Lecture 14

Segmentation and clustering

Ruta Desai, Chun-Liang Li

Administrative

A2 grades are out

A3 is out

- Due May 19

Ruta Desai, Chun-Liang Li

Lecture 14 - 2

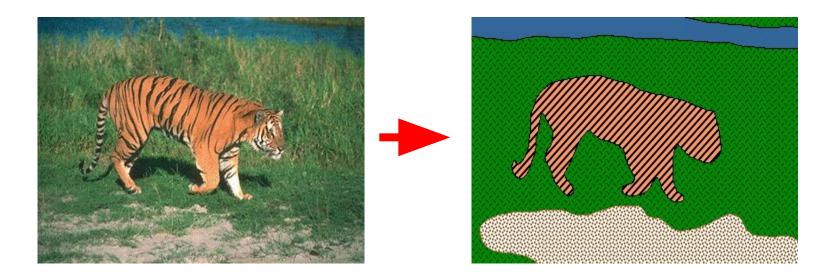
CS455 Roadmap

Pixels	Video	Camera	Segment	ML
Convolutions Edges Descriptors	Motion Tracking	Camera 3D Geometry	Segmentation Clustering Detection	Linear Models (Conv) Neural networks

Ruta Desai, Chun-Liang Li

What is image segmentation?

• Identify groups of pixels that go together and are meaningful in some sense.

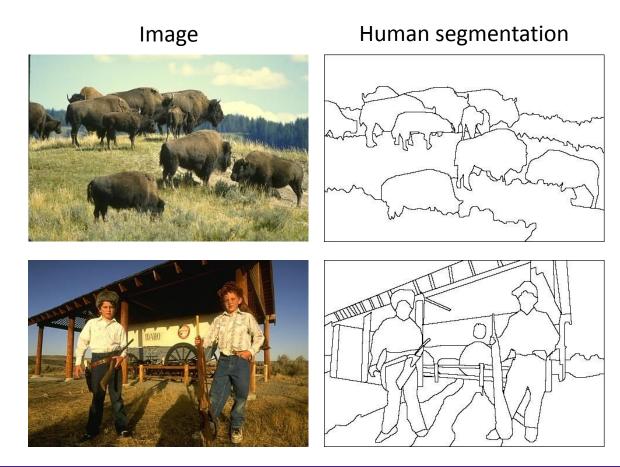


Ruta Desai, Chun-Liang Li

Lecture 14 - 4 Slide credit: Steve Seitz May 14, 2025

Why do we segment?

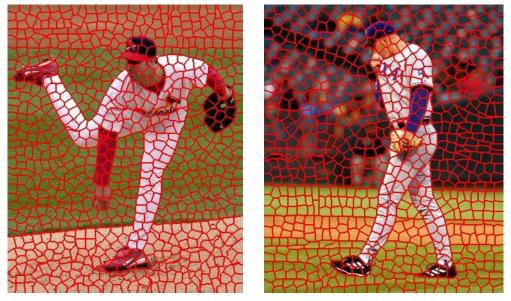
• Separate image into coherent "objects"



Ruta Desai, Chun-Liang Li

Why do we segment?

- Separate image into coherent "objects"
- Group together similar-looking pixels for efficiency of further processing



"superpixels"

X. Ren and J. Malik. Learning a classification model for segmentation. ICCV 2003.

Ruta Desai, Chun-Liang Li

Lecture 14 - 6

Why do we segment?

• Summarizing data

- Look at large amounts of data
 - Find group of pixels
 - Represent each group of pixels with feature vectors e.g., HoG

• Counting

 \circ Histograms of texture, color, SIFT vectors

• Foreground-background separation

 \circ Separate the image into different regions

• Prediction

 \circ Images in the same group may have the same labels

Ruta Desai, Chun-Liang Li

Segmentation is used in Adobe photoshop to remove background

Rother et al. 2004

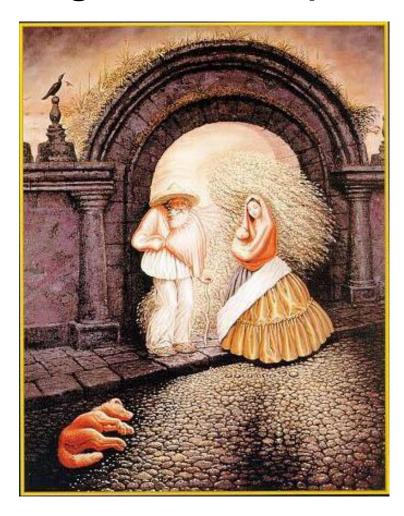
Ruta Desai, Chun-Liang Li

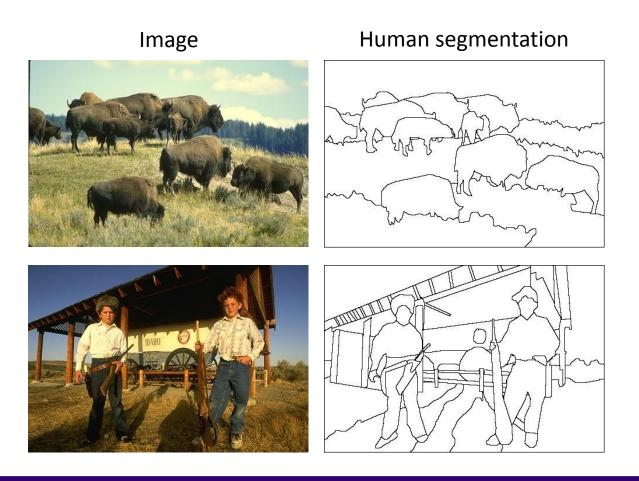
Segment Anything [2023]

