Lecture 13

Structure from motion

slide creds: Ranjay!

Raymond Yu

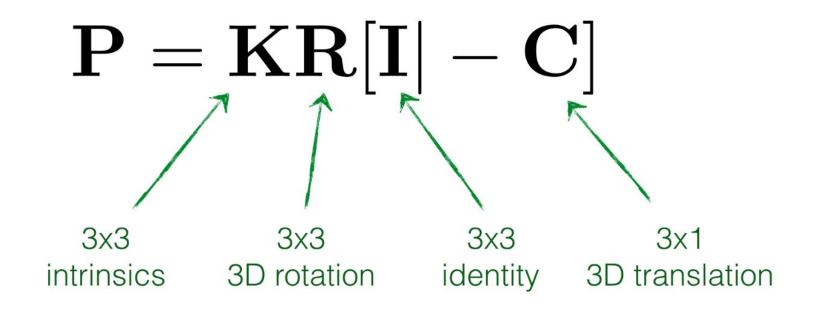
Administrative

A2 is graded!

Recitation this week:

- Ontologies

So far: camera transformation



https://www.cs.cmu.edu/~16385/s17/Slides/11.1_Camera_matrix.pdf

Raymond Yu

Lecture 13 - 3

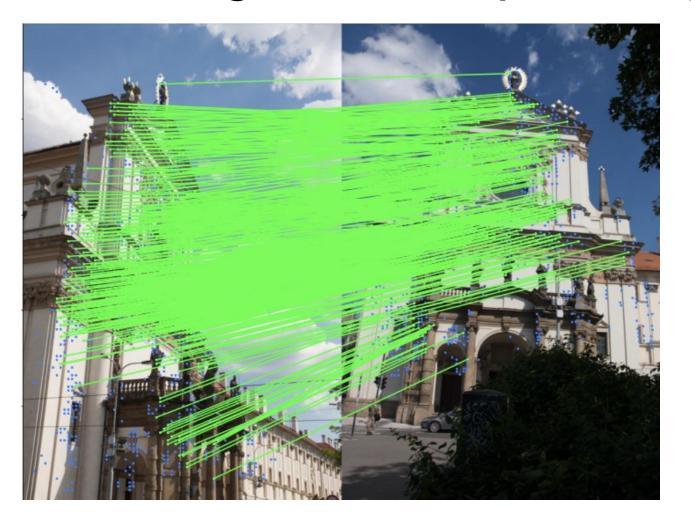
So far: camera calibration

Estimate camera parameters (K[R|t) by measuring

- real world points **X**_i in world space
- the same points in pixel space **x**_i
- Solve for K[R | t] using SVD after posing the problem as **Ap** = 0
 - where **p** are camera parameters and **A** is obtained from mapping **X**_i to

X_i

So far: in other words, we can estimate camera motion given multiple images...

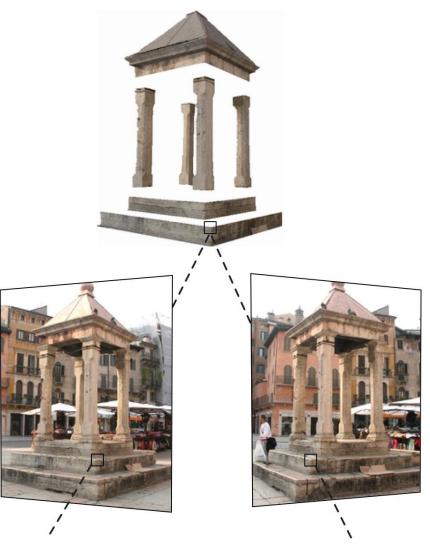


https://kornia.readt hedocs.io/en/latest /applications/image ______matching.html

May 12th, 2025

Raymond Yu

What we want to do today: extract structure!



Raymond Yu

Lecture 13 - 6

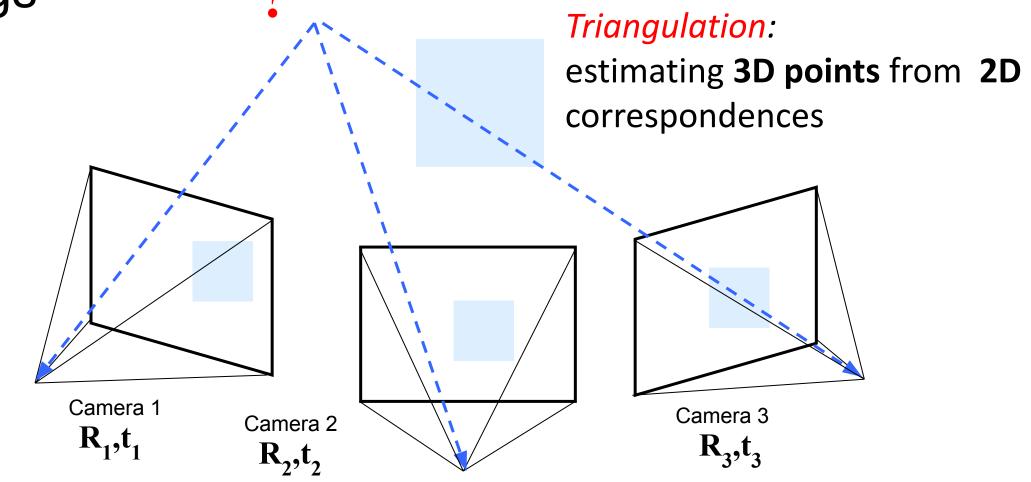
Today's agenda

- Triangulation
- Epipolar geometry
- Essential matrix
- Fundamental matrix
- Structure from motion

Today's agenda

- Triangulation
- Epipolar geometry
- Essential matrix
- Fundamental matrix
- Structure from motion

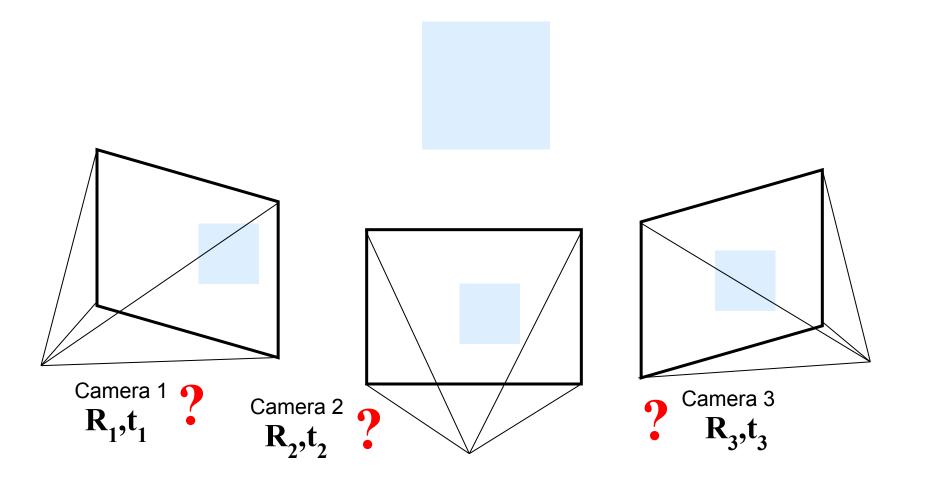
If we knew the camera parameters, we would be able to find the 3D world coordinates of things ?



Raymond Yu

Lecture 13 -

First we need to estimate motion (R, t) from 2D correspondences (we already did this)

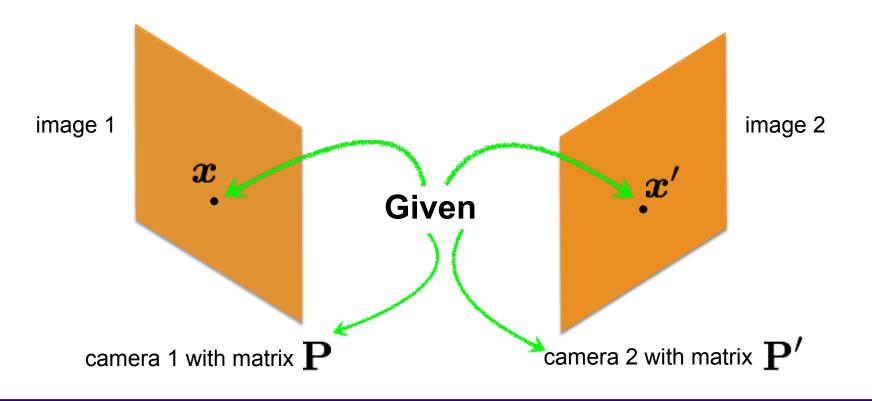


Raymond Yu

Lecture 13 -

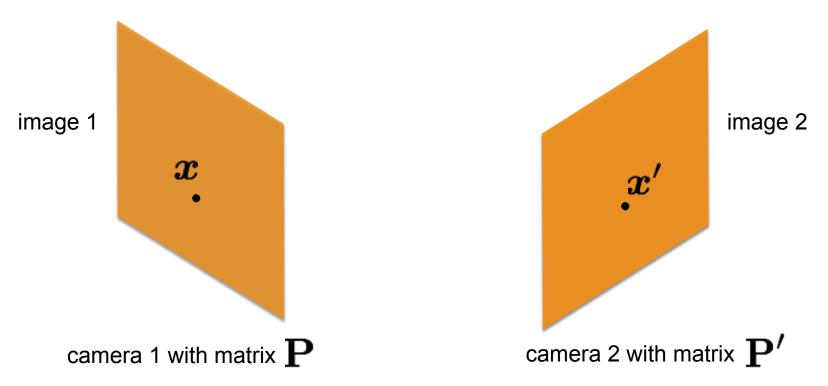
May 12th, 2025

Slide credit: Noah Snavely



May 12th, 2025

Lecture 13 - 11



Where is the 3D point that maps to the two x's?

May 12th, 2025

Lecture 13 - 12

Triangulation formalization

Given a set of (noisy) matched points

$$\{oldsymbol{x}_i,oldsymbol{x}_i'\}$$

and camera matrices

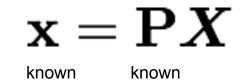
 \mathbf{P}, \mathbf{P}'

Estimate the 3D point

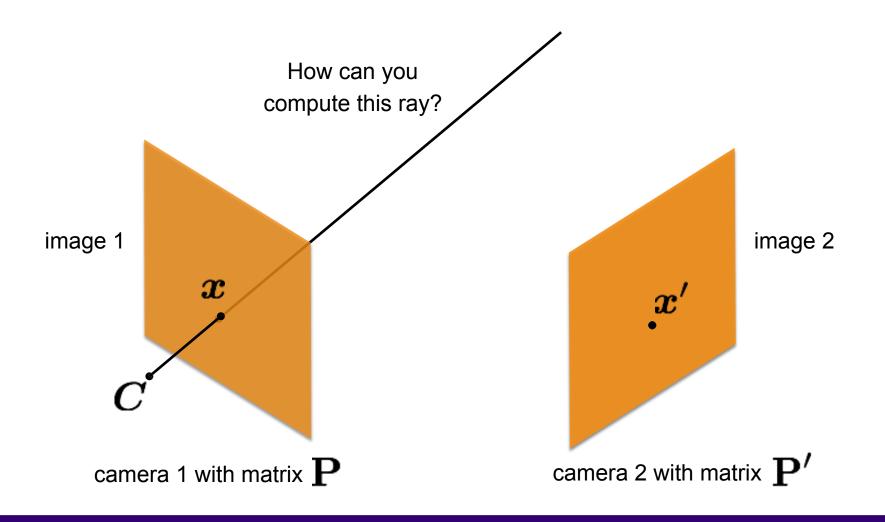
Х

Raymond	Yu
---------	----

Triangulation equation



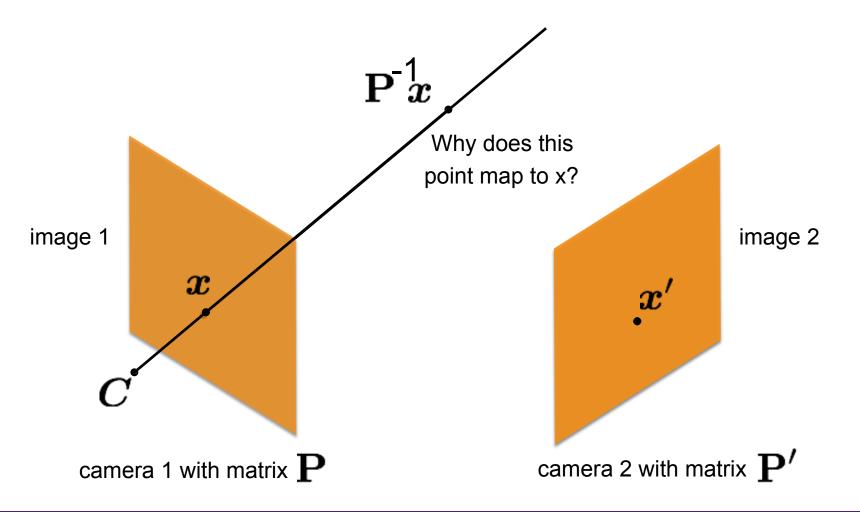
Q. Can we compute **X** from a single correspondence **x**?



