Lecture 14

Segmentation and clustering
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Administrative

A2 grades are out

A3 is out
- Due May 19
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What is image segmentation?

e |dentify groups of pixels that go together and are
meaningful in some sense.
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Why do we segment?

e Separate image into coherent “objects”

Image Human segmentation
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Why do we segment?

e Separate image into coherent “objects”

e Group together similar-looking pixels for efficiency of
further processing

“superpixels”

X. Ren and J. Malik. Learning a classification model for segmentation. ICCV 2003.
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http://ttic.uchicago.edu/~xren/research/iccv2003/

Why do we segment?

e Summarizing data
o Look at large amounts of data
m Find group of pixels
m Represent each group of pixels with feature vectors e.g., HoG

e Counting
o Histograms of texture, color, SIFT vectors

e Foreground-background separation
o Separate the image into different regions

e Prediction
o Images in the same group may have the same labels
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Segmentation is used in Adobe
photoshop to remove background

Rother et al. 2004
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Segment
Anvything
[2023]
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https://segment-anything.com/assets/section-3.1b.mp4
https://segment-anything.com/assets/section-3.1b.mp4
https://docs.google.com/file/d/10-6a3qAnhXLh-G_M6GHMIro0OKP6YIXo/preview

Segmentation is ill-defined problem, “correct’
segments depends on the context

Human segmentation
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Segmentation in humans: subjective, intuitive

User 2 User 3

[Martin 2001]
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Today's agenda

e (Gestalt theory for perceptual grouping
e Segmentation as clustering
e Agglomerative clustering

Reading:
Szeliski, 2"? edition, Chapter 7.5
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Today's agenda

e (Gestalt theory for perceptual grouping

Reading:
Szeliski, 2"? edition, Chapter 7.5
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Symmetry
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Common Fate

'Bur‘kharm, Iiil'g;u-:-.c:-jm

Image credit: Arthus-Bertrand (via F. Durand)

2005 Heiko
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Proximity
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Gestalt Theory
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Gestalt Theory

e Gestalt: whole or group
o Whole is greater than sum of its parts
o Relationships among parts can yield new properties/features

e Psychologists identified series of factors that predispose set of elements to be
grouped (by human visual system)

“I stand at the window and see a house, trees, sky.
Theoretically | might say there were 327
brightnesses and nuances of colour. Do | have "327"?
No. | have sky, house, and trees.”
Max Wertheimer
Untersuchungen zur Lehre von der Gestalt,

Psychologische Forschung, Vol. 4, pp. 301-350, 1923 ( 1 880'1 943)
http://psy.ed.asu.edu/~classics/Wertheimer/Forms/forms.htm
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http://psy.ed.asu.edu/~classics/Wertheimer/Forms/forms.htm

Gestalt Theory
e Grouping is key to visual perception
e Elements in a collection can have properties that result from different

relationships (space, affordance, etc.)
o “The whole is greater than the sum of its parts”

A ” B
Illusory/subjective ' Occlusion
contours ‘ ‘ J
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http://en.wikipedia.org/wiki/Gestalt_psychology

Gestalt Factors

Not grouped

Proximity

Similarity

Similarity

Common Fate

Common Region

These factors make intuitive sense, but are
very difficult to translate into algorithms.

Parallelism

Symmetry

Continuity

Closure
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Continuity through Occlusion Cues
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Continuity through Occlusion Cues

e

Continuity, explanation by occlusion
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Today's agenda

e Segmentation as clustering
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Segmentation strategies

e Top down clustering
o pixels belong together because they lie on the same visual
entity (object, scene...)

e Bottom up clustering
o pixels belong together because they look similar

These two are not mutually exclusive!
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Segmentation as clustering

Clustering: group together similar data points, usually in feature space

S BN

Ip mage Pixel RGB Color Distribution

(Color of feature point = Color of image pixel)
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Segmentation as clustering

Clustering: group together similar data points, usually in feature space

100, il 100
R 150 200 o>,

Pixel RGB Color Distribution

(Color of feature point = Color of image pixel)

50 0
Segmented Image Color-Coded Clusters
(Color of feature point = Color of image segment,
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What are good pixel features?

e Use RGB values?
o v=]rg,Db]
o ltis 3-dimensional
e Use location?
o V=[x,Y]
o 2-dim
e Use RGB + location?
o V=[XVTr4g,Db]
o 5-dim
e Use gradient magnitude?
o v = [df/dx, df/dy]
o 2-d
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Segmentation as clustering

Clustering: group together similar data points, usually in feature space

Key Challenges:

e \What makes two points/images/patches similar?
o Distance measures
e How do we compute an overall grouping from pairwise similarities?