Ruta Desai, Chun-Liang Li

Lecture 14 - 9

Segmentation is ill-defined problem, "correct" segments depends on the context

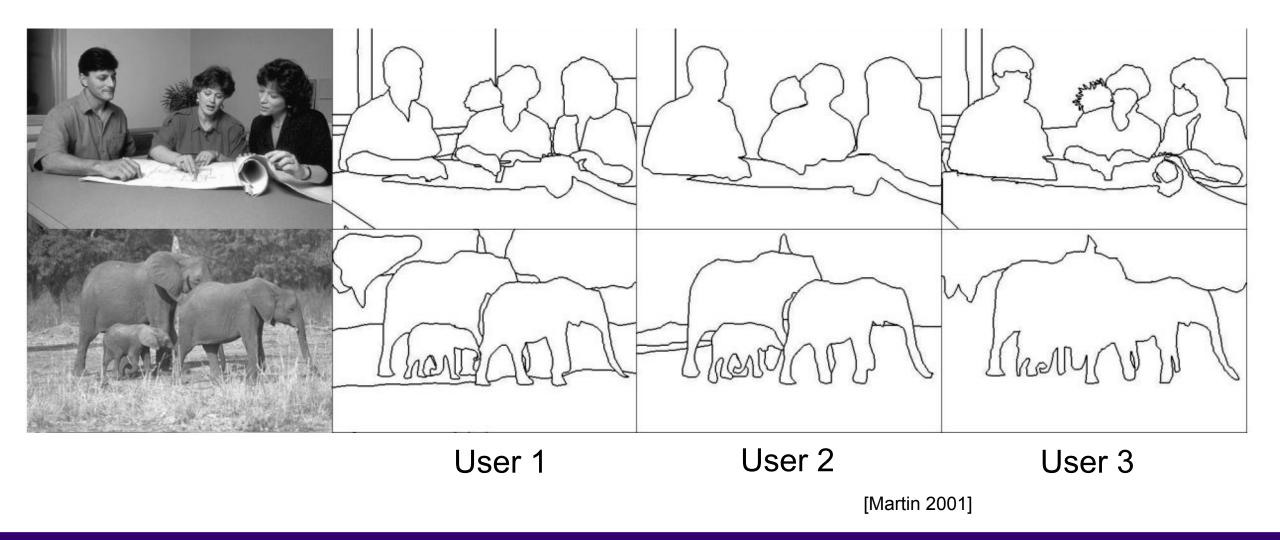




Ruta Desai, Chun-Liang Li

Lecture 14 - 10

Segmentation in humans: subjective, intuitive



Ruta Desai, Chun-Liang Li

Lecture 14 - 11

Today's agenda

- Gestalt theory for perceptual grouping
- Segmentation as clustering
- Agglomerative clustering

Reading: Szeliski, 2nd edition, Chapter 7.5

Ruta Desai, Chun-Liang Li

Today's agenda

- Gestalt theory for perceptual grouping
- Segmentation as clustering
- Agglomerative clustering

Reading: Szeliski, 2nd edition, Chapter 7.5

Ruta Desai, Chun-Liang Li

Similarity



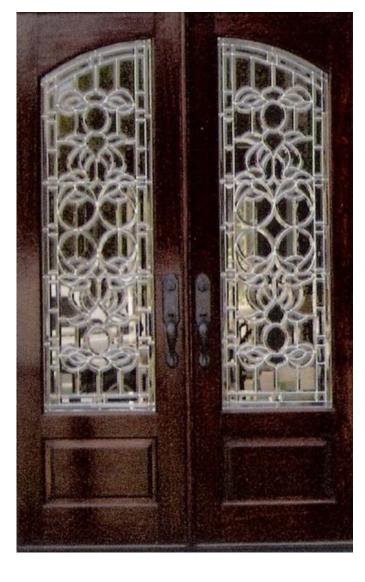
What things should be grouped?

What cues indicate groups?