May 12th, 2025

Lecture 13 - 15

Apply the **pseudo-inverse** of **P** on **x**. Then connect the two points. This procedure is called **backprojection**



May 12th, 2025

Lecture 13 - 16

$\mathbf{x} = \mathbf{P} \boldsymbol{X}$

We lose information going from 3D to 2D. Specifically, we lose depth information

$$\mathbf{x} = \alpha \mathbf{P} \boldsymbol{X}$$

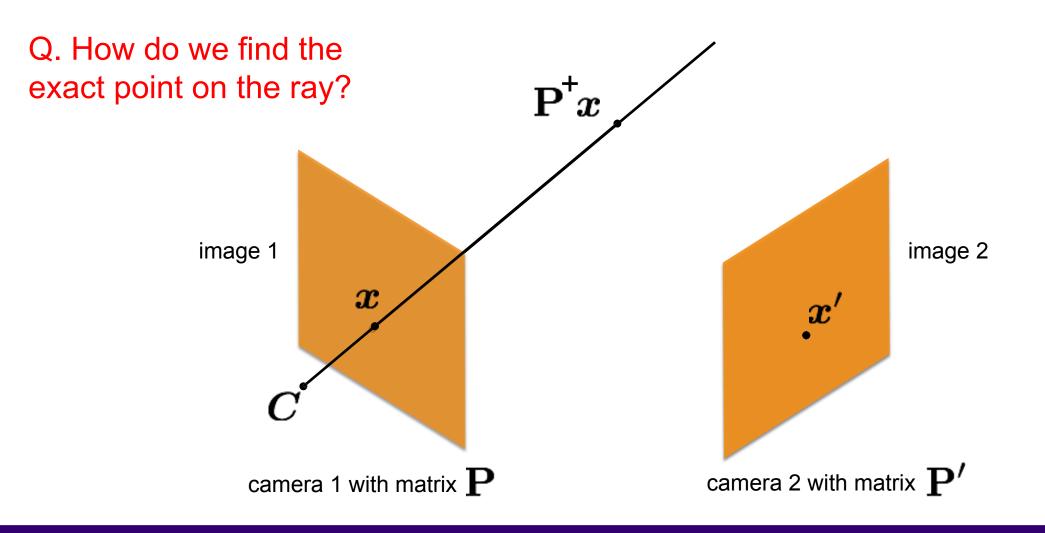
Scaling by α is the same ray direction but differs by a scale factor corresponding to depth

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \alpha \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

How do we solve for unknowns in a similarity relation?

Raymond Yu

Lecture 13 - 17



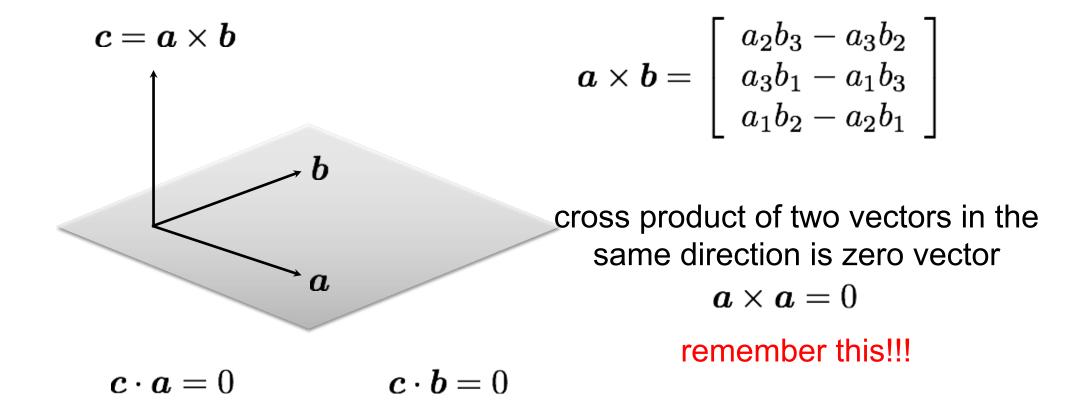
May 12th, 2025

Lecture 13 - 18

Reminder: cross products from linear algebra

Vector (cross) product

takes two vectors and returns a vector perpendicular to both



Raymond Yu

Lecture 13 - 19

Reminder: cross products from linear algebra

$$m{a} imes m{b} = \left[egin{array}{c} a_2 b_3 - a_3 b_2 \ a_3 b_1 - a_1 b_3 \ a_1 b_2 - a_2 b_1 \end{array}
ight]$$

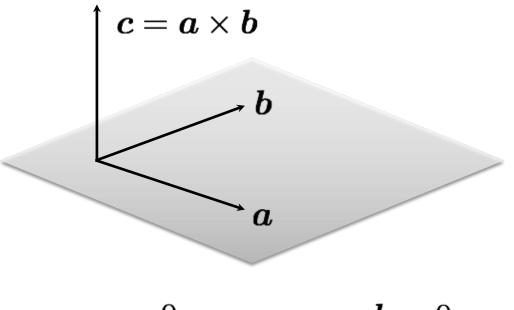
Can also be written as a matrix multiplication

$$\boldsymbol{a} \times \boldsymbol{b} = [\boldsymbol{a}]_{\times} \boldsymbol{b} = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$
Skew symmetric

Raymond Yu

Lecture 13 - 20

Compare with: dot product



 $\boldsymbol{c} \cdot \boldsymbol{a} = 0$ $\boldsymbol{c} \cdot \boldsymbol{b} = 0$

Dot product of two orthogonal vectors is zero!

Raymond Yu

Lecture 13 - 21

Back to triangulation

$\mathbf{x} = \alpha \mathbf{P} \mathbf{X}$

Same direction but differs by a scale factor

How can we rewrite this using vector products?

Raymond Yu

$\mathbf{x} = \alpha \mathbf{P} \mathbf{X}$

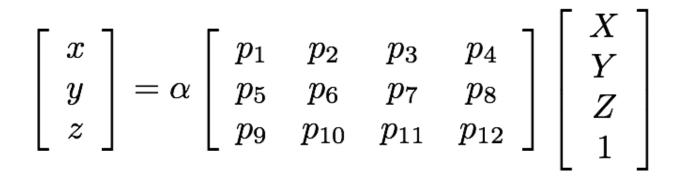
Same direction but differs by a scale factor

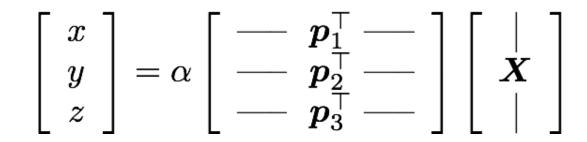
$\mathbf{x} \times \mathbf{P} \boldsymbol{X} = \mathbf{0}$

Cross product of two vectors of same direction is zero (this equality removes the scale factor)

Raymond Yu

$\mathbf{x} = \alpha \mathbf{P} \mathbf{X}$





$\begin{bmatrix} x \end{bmatrix}$		$\left[egin{array}{c} p_1^ op X \end{array} ight]$
y	$= \alpha$	$\mid p_{\underline{2}}^{ op} X \mid$
z		$\left[\begin{array}{c} p_3^{+}X \end{array} ight]$

Raymond Yu

$\mathbf{X} \times \mathbf{P} \mathbf{X} = \mathbf{0}$ $\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \times \begin{bmatrix} \mathbf{p}_1^\top \mathbf{X} \\ \mathbf{p}_2^\top \mathbf{X} \\ \mathbf{p}_3^\top \mathbf{X} \end{bmatrix} = \begin{bmatrix} y \mathbf{p}_3^\top \mathbf{X} - \mathbf{p}_2^\top \mathbf{X} \\ \mathbf{p}_1^\top \mathbf{X} - x \mathbf{p}_3^\top \mathbf{X} \\ x \mathbf{p}_2^\top \mathbf{X} - y \mathbf{p}_1^\top \mathbf{X} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

$$\begin{bmatrix} y \boldsymbol{p}_3^\top \boldsymbol{X} - \boldsymbol{p}_2^\top \boldsymbol{X} \\ \boldsymbol{p}_1^\top \boldsymbol{X} - x \boldsymbol{p}_3^\top \boldsymbol{X} \\ x \boldsymbol{p}_2^\top \boldsymbol{X} - y \boldsymbol{p}_1^\top \boldsymbol{X} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{X} \times \mathbf{P} \mathbf{X} = \mathbf{0}$$

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \times \begin{bmatrix} \mathbf{p}_1^\top \mathbf{X} \\ \mathbf{p}_2^\top \mathbf{X} \\ \mathbf{p}_3^\top \mathbf{X} \end{bmatrix} = \begin{bmatrix} y \mathbf{p}_3^\top \mathbf{X} - \mathbf{p}_2^\top \mathbf{X} \\ \mathbf{p}_1^\top \mathbf{X} - x \mathbf{p}_3^\top \mathbf{X} \\ x \mathbf{p}_2^\top \mathbf{X} - y \mathbf{p}_1^\top \mathbf{X} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\left[egin{array}{c} y oldsymbol{p}_3^\top oldsymbol{X} - oldsymbol{p}_2^\top oldsymbol{X} \ oldsymbol{p}_1^\top oldsymbol{X} - x oldsymbol{p}_3^\top oldsymbol{X} \ x oldsymbol{p}_2^\top oldsymbol{X} - y oldsymbol{p}_1^\top oldsymbol{X} \end{array}
ight] = \left[egin{array}{c} 0 \ 0 \ 0 \ \end{array}
ight]$$

Third line is a linear combination of the first and second lines. (x times the first line plus y times the second line)

So, we only get 2 equations to calculate 3 unknowns: X, Y, Z

Raymond Yu

Lecture 13 - 26

$$\left[\begin{array}{c} y \boldsymbol{p}_3^\top \boldsymbol{X} - \boldsymbol{p}_2^\top \boldsymbol{X} \\ \boldsymbol{p}_1^\top \boldsymbol{X} - x \boldsymbol{p}_3^\top \boldsymbol{X} \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \end{array}\right]$$

Remove third row, and rearrange as system on unknowns

$$\left[egin{array}{c} y oldsymbol{p}_3^\top - oldsymbol{p}_2^\top \ oldsymbol{p}_1^\top - x oldsymbol{p}_3^\top \end{array}
ight] oldsymbol{X} = \left[egin{array}{c} 0 \ 0 \end{array}
ight]$$

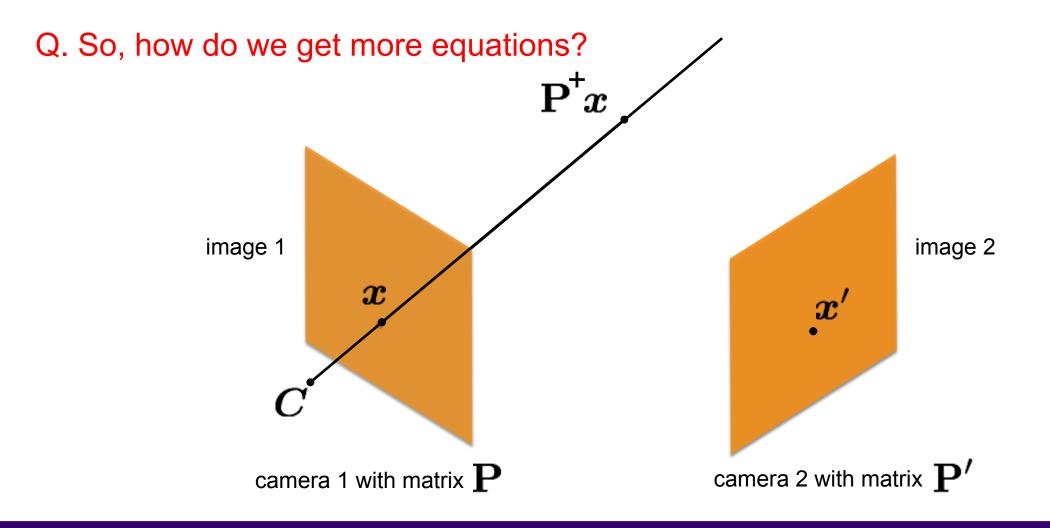
 $\mathbf{A}_i \boldsymbol{X} = \boldsymbol{0}$

May 12th, 2025

This is the proof that we can not solve for X... we only have two equations.

