the 

entries of Σ).
○ Take eigenvectors of ATA (matrix is always square). 

■ These eigenvectors are columns of V (or rows of VT)
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Finding SVD

● Moral of the story: SVD is fast, even for large matrices
● It’s useful for a lot of stuff
● There are also other algorithms to compute SVD or part of the 

SVD
○ Python’s np.linalg.svd() command has options to efficiently 

compute only what you need, if performance becomes an 
issue

A detailed geometric explanation of SVD is here:
http://www.ams.org/samplings/feature-column/fcarc-svd
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Bias-Variance Trade-off

● Models with too few parameters 
are inaccurate because of a 
large bias (not enough 
flexibility).

● Models with too many 
parameters are inaccurate 
because of a large variance 
(too much sensitivity to the 
sample).

Slide credit: D. Hoiem
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Bias versus variance
● Components of generalization error 

○ Bias: how much the average model over all training sets differ from the true 
model?
■ Error due to inaccurate assumptions/simplifications made by the model

○ Variance: how much models estimated from different training sets differ from each 
other

● Underfitting: model is too “simple” to represent all the relevant class 
characteristics
○ High bias and low variance
○ High training error and high test error

● Overfitting: model is too “complex” and fits irrelevant characteristics 
(noise) in the data
○ Low bias and high variance
○ Low training error and high test error

Slide credit: L. Lazebnik142
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Bias versus variance trade off
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No Free Lunch Theorem

Slide credit: D. Hoiem

In a supervised learning setting, we can’t tell 
which classifier will have best generalization
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Remember…
● No classifier is inherently better than 

any other: you need to make 
assumptions to generalize

● Three kinds of error
○ Inherent: unavoidable
○ Bias: due to over-simplifications
○ Variance: due to inability to perfectly 

estimate parameters from limited 
data

Slide credit: D. Hoiem145
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How to reduce variance?

● Choose a simpler classifier

● Regularize the parameters

● Get more training data

How do you reduce bias?

Slide credit: D. Hoiem
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Last remarks about applying machine learning 
methods to object recognition
● There are machine learning algorithms to choose from
● Know your data:

○ How much supervision do you have?
○ How many training examples can you afford?
○ How noisy?

● Know your goal (i.e. task):
○ Affects your choices of representation
○ Affects your choices of learning algorithms
○ Affects your choices of evaluation metrics

● Understand the math behind each machine learning algorithm under 
consideration!
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PCA by SVD
● An alternative manner to compute the principal 

components, based on singular value decomposition
● Quick reminder: SVD

○ Any real n x m matrix (n>m) can be decomposed as

○ Where M is an (n x m) column orthonormal matrix of left singular 
vectors (columns of M)

○ Π is an (m x m) diagonal matrix of singular values
○ NT is an (m x m) row orthonormal matrix of right singular vectors 

(columns of N)

Slide inspired by N. Vasconcelos

148



Ruta Desai, Chun-Liang Li May 21, 2025Lecture 16 -

PCA Formulation
● Basic idea:

○ If the images (or their features) live in a subspace, it is going to 
look very flat when viewed from the full feature space, e.g.

Slide inspired by N. Vasconcelos

1D subspace in 2D 2D subspace in 3D
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Alternative PCA Formulation
● Assume images x is Gaussian with 

covariance Σ.

● Recall that a gaussian is defined with it’s 
mean and variance:

● Recall that μ and Σ of a gaussian are 
defined as:

x
1

x
2

λ
1λ

2

φ
1

φ
2
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Alternative PCA formulation
● Since gaussians are symmetric, it’s covariance matrix is also a symmetric 

matrix. So we can express it as: 
○ Σ = UΛUT = UΛ1/2(UΛ1/2)T
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Alternative PCA Formulation
● If x is Gaussian with covariance Σ, 

○ Principal components φi are the 
eigenvectors of Σ

○ Principal lengths λi are the 
eigenvalues of Σ

● by computing the eigenvalues we know the data is
○ Not flat if λ1 ≈ λ2  
○ Flat if λ1 >> λ2  
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Alternative PCA Algorithm (training)
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Alternative PCA Algorithm (testing)

154