May 14, 2025

Ruta Desai, Chun-Liang Li

Symmetry



Ruta Desai, Chun-Liang Li

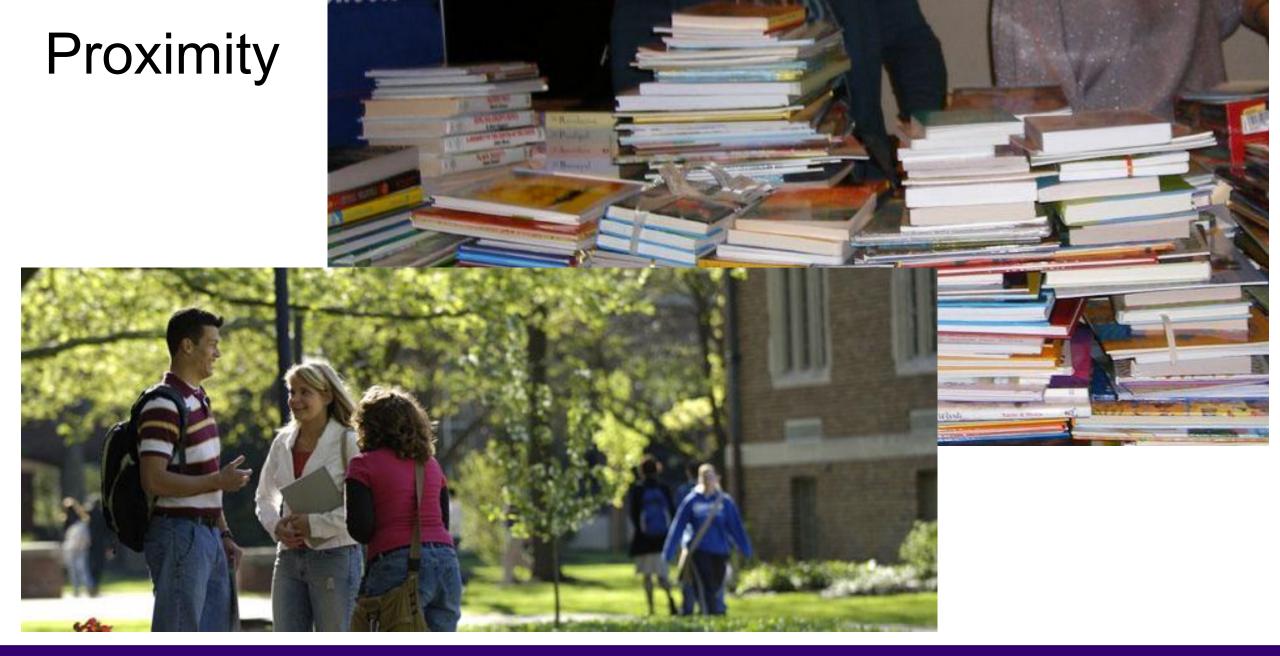
Lecture 14 - 15

Common Fate

May 14, 2025

Lecture 14 - 16

Ruta Desai, Chun-Liang Li



Ruta Desai, Chun-Liang Li

Lecture 14 - 17

Gestalt Theory

Ruta Desai, Chun-Liang Li

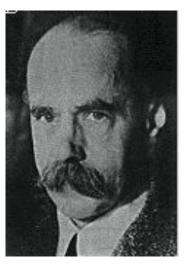
Lecture 14 - 18

Gestalt Theory

- Gestalt: whole or group
 - $\circ\,$ Whole is greater than sum of its parts
 - Relationships among parts can yield new properties/features
- Psychologists identified series of factors that predispose set of elements to be grouped (by human visual system)

"I stand at the window and see a house, trees, sky. Theoretically I might say there were 327 brightnesses and nuances of colour. Do I have "327"? No. I have sky, house, and trees."

> Max Wertheimer (1880-1943)



Untersuchungen zur Lehre von der Gestalt, *Psychologische Forschung*, Vol. 4, pp. 301-350, 1923 <u>http://psy.ed.asu.edu/~classics/Wertheimer/Forms/forms.htm</u>

Ruta Desai, Chun-Liang Li

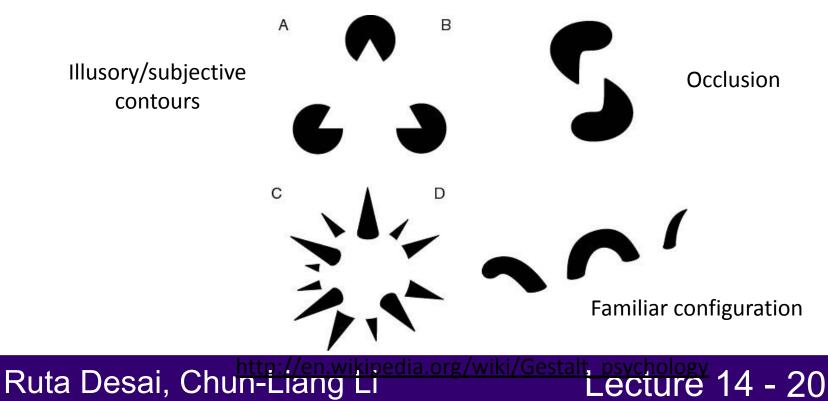
Lecture 14 - 19

Gestalt Theory

- Grouping is key to visual perception
- Elements in a collection can have properties that result from different relationships (space, affordance, etc.)

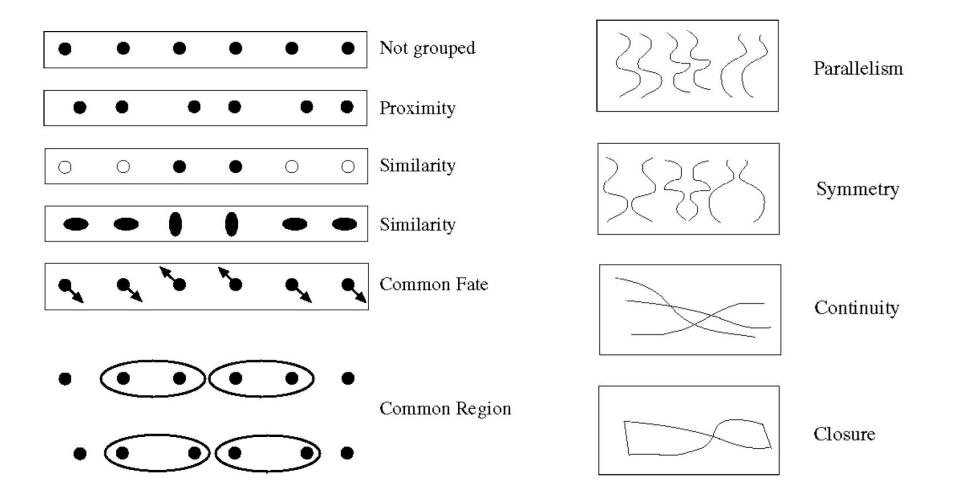
May 14, 2025

 \circ "The whole is greater than the sum of its parts"



These factors make intuitive sense, but are very difficult to translate into algorithms.