Q. So, how do we get more equations?

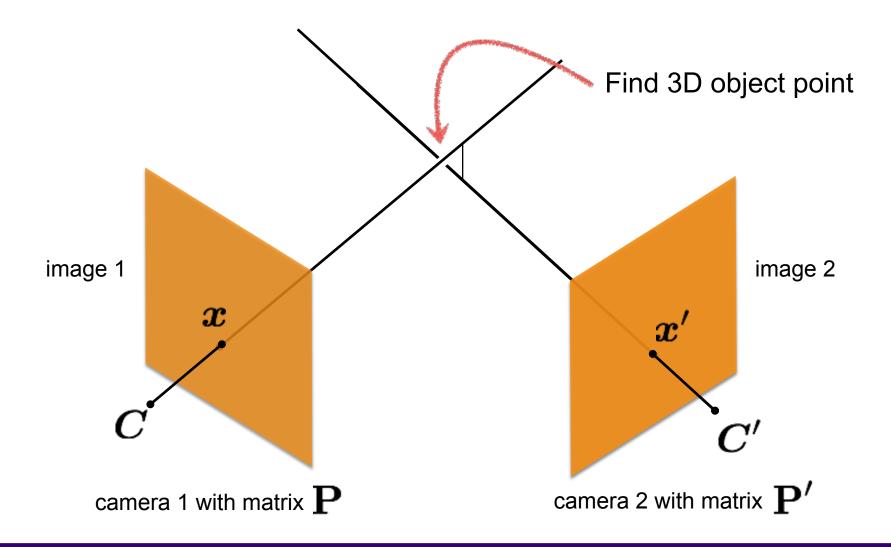
Raymond Yu



May 12th, 2025

Lecture 13 - 28

How do we find this intersection?



May 12th, 2025

Lecture 13 - 29

Collect more equations from other cameras

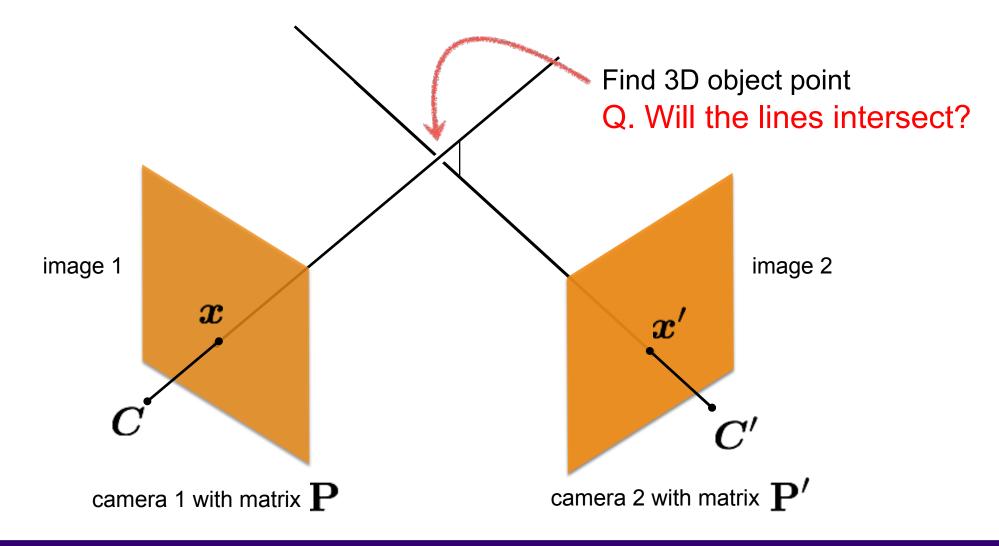
Two rows from camera one

Two rows from camera two

 $egin{array}{c} y oldsymbol{p}_3^{ op} - oldsymbol{p}_2^{ op} \ oldsymbol{p}_1^{ op} - x oldsymbol{p}_3^{ op} \ oldsymbol{p}_1^{ op} - oldsymbol{p}_2^{ op} \ oldsymbol{p}_1^{ op} - oldsymbol{p}_2^{ op} \ oldsymbol{p}_1^{ op} - x^\prime oldsymbol{p}_3^{ op} \end{array} \Bigg] oldsymbol{X}$ 0

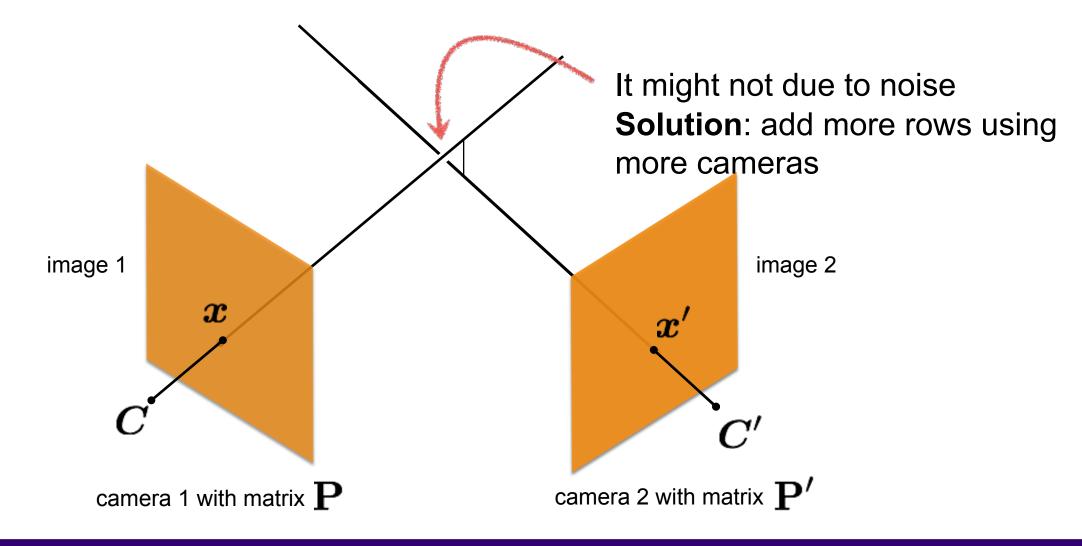
 $\mathbf{A} \boldsymbol{X} = \mathbf{0}$

Now, we can solve for X using SVD



May 12th, 2025

Lecture 13 - 31

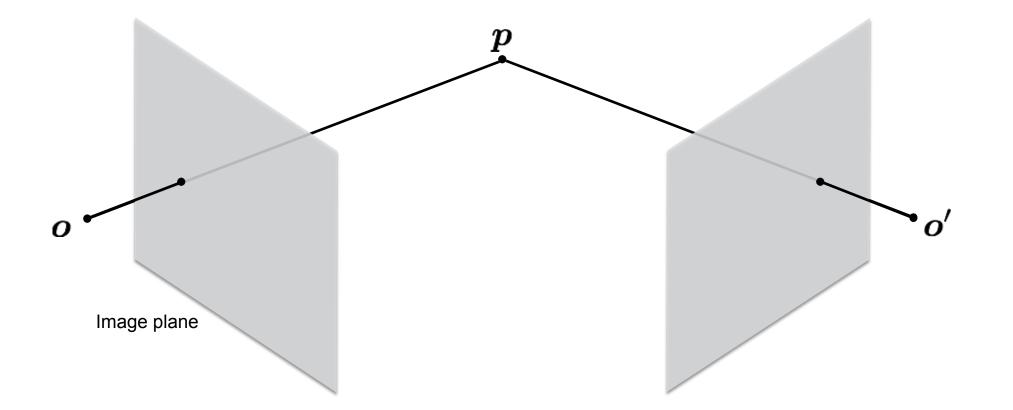


May 12th, 2025

Lecture 13 - 32

Today's agenda

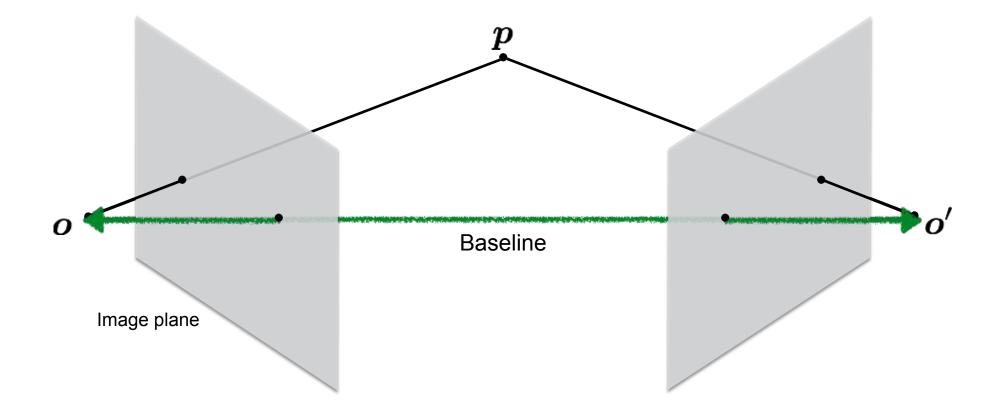
- Triangulation
- Epipolar geometry
- Essential matrix
- Fundamental matrix
- Structure from motion