Ruta Desai, Chun-Liang Li Lecture 14 - 29 May 14, 2025



Over-segmenting images

e Graph-based clustering for Image
Segmentation

o Introduced by Felzenszwalb and
Huttenlocher in the paper titled
Efficient Graph-Based Image
Segmentation.
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Image as a Graph - Features and weights

e Every pixel is connected to its 8 neighboring pixels
e The edges between neighbors have weights that are
determined by the distance between them.

e Edge weights between pixels are determined using 2
dist(x, x') distance in feature space. .

o where x and x" are two neighboring pixels

2

e Q. What is a good feature space?
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Problem Formulation

e Graph G =(V, E) @

e V is set of nodes (i.e. pixels)
e E is a set of undirected edges between pairs of pix
o dist(v., vj) is the weight/distance of the edge between nodes v. and V..

e S is a segmentation of a graph G such that G’ = (V, E') where E' C E.

o That is, we keep all vertices, but select a subset E’ from all initial
edges E.

e S divides G into G’ such that it contains distinct clusters C.
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Distance Measures

Clustering is an unsupervised learning method. Given items
v1,v9,...,0, € RP , the goal is to group them into clusters.

We need a pairwise distance/similarity function between items, and
sometimes the desired number of clusters.

When data (e.g. images, objects, documents) are represented by
feature vectors, commonly used measures are:

- Euclidean distance.
- Cosine similarity.
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Distance Measures

Let x and x’ be two objects from the universe of possible objects.
The distance (or similarity) between x and x’ is a real number:

e The Euclidean distance is defined as dist(vl ’02) _ \/Z(vl. _ Uz')2
9 - (/ 1
i

e |n contrast, the cosine similarity measure would be

dist(vy,v2) = 1 — cos(vy, vs)

’Ur‘lr’UQ

=1
val] - [lvz]]

May 14, 2025
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How do we cluster?

e Agglomerative clustering

o Start with each point as its own cluster and iteratively
merge the closest clusters

e K-means

o Iteratively re-assign points to the nearest cluster
center

e Mean-shift clustering
o Estimate modes of pdf
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Image as a Graph - Features and weights

e Every pixel is connected to its 8 neighboring pixels
e The edges between neighbors have weights that are
determined by the distance between them.

e Edge weights between pixels are determined using 2
dist(x, x') distance in feature space. .

o where x and x" are two neighboring pixels

2
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Segmentation using graph-cut

e Graph G =(V, E) @

e V is set of nodes (i.e. pixels)
e E is a set of undirected edges between pairs of pix
o dist(v., vj) is the weight/distance of the edge between nodes v. and V..

e S is a segmentation of a graph G such that G’ = (V, E') where E' C E.

o That is, we keep all vertices, but select a subset E’ from all initial
edges E.

e S divides G into G’ such that it contains distinct clusters C.
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Today's agenda

e Agglomerative clustering
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Agglomerative clustering

1. Say “Every point is its

- = own cluster”
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Slide credit: Andrew Moore

Ruta Desai, Chun-Liang Li Lecture 14 - 39 May 14, 2025



Agglomerative clustering

1. Say "Every point is its

«® o o o2 own cluster”
. ® . 2. Find “most similar” pair
e of clusters
® o, e o ..
o ®q °e
° @
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Slide credit: Andrew Moore
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Agglomerative clustering

1. Say "Every point is its

* o own cluster”
® .o .I@
- ®* . 2. Find “most similar” pair
¢ of clusters
® . e . ® * —
o %o oo 3. Merge it into a parent
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Slide credit: Andrew Moore
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Agglomerative clustering

1. Say “Every point is its
° o e .@ . own cluster

2. Find “"most similar” pair
of clusters

o o 3. Merge it into a parent
& . cluster

g 4. Repeat

Slide credit: Andrew Moore
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Agglomerative clustering

1. Say “Every point is its

. e o\ own cluster”
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Agglomerative clustering

How to define cluster similarity?
- Average distance between all pixels between the

two cluster? O A
- Maximum distance? O
- Minimum distance? O
- Distance between means? u A
[]
How many clusters? -
- Clustering creates a dendrogram (a tree) ol ‘ |

- Threshold based on max number of clusters or

based on distance between merges 5 gal rﬁﬂ]m#hﬁ

12312 519 4132926 9 310 724 61128172021 218 830251415271622

distance
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Agglomerative Hierarchical Clustering - Algorithm

Inputs:

- An input image

- Feature representation for each pixel
- Distance metric dist(-,-)

> Initially, each pixel v., ..., v_is its own cluster C1, ..., C
> While True:

o Find two nearest clusters according to dist(C, Cj)
o Merge C = (C, CJ.)
o If only 1 cluster is left:

m Dbreak

n
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low should we define “closest” for clusters with multiple
pixels already in it?
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How should we define “closest” for clusters with
multiple pixels already in it?

— Closest pair
(single-link clustering)
— Farthest pair
(complete-link clustering)
« Average of all pairs

Different choices create different clustering
behaviors
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How should we define “closest” for clusters with
multiple pixels already in it?