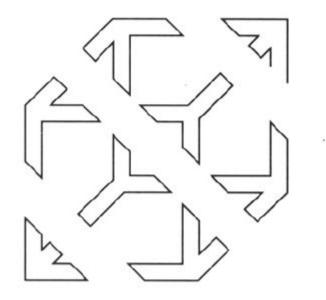
Gestalt Factors



Ruta Desai, Chun-Liang Li

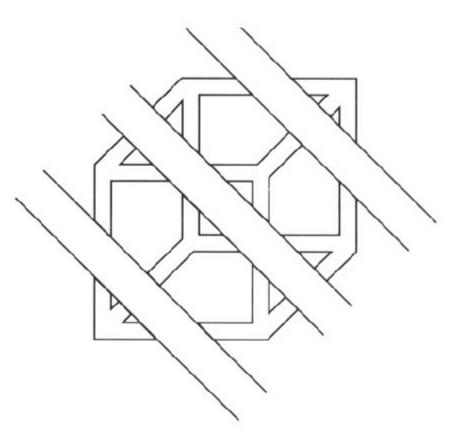
Lecture 14 - 21

Continuity through Occlusion Cues



Ruta Desai, Chun-Liang Li

Continuity through Occlusion Cues



Continuity, explanation by occlusion

Ruta Desai, Chun-Liang Li

Today's agenda

- Gestalt theory for perceptual grouping
- Segmentation as clustering
- Agglomerative clustering

Ruta Desai, Chun-Liang Li

Lecture 14 - 24

Segmentation strategies

• Top down clustering

 pixels belong together because they lie on the same visual entity (object, scene...)

Bottom up clustering

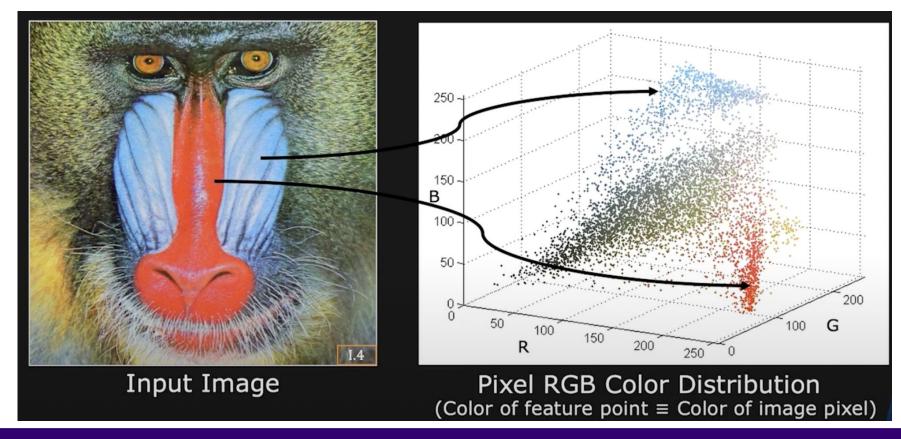
pixels belong together because they look similar

These two are not mutually exclusive!

Ruta Desai, Chun-Liang Li

Segmentation as clustering

Clustering: group together similar data points, usually in feature space

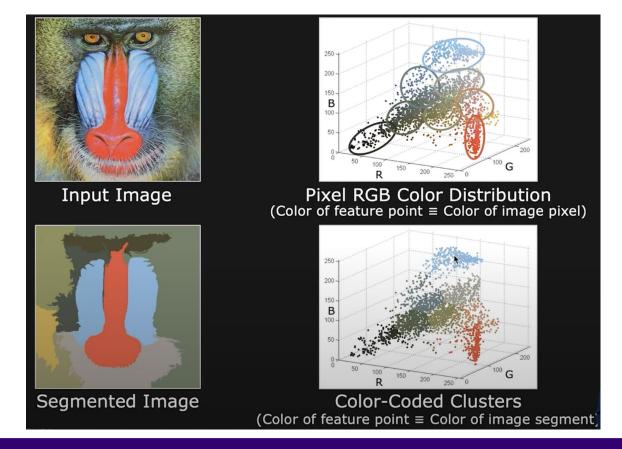


Ruta Desai, Chun-Liang Li

Lecture 14 - 26

Segmentation as clustering

Clustering: group together similar data points, usually in feature space



Ruta Desai, Chun-Liang Li

Lecture 14 - 27

What are good pixel features?

- Use RGB values?
 - \circ v = [r, g, b]
 - It is 3-dimensional
- Use location?
 - v = [x, y]
 - \circ 2-dim
- Use RGB + location?
 - \circ v = [x, y, r, g, b]
 - **5-dim**
- Use gradient magnitude?
 - \circ v = [df/dx, df/dy]
 - **2-d**

Ruta Desai, Chun-Liang Li

Segmentation as clustering

Clustering: group together similar data points, usually in feature space

Key Challenges:

- What makes two points/images/patches similar?
 - Distance measures
- How do we compute an overall grouping from pairwise similarities?