Ray	/mond Yu	

Lecture 13 - 34

Epipolar geometry



Raymond Yu	
------------	--

Lecture 13 - 35

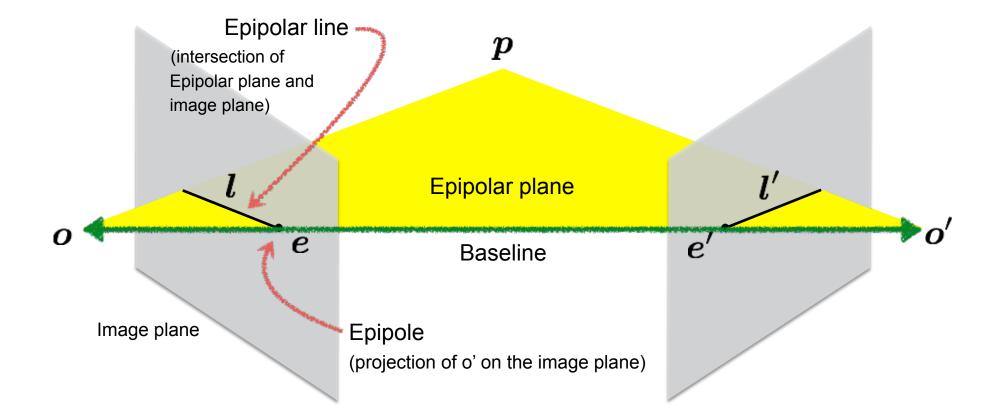
Epipolar geometry



Raymond Yu

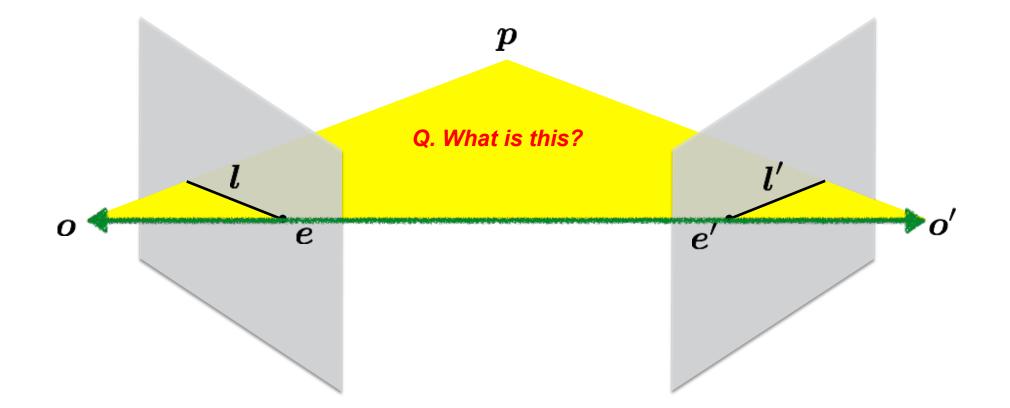
Lecture 13 - 36

Epipolar geometry

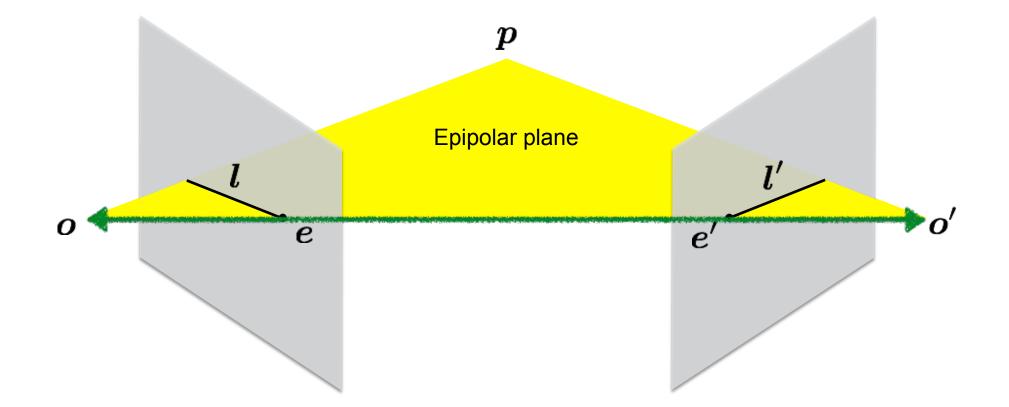


Raymond Yu

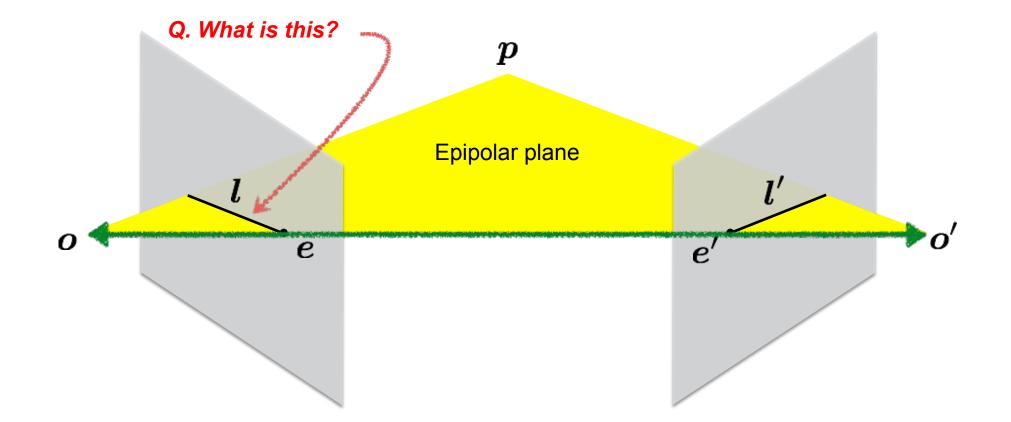
Lecture 13 - 37



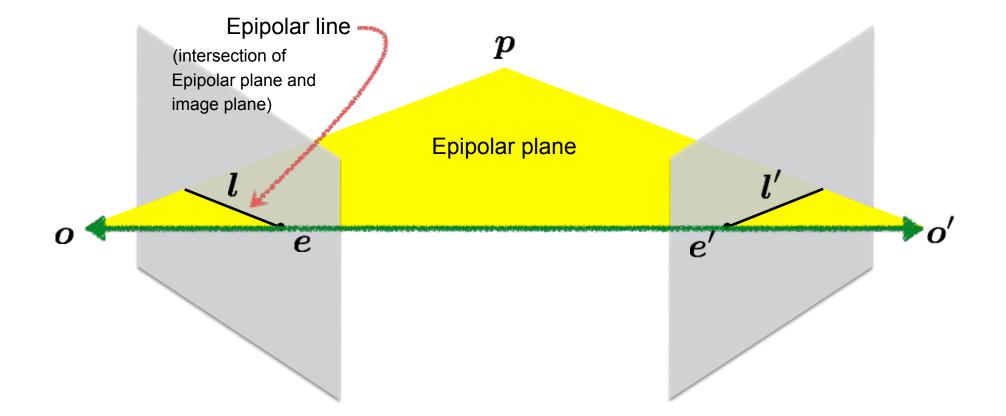
Raymond Yu	



< a \	/mc		Yu	
N a		JIIU		
	/			

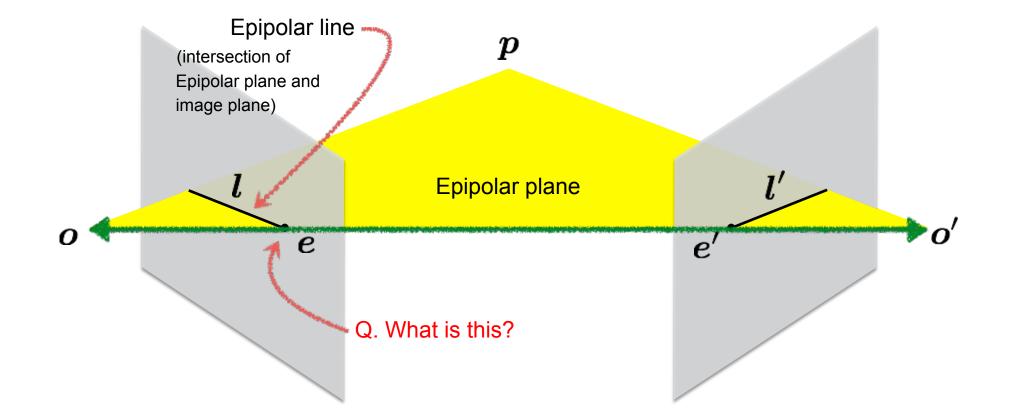


Raymond Yu	
------------	--



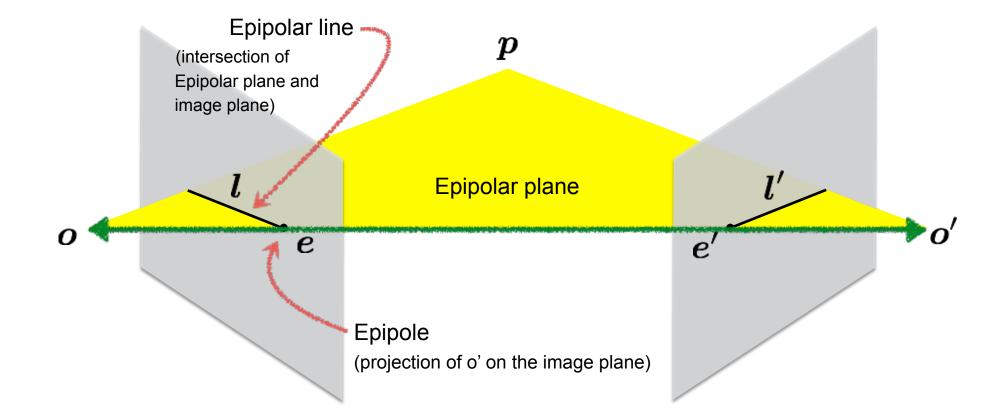
Ray	/m	nn	YII
	/		IU
_	/		

Lecture 13 - 41



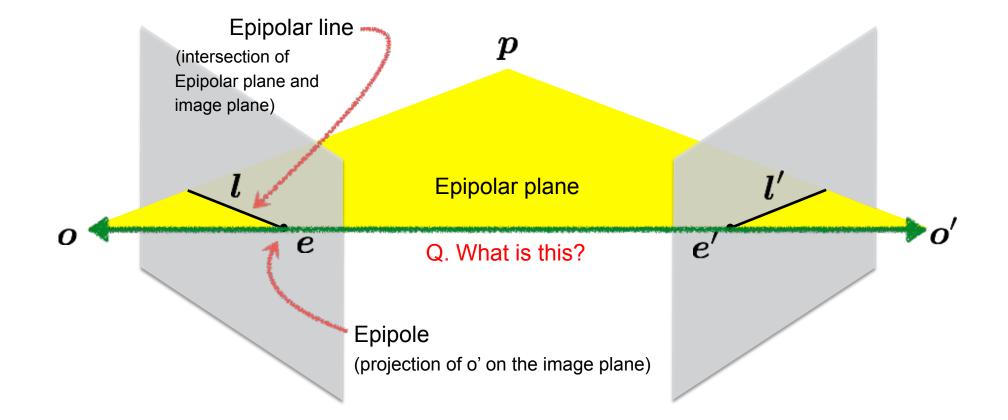
Raymond Yu

Lecture 13 - 42



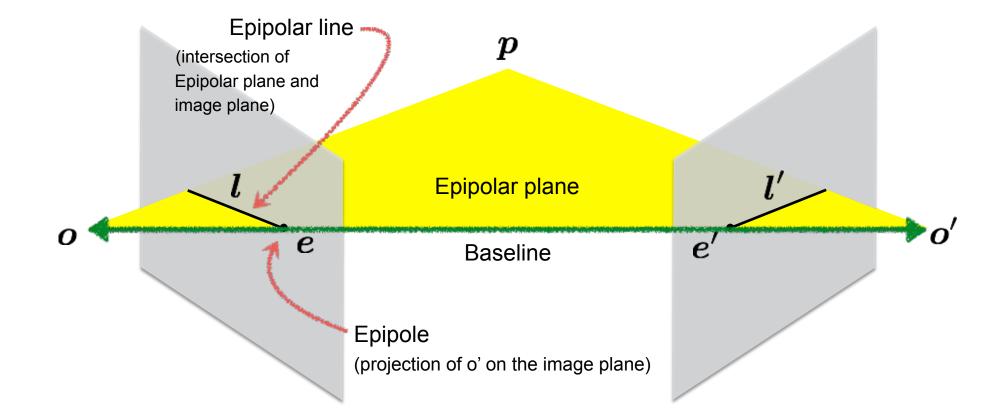
Raymond Yu