Closest pair Farthest pair

(single-link clustering) (complete-link clustering)
S 56 S 56
3 % 7 8 ° % 2 7 8 °

[Pictures from Thorsten Joachims]
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Single Linkage distance measure

dist(C;,C;) = ] dist(v;, v;
v ( ’ J) ’UiECi,’UjEIél;,I%Ci,Cj)EE b (vz UJ)

Connects the clusters based on the distance of their closest pixels
It produces “long” clusters.

Long, skinny clusters
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Complete Link distance measure
dist(C;,C;) = max dist(v;, v;)

Produces compact clusters that are similar in diameter

Tight clusters
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Average Link distance measures

Zv»,;ECi,'vj e’} ,(Cf,;,Cj)EE diSt('Ui, v,?)
Cil|C5

diSt(Cfi, C]) —

Robust against noise.
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Inlier-outlier linkage distance measure

False otherwise

[ Merge(Cy,Cy) = {True if dif (C1,C2) < in(Cy, Cs) }

Where
e dif(C1, C2 ) is the difference between two clusters.

e in(C1, C2) is the internal difference in the clusters C1
and C2
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Inlier-outlier linkage distance measure

True if dif(Ch,Cs) < in(Ch, Cs)

False otherwise

Merge(Cy,Cy) = {

N

L difi{( Gl ) = min dist(vi, v;) }

(% ECiavj Ecj :(Ciacj)EE

Where
e dif(C1, C2 ) is the difference between two clusters.

e in(C1, C2) is the internal difference in the clusters C1
and C2
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Inlier-outlier linkage distance measure

Wergel Gy, Ch)= True if dif(Ch,Cs) < in(Ch, Cs)
g1, b2) = False otherwise

dif(C;,C,;) = ' dist(v;, v,
Zf( ’ J) UiECi,UjEIg;,I%Ci,Cj)EE ( ’ ])

I

. y ] k
E in(C;, C;) = CE%I}Cj}[vzamv?é(C[dZSt(w’ v;) + m

Where
e dif(C1, C2 ) is the difference between two clusters.

e in(C1, C2) is the internal difference in the clusters C1
and C2
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inlier-outlier linkage for Segmentation

e k/|C| sets the threshold by which the clusters need to be different
from the internal pixels in a cluster.

e Effect of k:
o If k is large, it causes a preference for larger objects.

0L LCD

@ small k @
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Results

Ruta Desai, Chun-Liang Li Lecture 14 - 56 May 14, 2025



How to implement single-linkage efficiently

Euclidean Distance

o o s i

ob - \ i

-
=
DT

b ¢ d
al| 2 5 6 a
b 3 5 b
C 4 C

Distance Matrix
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Conclusions: Agglomerative Clustering

Pros:

e Simple to implement, widespread application.

e C(Clusters have adaptive shapes.

e Provides a hierarchy of clusters.

e No need to specify number of clusters in advance.

Cons:

e May have imbalanced clusters.

e Still have to choose number of clusters eventually for an application
e Does not scale well. Runtime of atleast O(n?).

e (Can get stuck at a local optima.
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Next time

K-means and mean shift
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Other Kernels

A kernel is a function that satisfies the following requirements :
1. fRd o(x) =1

2. ¢(z) =0

Some examples of kernels include :

1l a<zxz<b

olz) =
1. Rectangular ¢ ( ) {() else

2. Gaussian (;‘)(ll') — (;_i“'f

3. Epanechnikov @(T) = {

source
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https://saravananthirumuruganathan.wordpress.com/2010/04/01/introduction-to-mean-shift-algorithm/

Technical Detalls

) .. A 1 X — X;
Taking the derivative of: fx = T ; K ( )

n 2 =
n > % (J|=2]°)
2 2Ck,4 x — %; | i=1 r
Vi) =35 | D9 - -x|, (3
nhots | & h i 12
o CET X L 2o (=)
term 1 ~— it - i
term 2
where g(z) = —k'(z) denotes the derivative of the selected kernel profile.

* Terml: this is proportional to the density estimate at x (similar to equation 1
from two slides ago).

* Terma2: this is the mean-shift vector that points towards the direction of
maximum density.

Comaniciu & Meer, 2002
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Technical Detalls

Finally, the mean shift procedure from a given point x_is:
1. Compute the mean shift vector m:

3= g (J15=1)

—

2. Translate the density window:

t+1

X, = X:+ m(x}).

3. lterate steps 1 and 2 until convergence.
Vf(xz) = (.

Comaniciu & Meer, 2002
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Technical Detalls

Given n data points x; € R% the multivariate kernel density estimate using a
radially symmetric kernel® (e.g., Epanechnikov and Gaussian kernels), K(x), is given

by,
A 1 X — X;
=—E K 1

where h (termed the bandwidth parameter) defines the radius of kernel. The radially
symmetric kernel is defined as,

K (x) = cxk([[x]), (2)

where c; represents a normalization constant.
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