Ruta Desai, Chun-Liang Li

Over-segmenting images

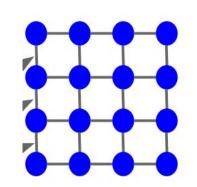
- Graph-based clustering for Image Segmentation
 - Introduced by Felzenszwalb and Huttenlocher in the paper titled Efficient Graph-Based Image Segmentation.

Ruta Desai, Chun-Liang Li

Lecture 14 - 30

Image as a Graph - Features and weights

- Every pixel is connected to its 8 neighboring pixels
- The edges between neighbors have weights that are determined by the distance between them.
- Edge weights between pixels are determined using dist(x, x') distance in feature space.
 - $\circ~$ where x and x' are two neighboring pixels
- Q. What is a good feature space?

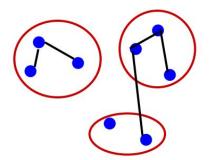


Ruta Desai, Chun-Liang Li

Problem Formulation

- Graph G = (V, E)
- V is set of nodes (i.e. pixels)
- E is a set of undirected edges between pairs of pix
- dist(v_i , v_i) is the weight/distance of the edge between nodes v_i and v_i .

- S is a segmentation of a graph G such that G' = (V, E') where E' ⊂ E.
 That is, we keep all vertices, but select a subset E' from all initial edges E.
- S divides G into G' such that it contains distinct clusters C.



Ruta Desai, Chun-Liang Li

Distance Measures

Clustering is an unsupervised learning method. Given items $v_1, v_2, \ldots, v_n \in \mathbb{R}^D$, the goal is to group them into clusters.

We need a pairwise distance/similarity function between items, and sometimes the desired number of clusters.

When data (e.g. images, objects, documents) are represented by feature vectors, commonly used measures are:

- Euclidean distance.
- Cosine similarity.

Ruta Desai, Chun-Liang Li

Distance Measures

Let x and x' be two objects from the universe of possible objects. The distance (or similarity) between x and x' is a real number:

• The Euclidean distance is defined as di

$$dist(v_1, v_2) = \sqrt{\sum_i (v_{1i} - v_{2i})^2}$$

<u>May 14, 2025</u>

• In contrast, the cosine similarity measure would be

$$dist(v_1, v_2) = 1 - cos(v_1, v_2)$$

 $= 1 - rac{v_1^T v_2}{||v_1|| \cdot ||v_2||}$

Ruta Desai, Chun-Liang Li

How do we cluster?

• Agglomerative clustering

 Start with each point as its own cluster and iteratively merge the closest clusters

• K-means

Iteratively re-assign points to the nearest cluster center

• Mean-shift clustering

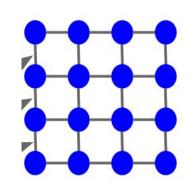
 \circ Estimate modes of pdf

Ruta Desai, Chun-Liang Li

Image as a Graph - Features and weights

- Every pixel is connected to its 8 neighboring pixels
- The edges between neighbors have weights that are determined by the distance between them.
- Edge weights between pixels are determined using dist(x, x') distance in feature space.
 - $\circ~$ where x and x' are two neighboring pixels

Ruta Desai, Chun-Liang Li



Segmentation using graph-cut

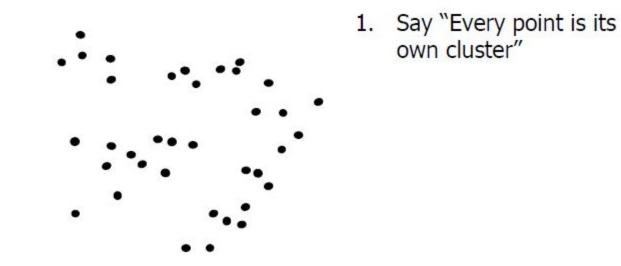
- Graph G = (V, E)
- V is set of nodes (i.e. pixels)
- E is a set of undirected edges between pairs of pix
- dist(v_i , v_i) is the weight/distance of the edge between nodes v_i and v_i .

- S is a segmentation of a graph G such that G' = (V, E') where E' ⊂ E.
 That is, we keep all vertices, but select a subset E' from all initial edges E.
- S divides G into G' such that it contains distinct clusters C.

Today's agenda

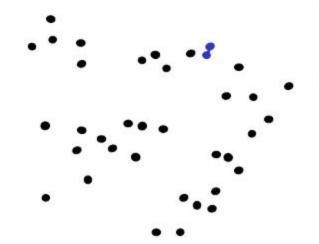
- Gestalt theory for perceptual grouping
- Segmentation as clustering
- Agglomerative clustering

Ruta Desai, Chun-Liang Li



Slide credit: Andrew Moore

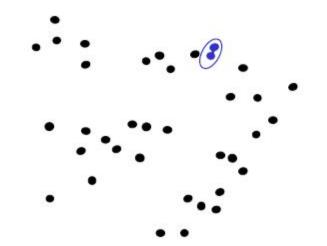
Ruta Desai, Chun-Liang Li



- 1. Say "Every point is its own cluster"
- 2. Find "most similar" pair of clusters