Lecture 13 - 43



Raymond Yu

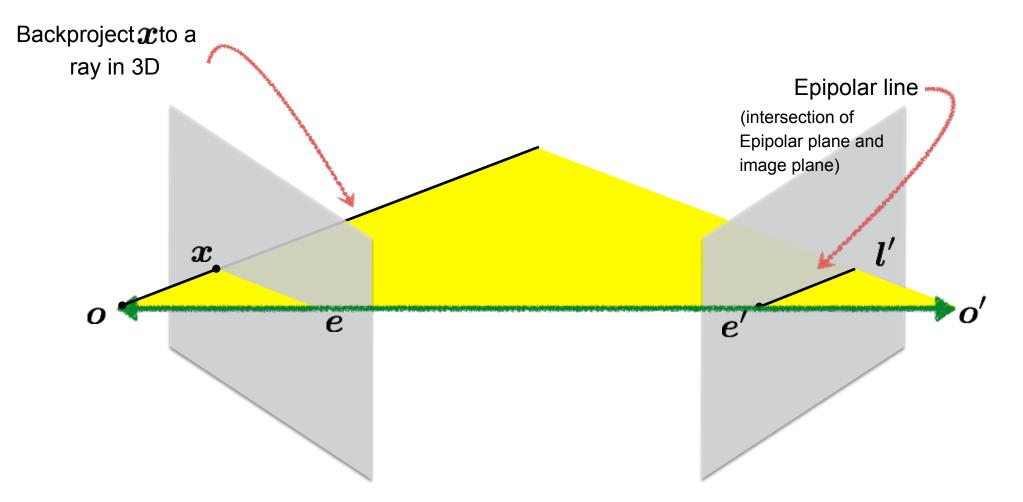
Lecture 13 - 44



Raymond Yu

Lecture 13 - 45

Epipolar constraint

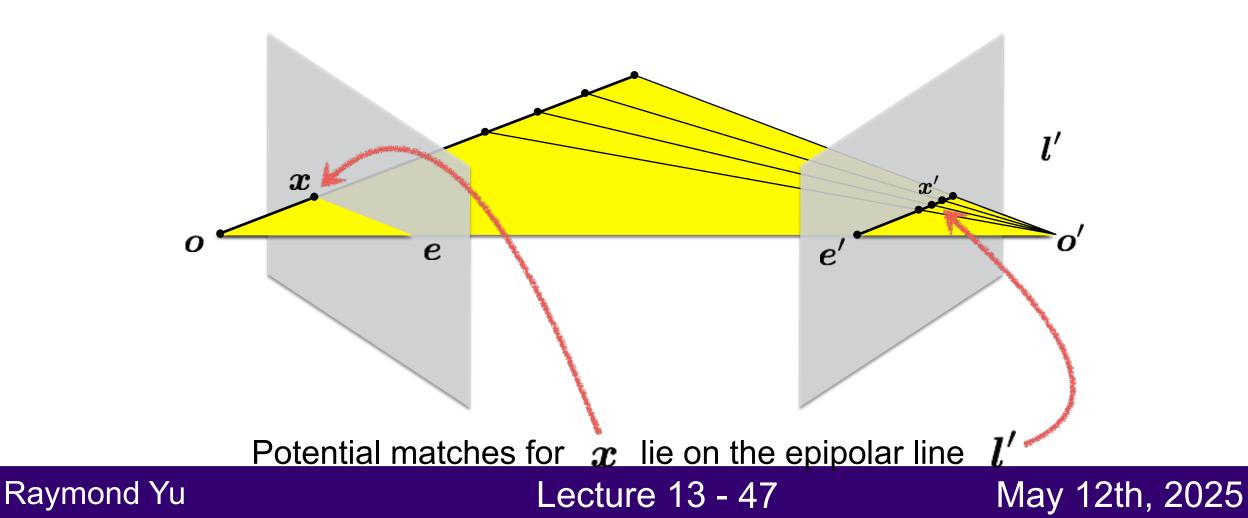


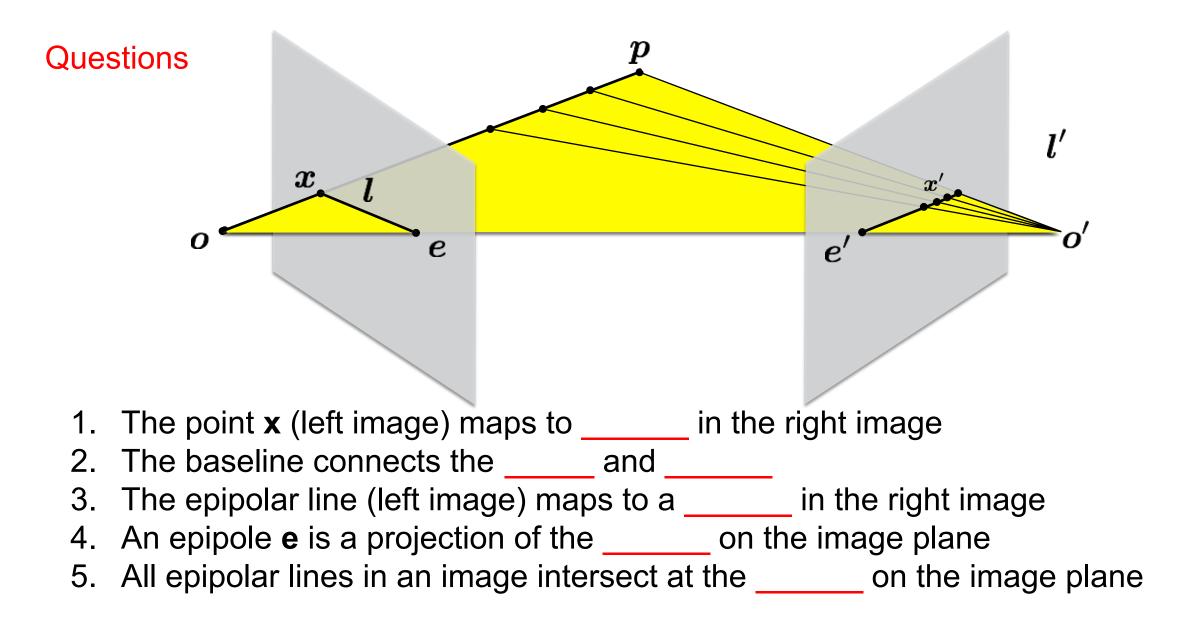
Another way to construct the epipolar plane, this time given x

Raymond Yu

Lecture 13 - 46

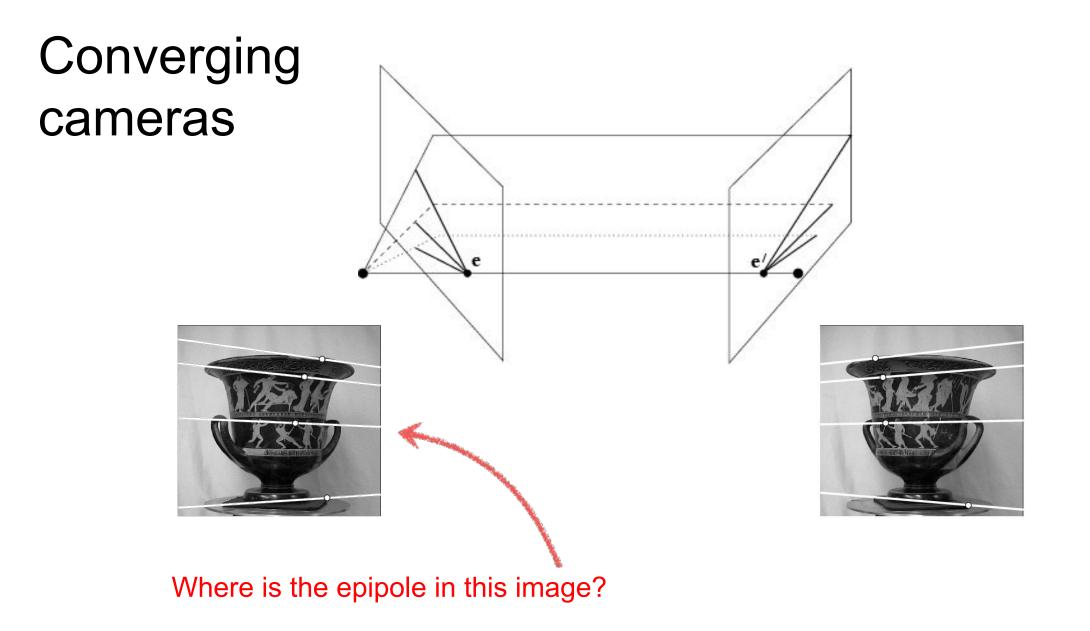
Epipolar constraint





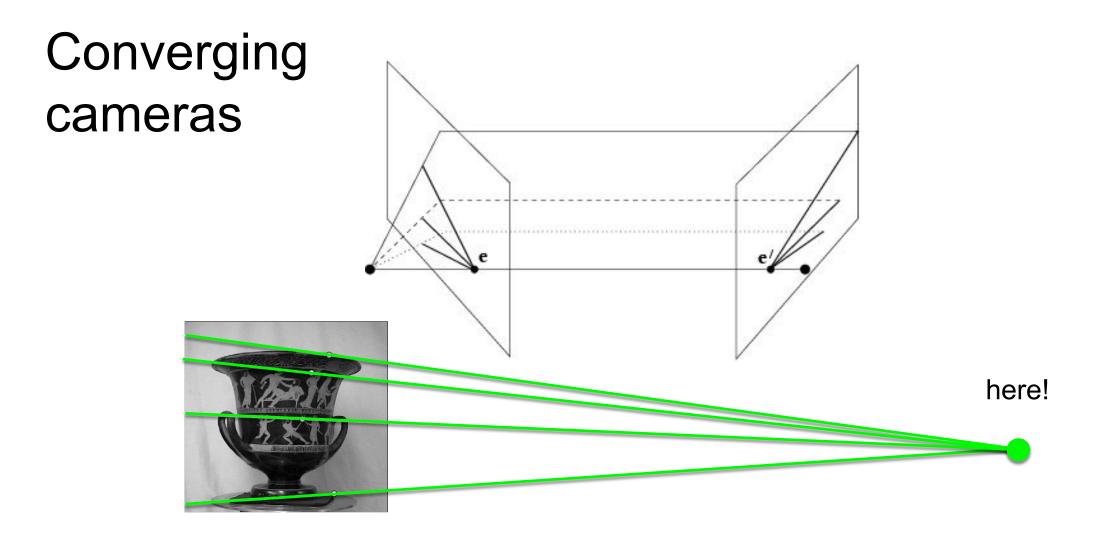
Raymond Yu

Lecture 13 - 48



Raymond Yu

Lecture 13 - 49

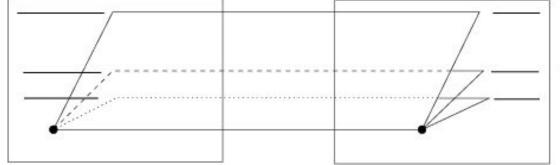


It's not always in the image

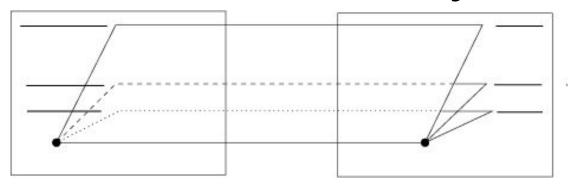
May 12th, 2025

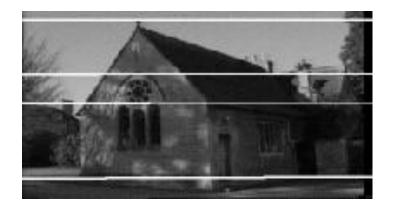
Ray	/mond	Yu

Where is the epipole when the epipolar lines are parallel?