Slide credit: Andrew Moore

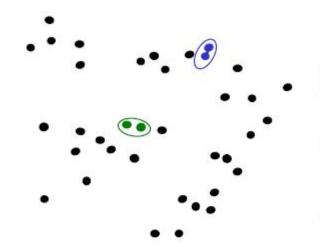
Ruta Desai, Chun-Liang Li



- 1. Say "Every point is its own cluster"
- Find "most similar" pair of clusters
- 3. Merge it into a parent cluster

Slide credit: Andrew Moore

Ruta Desai, Chun-Liang Li

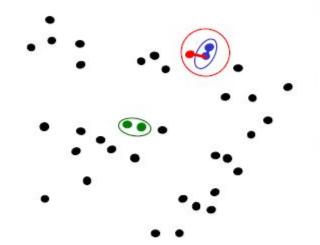


- 1. Say "Every point is its own cluster"
- Find "most similar" pair of clusters
- 3. Merge it into a parent cluster
- 4. Repeat

RR

Slide credit: Andrew Moore

Ruta Desai, Chun-Liang Li



- 1. Say "Every point is its own cluster"
- Find "most similar" pair of clusters
- 3. Merge it into a parent cluster
- 4. Repeat

Slide credit: Andrew Moore

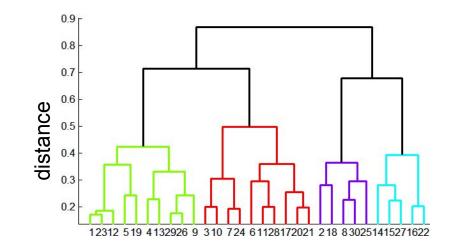
Ruta Desai, Chun-Liang Li

How to define cluster similarity?

- Average distance between all pixels between the two cluster?
- Maximum distance?
- Minimum distance?
- Distance between means?

How many clusters?

- Clustering creates a dendrogram (a tree)
- Threshold based on max number of clusters or based on distance between merges



Ruta Desai, Chun-Liang Li

Agglomerative Hierarchical Clustering - Algorithm

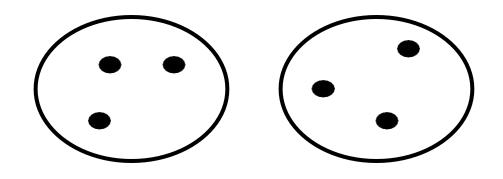
Inputs:

- An input image
- Feature representation for each pixel
- Distance metric dist(-,-)
- > Initially, each pixel $v_1, ..., v_n$ is its own cluster $C_1, ..., C_n$
- While True:
 - Find two nearest clusters according to dist(C_i, C_i)
 - Merge C = (C_i, C_j)
 - If only 1 cluster is left:
 - break

Ruta Desai, Chun-Liang Li

Lecture 14 - 45

How should we define "closest" for clusters with multiple pixels already in it?



Ruta Desai, Chun-Liang Li

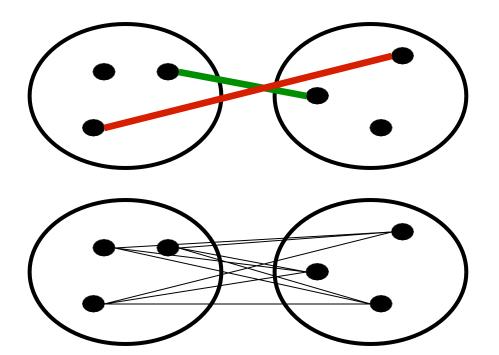
Lecture 14 - 46

How should we define "closest" for clusters with multiple pixels already in it?

- Closest pair

(single-link clustering)

- Farthest pair
 - (complete-link clustering)
 - Average of all pairs

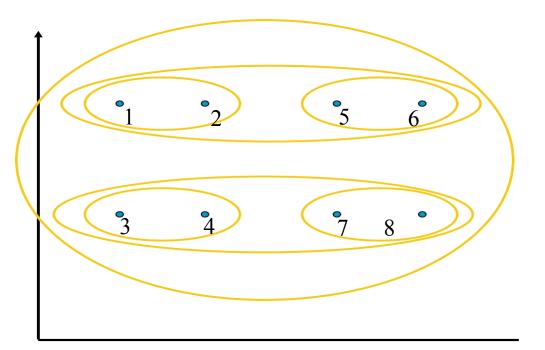


Different choices create different clustering behaviors

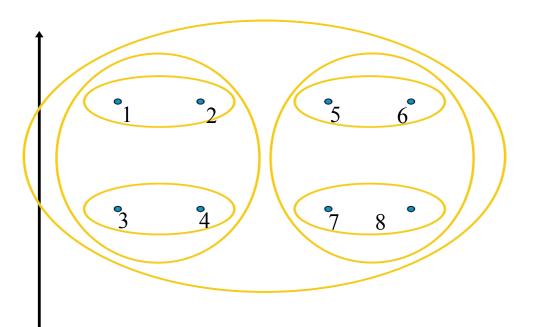
Ruta Desai, Chun-Liang Li

How should we define "closest" for clusters with multiple pixels already in it?

Closest pair (single-link clustering)



Farthest pair (complete-link clustering)



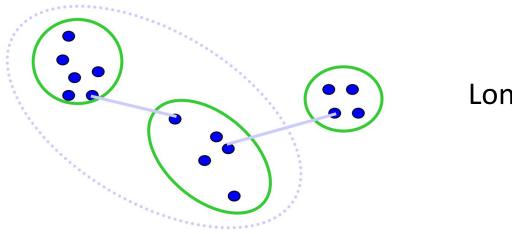
[Pictures from Thorsten Joachims]

May 14, 2025

Ruta Desai, Chun-Liang Li

Single Linkage distance measure $dist(C_i, C_j) = \min_{v_i \in C_i, v_j \in C_j, (C_i, C_j) \in E} dist(v_i, v_j)$

Connects the clusters based on the distance of their closest pixels It produces "long" clusters.



Long, skinny clusters

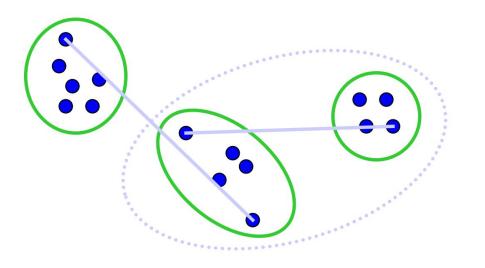
Ruta Desai, Chun-Liang Li

Lecture 14 - 49

Complete Link distance measure

$$dist(C_i, C_j) = \max_{v_i \in C_i, v_j \in C_j, (C_i, C_j) \in E} dist(v_i, v_j)$$

Produces compact clusters that are similar in diameter



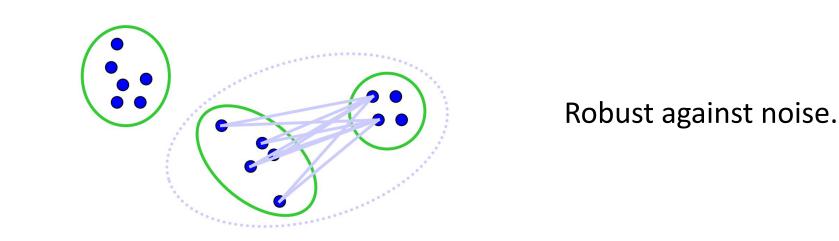
Tight clusters

Ruta Desai, Chun-Liang Li

Lecture 14 - 50

Average Link distance measures

$$dist(C_i, C_j) = \frac{\sum_{v_i \in C_i, v_j \in C_j, (C_i, C_j) \in E} dist(v_i, v_j)}{|C_i||C_j|}$$



Ruta Desai, Chun-Liang Li

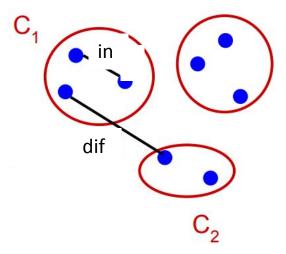
Lecture 14 - 51

Inlier-outlier linkage distance measure

 $Merge(C_1, C_2) = \begin{cases} True & if dif(C_1, C_2) < in(C_1, C_2) \\ False & otherwise \end{cases}$

Where

- dif(C1, C2) is the difference between two clusters.
- in(C1, C2) is the internal difference in the clusters C1 and C2



Ruta Desai, Chun-Liang Li

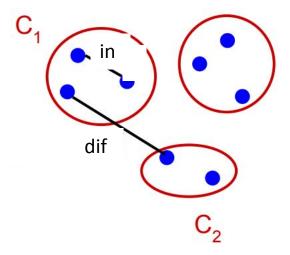
Lecture 14 - 52

Inlier-outlier linkage distance measure

$$Merge(C_1, C_2) = \begin{cases} True & if dif(C_1, C_2) < in(C_1, C_2) \\ False & otherwise \end{cases}$$
$$dif(C_i, C_j) = \min_{v_i \in C_i, v_j \in C_j, (C_i, C_j) \in E} dist(v_i, v_j)$$

Where

- dif(C1, C2) is the difference between two clusters.
- in(C1, C2) is the internal difference in the clusters C1 and C2



Ruta Desai, Chun-Liang Li

Lecture 14 - 53

Inlier-outlier linkage distance measure

$$Merge(C_1, C_2) = \begin{cases} True & if dif(C_1, C_2) < in(C_1, C_2) \\ False & otherwise \end{cases}$$
$$dif(C_i, C_j) = \min_{v_i \in C_i, v_j \in C_j, (C_i, C_j) \in E} dist(v_i, v_j)$$

$$in(C_i, C_j) = \min_{C \in \{C_i, C_j\}} [\max_{v_i, v_j \in C} [dist(v_i, v_j) + \frac{k}{|C|}]$$

Where

Ruta Desai, Chun-Liang Li

- dif(C1, C2) is the difference between two clusters.
- in(C1, C2) is the internal difference in the clusters C1 and C2

Lecture 14 - 54

May 14, 2025

dif

inlier-outlier linkage for Segmentation

- k/|C| sets the threshold by which the clusters need to be different from the internal pixels in a cluster.
- Effect of k:
 - If k is large, it causes a preference for larger objects.