The epipoles can be at infinity



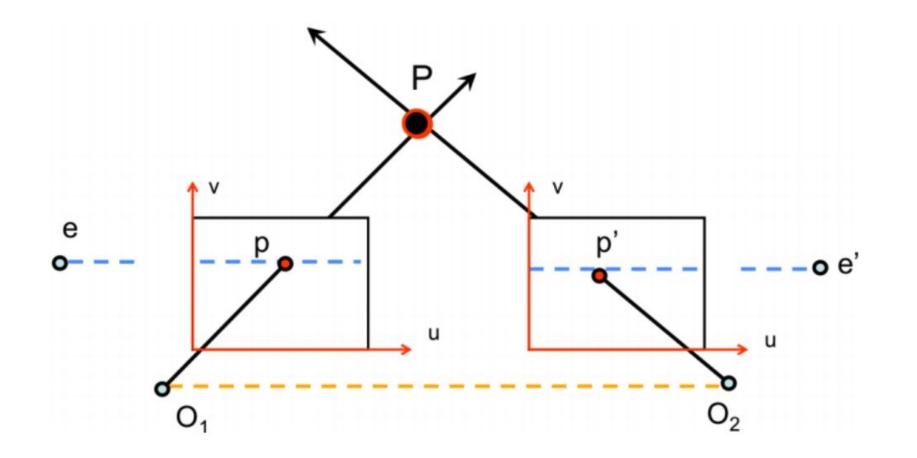




epipole at infinity

Raymond Yu

Lecture 13 - 52



The epipolar constraint is an important concept for stereo vision

Task: Match point in left image to point in right image

Left image

Right image

How would you do it?

Ra	/mon	d Yu	

The epipolar constraint is an important concept for stereo vision

Task: Match point in left image to point in right image

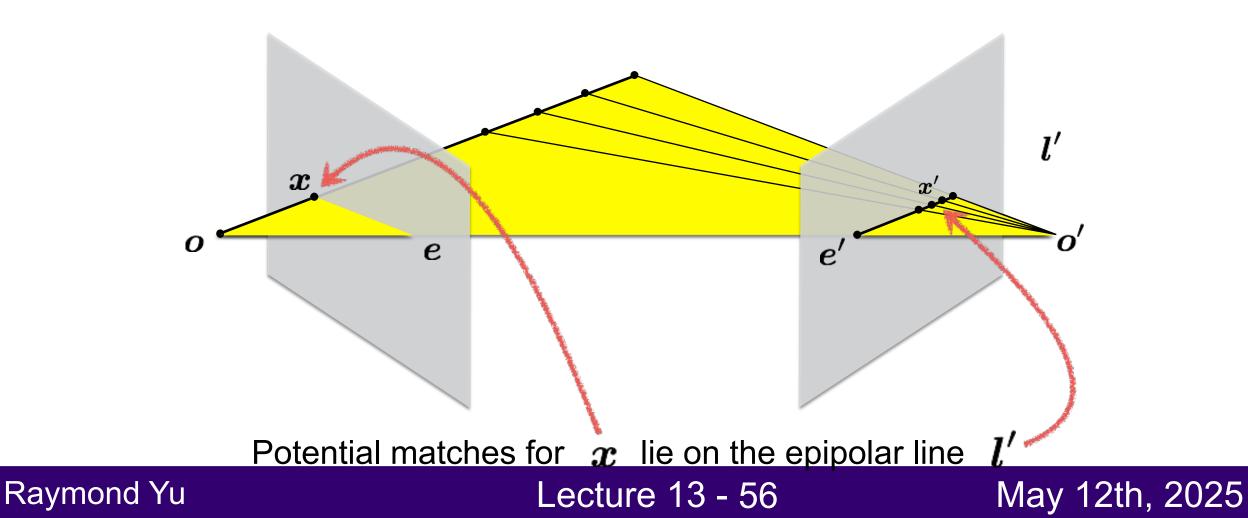
Left image

Right image

How would you do it using epipolar geometry?

Raymond	Yu
---------	----

Let's use the epipolar constraint



How do you compute the epipolar line?

Task: Match point in left image to point in right image

Left image Right image

Want to avoid search over entire image Epipolar constraint reduces search to a single line

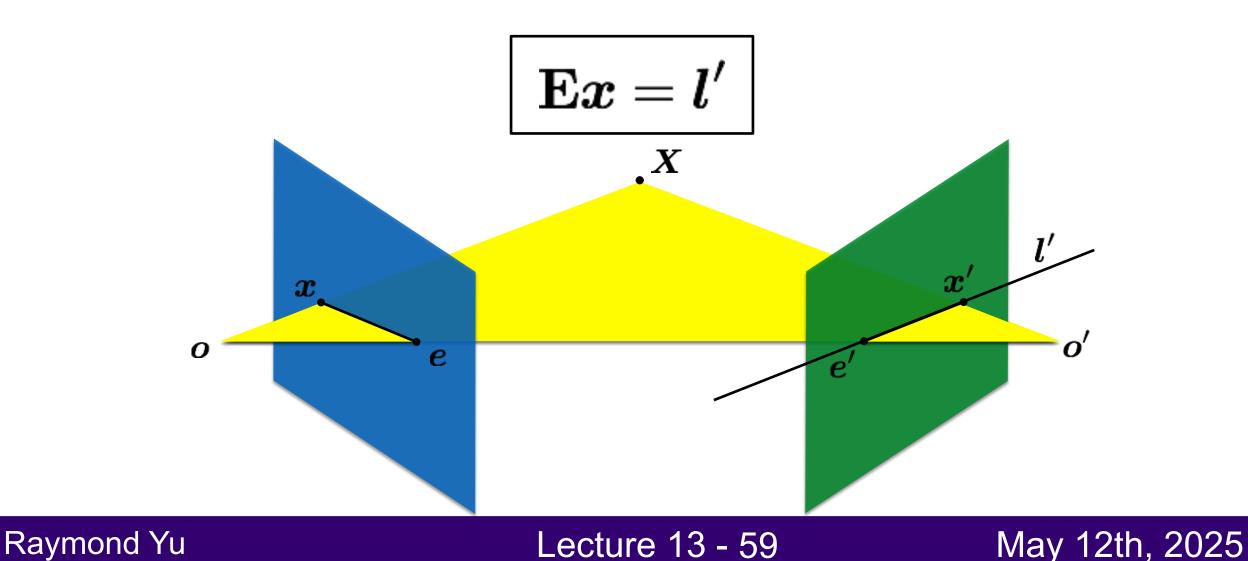
Raymond Yu

Lecture 13 - 57

Today's agenda

- Triangulation
- Epipolar geometry
- Essential matrix
- Fundamental matrix
- Structure from motion

Given a point in one image, multiplying by the **essential matrix** will tell us the **epipolar line** in the second view.

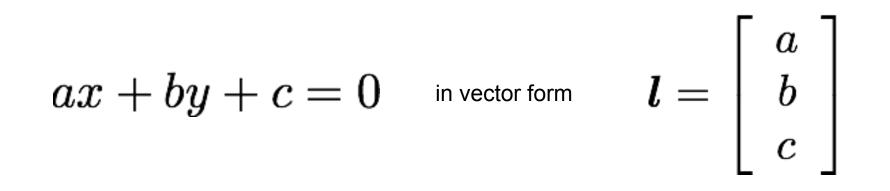


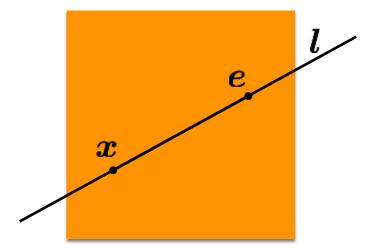
The Essential Matrix is a 3 x 3 matrix that encodes epipolar geometry

Given a point in one image, multiplying by the **essential matrix** will tell us the **epipolar line** in the second image.

Epipolar Line

Raymond Yu

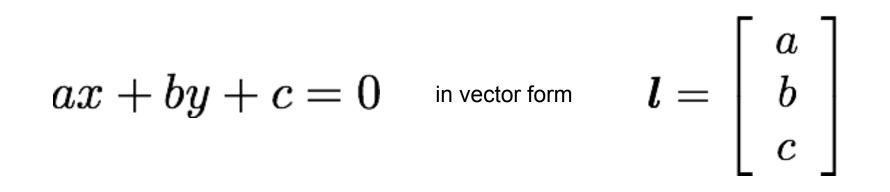


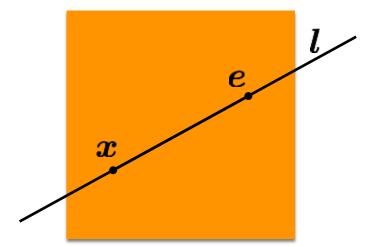


If the point $oldsymbol{x}$ is on the epipolar line $oldsymbol{l}$ then

$$x^{\top}l = ?$$

Epipolar Line



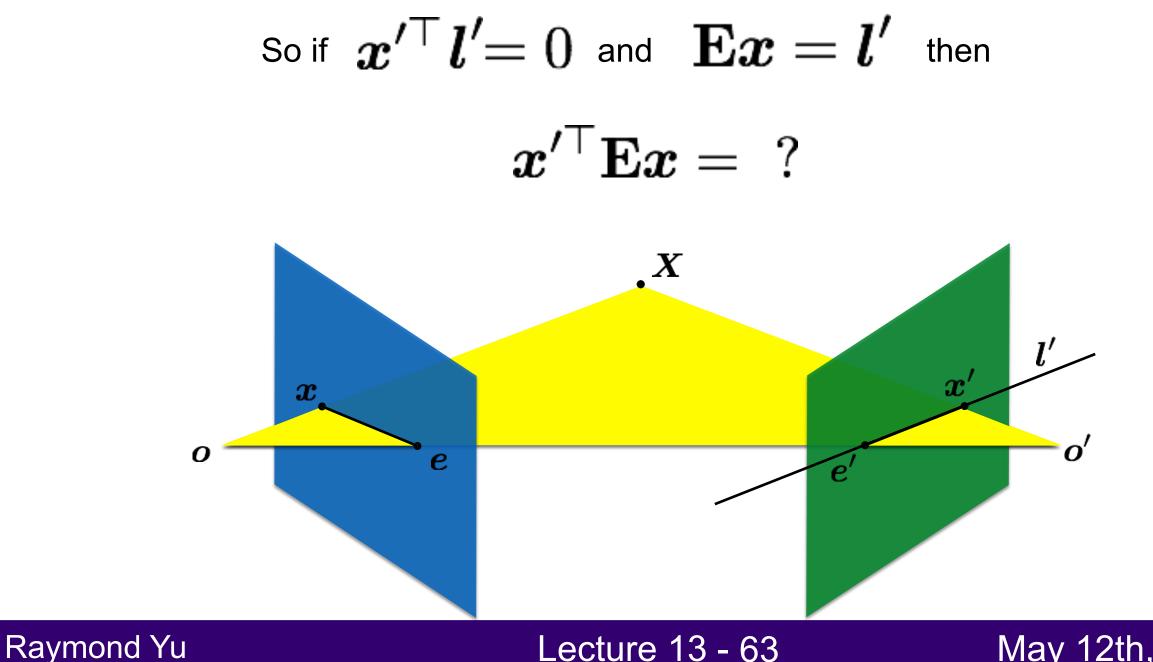


If the point $oldsymbol{x}$ is on the epipolar line $oldsymbol{l}$ then

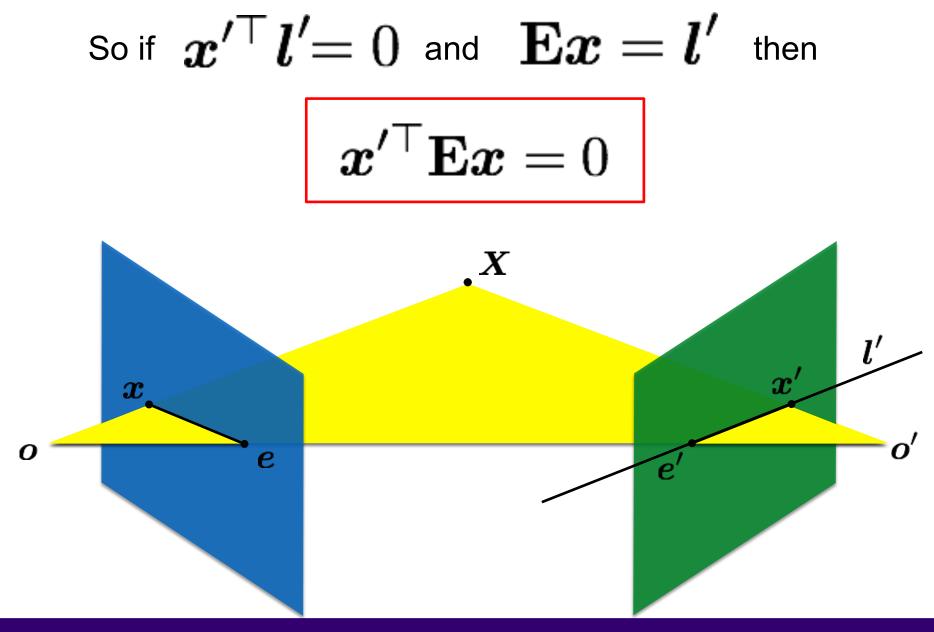
 $\boldsymbol{x}^{\top}\boldsymbol{l}=0$

Raymond Yu

Lecture 13 - 62



Lecture 13 - 63



Raymond Yu

Lecture 13 - 64

Essential Matrix vs Homography

What's the difference between the essential matrix and a homography?

They are both 3 x 3 matrices but ...

 $l' = \mathbf{E} x$

Essential matrix maps a **point** to a **line**

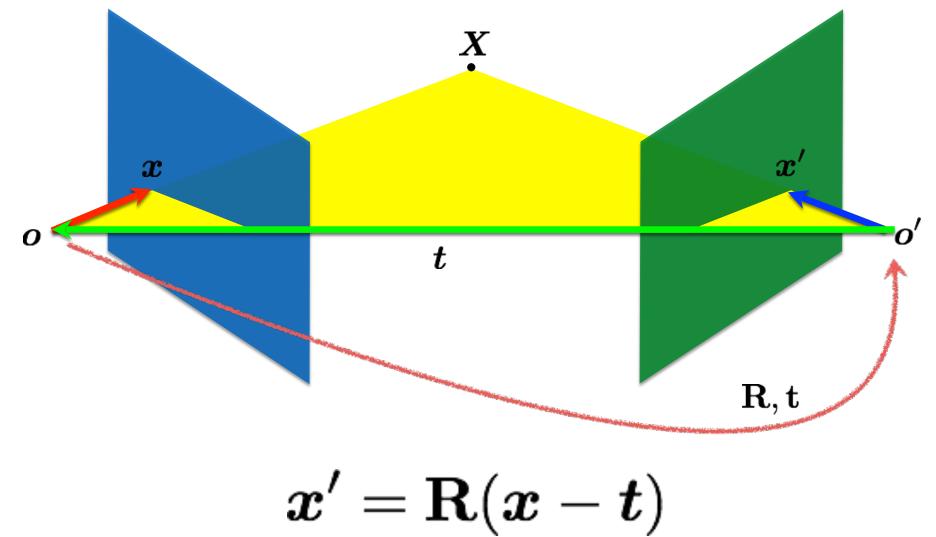
x' = Hx

Homography maps a **point** to a **point**

Raymond Yu

Lecture 13 - 65

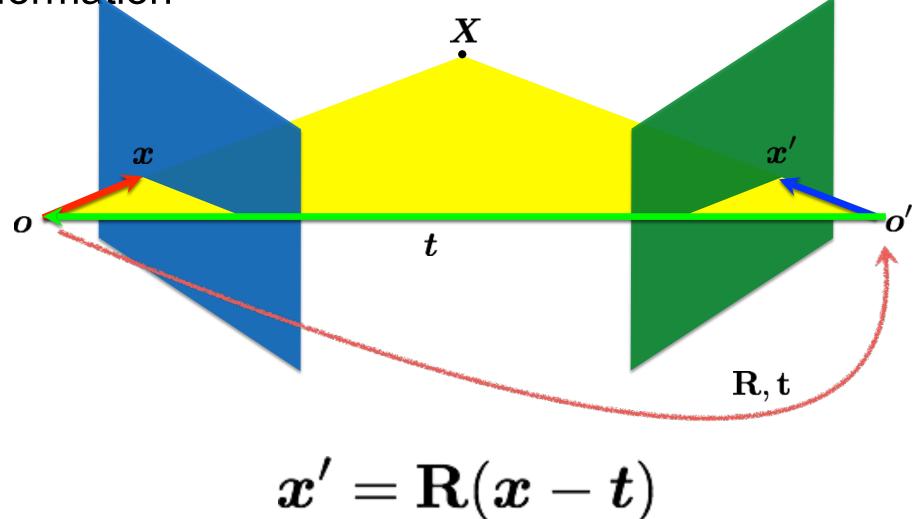
Where does the essential matrix come from?



Raymond Yu

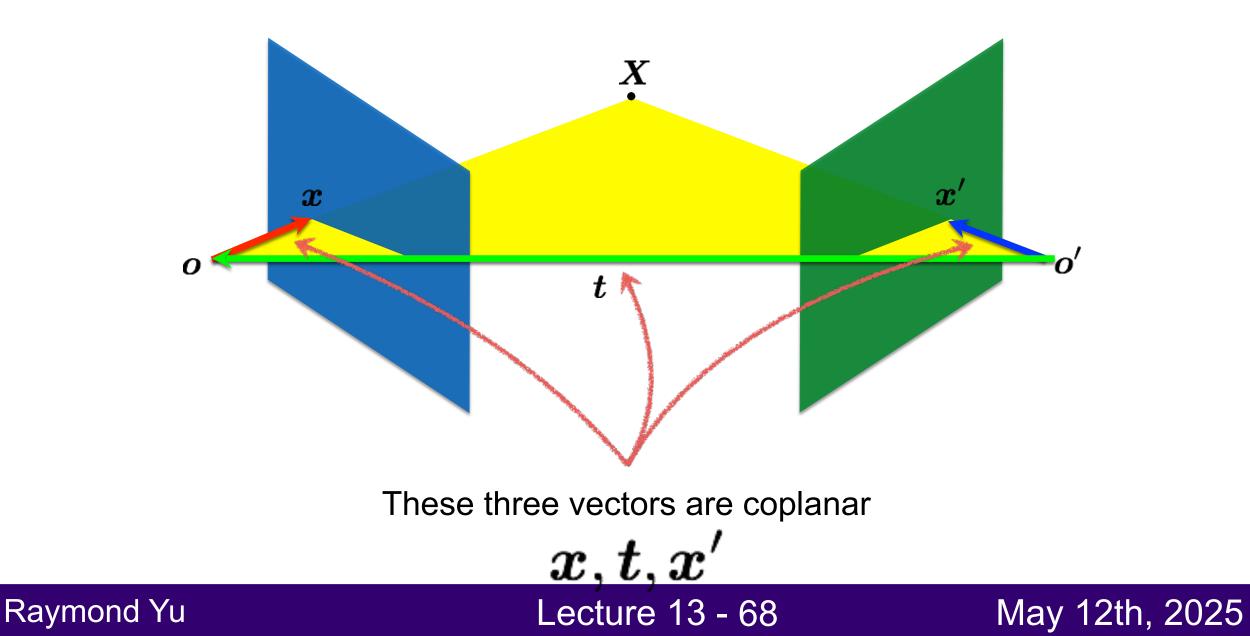
Lecture 13 - 66

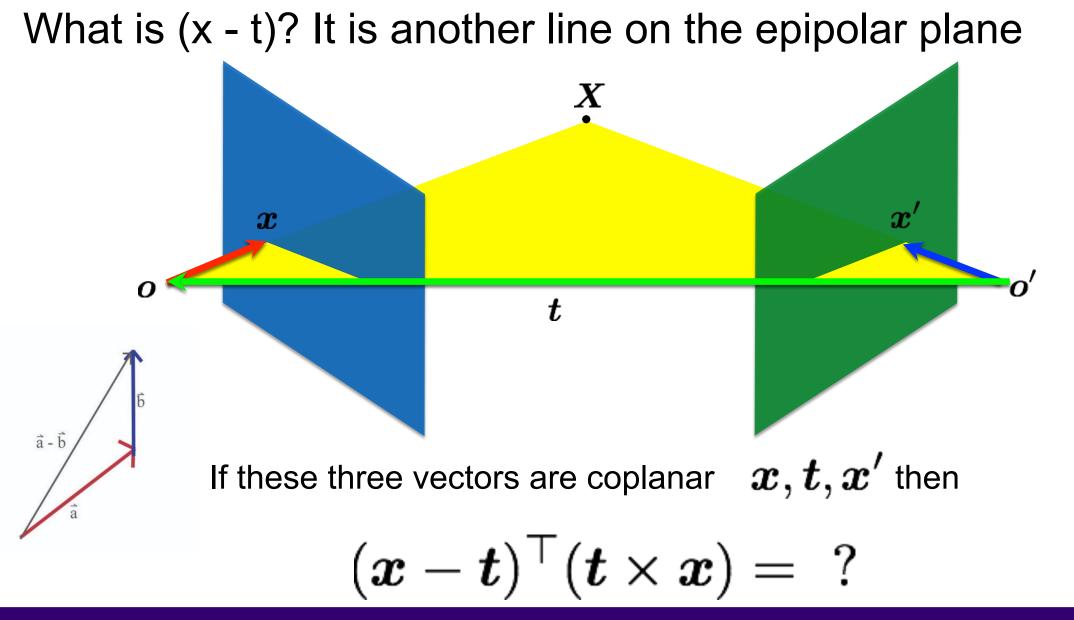
Camera-camera transformation is just like **world-camera** transformation



Raymond Yu

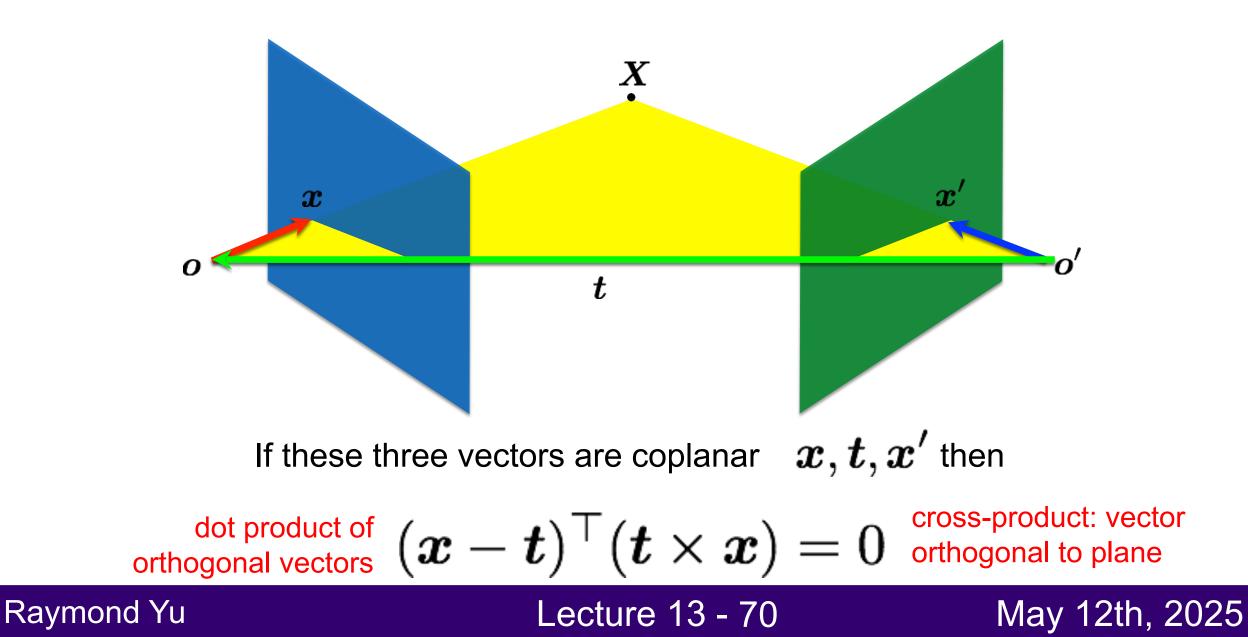
Lecture 13 - 67





Raymond Yu

Lecture 13 - 69



putting it together

$$\boldsymbol{x}' = \mathbf{R}(\boldsymbol{x} - \boldsymbol{t}) \qquad (\boldsymbol{x} - \boldsymbol{t})^{\top} (\boldsymbol{t} \times \boldsymbol{x}) = 0$$