Ruta Desai, Chun-Liang Li

Lecture 14 - 55

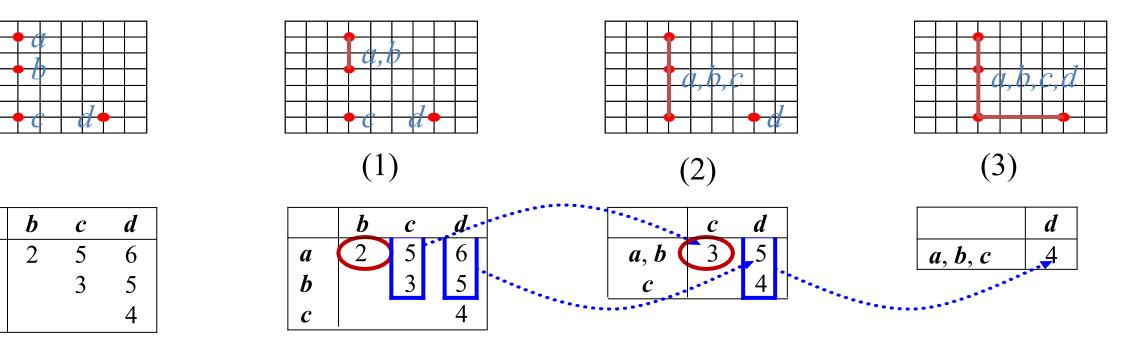
Results

Ruta Desai, Chun-Liang Li

Lecture 14 - 56

How to implement single-linkage efficiently

Euclidean Distance



Distance Matrix

a

h

С

Ruta Desai, Chun-Liang Li

Lecture 14 - 57

Conclusions: Agglomerative Clustering

Pros:

- Simple to implement, widespread application.
- Clusters have adaptive shapes.
- Provides a hierarchy of clusters.
- No need to specify number of clusters in advance.

Cons:

Ruta Desai, Chun-Liang Li

- May have imbalanced clusters.
- Still have to choose number of clusters eventually for an application
- Does not scale well. Runtime of atleast O(n²).
- Can get stuck at a local optima.

Next time

K-means and mean shift

Ruta Desai, Chun-Liang Li

Other Kernels

A kernel is a function that satisfies the following requirements :

1.
$$\int_{R^d} \phi(x) = 1$$

2. $\phi(x) \ge 0$

Some examples of kernels include :

1. Rectangular
$$\phi(x) = \begin{cases} 1 & a \leq x \leq b \\ 0 & else \end{cases}$$

2. Gaussian $\phi(x) = e^{-rac{x^2}{2\sigma^2}}$

3. Epanechnikov
$$\phi(x) = \begin{cases} \frac{3}{4}(1-x^2) & if \ |x| \leq 1 \\ 0 & else \end{cases}$$

<u>source</u>

May 14, 2025

Ruta Desai, Chun-Liang Li

Technical Details

Taking the derivative of:
$$\hat{f}_{K} = \frac{1}{nh^{d}} \sum_{i=1}^{n} K\left(\frac{\mathbf{x} - \mathbf{x}_{i}}{h}\right)$$

$$\nabla \hat{f}(\mathbf{x}) = \underbrace{\frac{2c_{k,d}}{nh^{d+2}} \left[\sum_{i=1}^{n} g\left(\left\|\frac{\mathbf{x} - \mathbf{x}_{i}}{h}\right\|^{2}\right)\right]}_{\text{term 1}} \underbrace{\left[\frac{\sum_{i=1}^{n} \mathbf{x}_{i} g\left(\left\|\frac{\mathbf{x} - \mathbf{x}_{i}}{h}\right\|^{2}\right)}{\sum_{i=1}^{n} g\left(\left\|\frac{\mathbf{x} - \mathbf{x}_{i}}{h}\right\|^{2}\right) - \mathbf{x}\right]}_{\text{term 2}}, \quad (3)$$

where g(x) = -k'(x) denotes the derivative of the selected kernel profile.

- Term1: this is proportional to the density estimate at x (similar to equation 1 from two slides ago).
- Term2: this is the mean-shift vector that points towards the direction of maximum density.

Comaniciu & Meer, 2002

May 14, 2025

Ruta Desai, Chun-Liang Li

Technical Details

Finally, the mean shift procedure from a given point x_{t} is:

1. Compute the mean shift vector **m**:

$$\left[\frac{\sum\limits_{i=1}^{n}\mathbf{x}_{i}g\left(\left\|\frac{\mathbf{x}-\mathbf{x}_{i}}{h}\right\|^{2}\right)}{\sum\limits_{i=1}^{n}g\left(\left\|\frac{\mathbf{x}-\mathbf{x}_{i}}{h}\right\|^{2}\right)}-\mathbf{x}\right]$$

2. Translate the density window:

$$\mathbf{x}_i^{t+1} = \mathbf{x}_i^t + \mathbf{m}(\mathbf{x}_i^t).$$

3. Iterate steps 1 and 2 until convergence.

$$abla f(\mathbf{x}_i) = 0.$$

Comaniciu & Meer, 2002

May 14, 2025

Ruta Desai, Chun-Liang Li

Technical Details

Given n data points $\mathbf{x}_i \in \mathbb{R}^d$, the multivariate kernel density estimate using a radially symmetric kernel¹ (e.g., Epanechnikov and Gaussian kernels), $K(\mathbf{x})$, is given by,

$$\hat{f}_K = \frac{1}{nh^d} \sum_{i=1}^n K\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right),\tag{1}$$

where h (termed the *bandwidth* parameter) defines the radius of kernel. The radially symmetric kernel is defined as,

$$K(\mathbf{x}) = c_k k(\|\mathbf{x}\|^2), \tag{2}$$

where c_k represents a normalization constant.

Ruta Desai, Chun-Liang Li

Lecture 14 - 63

 $\frac{1}{100} \frac{1}{100} \frac{1}$