Substituting (x-t):

$$egin{aligned} oldsymbol{x}' &= \mathbf{R}(oldsymbol{x} - oldsymbol{t}) & (oldsymbol{x} - oldsymbol{t})^ op (oldsymbol{t} imes oldsymbol{x}) &= 0 \ & (oldsymbol{x}'^ op \mathbf{R})(oldsymbol{t} imes oldsymbol{x}) &= 0 \end{aligned}$$

Cross product reminder:

$$m{a} imes m{b} = \left[egin{array}{c} a_2 b_3 - a_3 b_2 \ a_3 b_1 - a_1 b_3 \ a_1 b_2 - a_2 b_1 \end{array}
ight]$$

Can also be written as a matrix multiplication

$$\boldsymbol{a} \times \boldsymbol{b} = [\boldsymbol{a}]_{\times} \boldsymbol{b} = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Raymond Yu

Lecture 13 - 73

Use the skew-symmetric matrix to represent the cross product

$$egin{aligned} oldsymbol{x}' &= \mathbf{R}(oldsymbol{x} - oldsymbol{t}) & (oldsymbol{x} - oldsymbol{t})^ op (oldsymbol{t} imes oldsymbol{x}) &= 0 \ & (oldsymbol{x}'^ op \mathbf{R})([oldsymbol{t} imes]oldsymbol{x}) &= 0 \end{aligned}$$

Raymond Yu

Use the skew-symmetric matrix to represent the cross product

$$egin{aligned} oldsymbol{x}' &= \mathbf{R}(oldsymbol{x} - oldsymbol{t})^ op (oldsymbol{x} \times oldsymbol{x}) &= 0 \ & (oldsymbol{x}'^ op \mathbf{R})([oldsymbol{t} imes]oldsymbol{x}) &= 0 \ & oldsymbol{x}'^ op (\mathbf{R}[oldsymbol{t} imes])oldsymbol{x} &= 0 \end{aligned}$$

Raymond Yu

This is the essential matrix

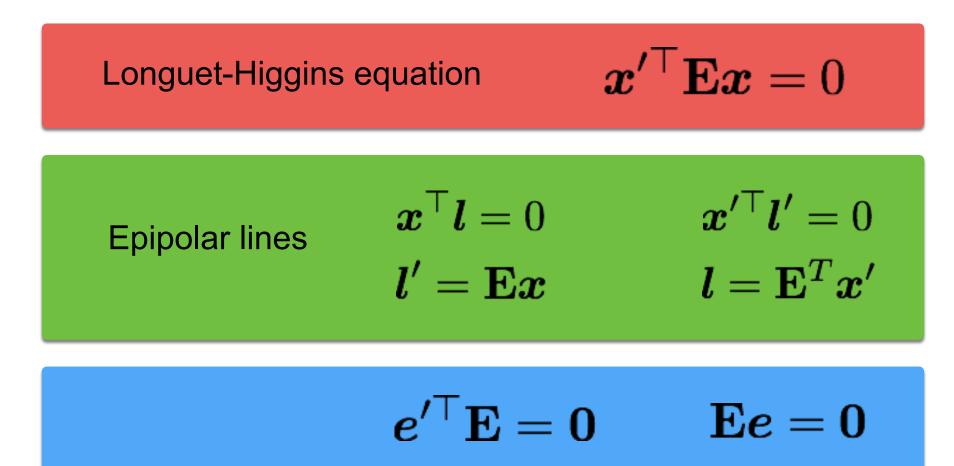
$$egin{aligned} oldsymbol{x}' &= \mathbf{R}(oldsymbol{x} - oldsymbol{t})^{ op}(oldsymbol{t} imes oldsymbol{x}) &= 0 \ (oldsymbol{x}'^{ op} \mathbf{R})([oldsymbol{t} imes]oldsymbol{x}) &= 0 \ oldsymbol{x}'^{ op}(oldsymbol{R}[oldsymbol{t} imes])oldsymbol{x} &= 0 \ oldsymbol{x}'^{ op} \mathbf{E}oldsymbol{x} &= 0 \ oldsymbol{t} oldsymbol{t} \mathbf{x}'^{ op} \mathbf{E}oldsymbol{x} &= 0 \ oldsymbol{t} \mathbf{x}'^{ op} \mathbf{E}oldsymbol{x} = \mathbf{x}'^{ op} \mathbf{E}oldsymbol{x} = \mathbf{x}'^{ op} \mathbf{E}oldsymbol{t} \mathbf{x} = \mathbf{x}'^{ op} \mathbf{E}oldsymbol{x} = \mathbf{x}'^{ op} \mathbf{x}'^{ op} \mathbf{x}'^{ op} \mathbf{x} = \mathbf{x}'^{ op} \mathbf{x}'$$

Lecture 13 - 76

May 12th, 2025

Raymond Yu

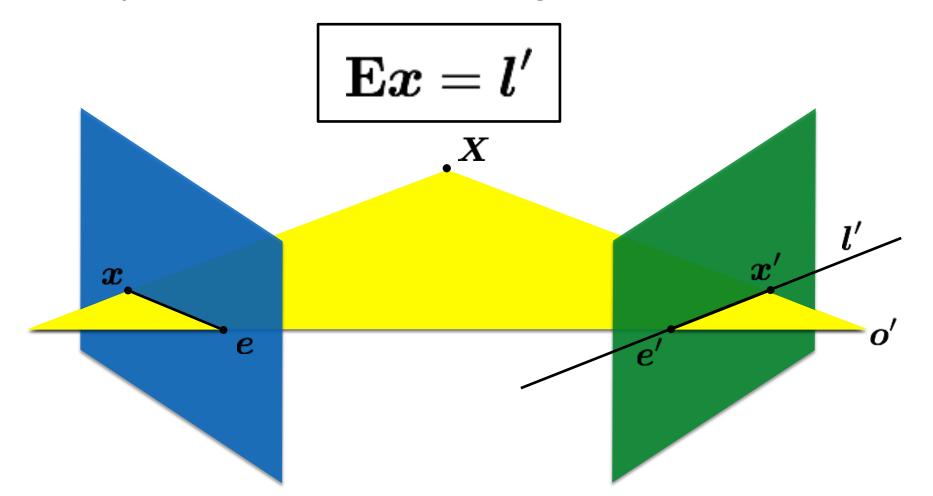
Summary



Raymond Yu

Lecture 13 - 77

Everything we have done so far assumes: we have camera coordinates of pixels but **x** can only be calculated in image coordinates



Raymond Yu

Lecture 13 - 78

Today's agenda

- Triangulation
- Epipolar geometry
- Essential matrix
- Fundamental matrix
- Structure from motion

 $\hat{\boldsymbol{x}}^{\prime \top} \mathbf{E} \hat{\boldsymbol{x}} = 0$

The essential matrix operates on 2D points coordinates in

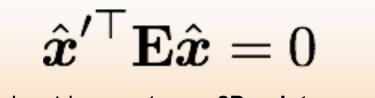
the camera coordinate system

$$\hat{\boldsymbol{x}'} = \mathbf{K}'^{-1} \boldsymbol{x}'$$

$$\hat{m{x}} = \mathbf{K}^{-1} m{x}$$

point

point



The essential matrix operates on 2D points coordinates in

the camera coordinate system

$$\hat{x'} = \mathbf{K}'^{-1}x'$$

$$\hat{m{x}} = \mathbf{K}^{-1}m{x}$$
camera imag

May 12th, 2025

Writing out the epipolar constraint in terms of image coordinates

$$oldsymbol{x}'^ op(\mathbf{K}'^{- op}\mathbf{E}\mathbf{K}^{-1})oldsymbol{x}=0$$

 $oldsymbol{x}'^ op\mathbf{F}oldsymbol{x}=oldsymbol{0}$

Same equation works in image coordinates!

$$\boldsymbol{x}^{\prime \top} \mathbf{F} \boldsymbol{x} = 0$$

it maps pixels to epipolar lines

Longuet-Higgins equation

Epipolar lines
$$egin{array}{ccc} m{x}^{ op}m{l}=0 & m{x}'^{ op}m{l}'=0 \ m{l}=m{L}^Tm{x} & m{l}=m{L}^Tm{x}' \end{array}$$

 $x'^{\top}\mathbf{E}x = 0$

Epipoles $e'^{ op} \mathbf{\overline{E}} = \mathbf{0}$ $\mathbf{\overline{E}} e = \mathbf{0}$

(points in **image** coordinates)

Raymond Yu

Lecture 13 -

Breaking down the fundamental matrix

$\mathbf{F} = \mathbf{K}'^{-\top} \mathbf{E} \mathbf{K}^{-1}$ $\mathbf{F} = \mathbf{K}'^{-\top} [\mathbf{t}_{\times}] \mathbf{R} \mathbf{K}^{-1}$

Depends on both intrinsic and extrinsic parameters

Another way: The 8-point algorithm solves for F given a list of corresponding points (x, x')

Assume you have *M* matched *image* points

$$\{\boldsymbol{x}_m, \boldsymbol{x}_m'\}$$
 $m = 1, \dots, M$

Each correspondence should satisfy

$$\boldsymbol{x}_m^{\prime op} \mathbf{F} \boldsymbol{x}_m = 0$$

Raymond Yu

Each corresponding set of points (x, x') will give us one equation

· —

Each corresponding set of points (x, x') will give us one equation

$$\boldsymbol{x}_m^{\prime op} \mathbf{F} \boldsymbol{x}_m = 0$$

$$\begin{bmatrix} x'_{m} & y'_{m} & 1 \end{bmatrix} \begin{bmatrix} f_{1} & f_{2} & f_{3} \\ f_{4} & f_{5} & f_{6} \\ f_{7} & f_{8} & f_{9} \end{bmatrix} \begin{bmatrix} x_{m} \\ y_{m} \\ 1 \end{bmatrix} = 0$$
$$x_{m}x'_{m}f_{1} + x_{m}y'_{m}f_{2} + x_{m}f_{3} +$$
$$y_{m}x'_{m}f_{4} + y_{m}y'_{m}f_{5} + y_{m}f_{6} +$$
$$x'_{m}f_{7} + y'_{m}f_{8} + f_{9} = 0$$

Raymond Yu

Lecture 13 - 87

Like always, we can re-write it as a linear equation with M corresponding pairs of points:

Solve using SVD!

Raymond Yu

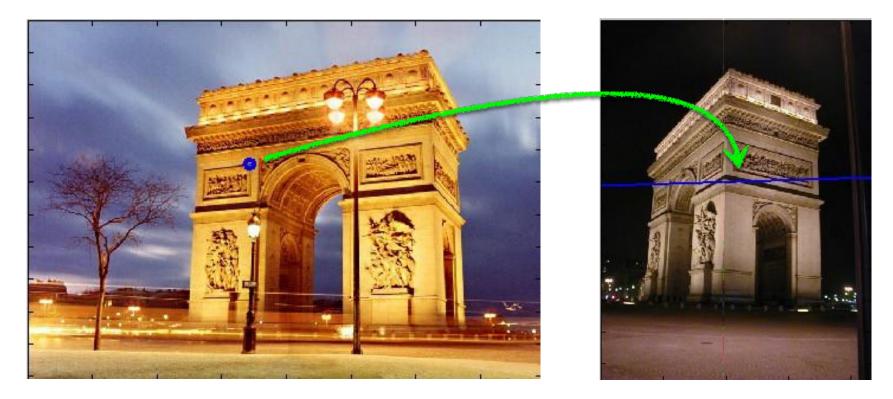
Lecture 13 - 88

You can find correspondences using Harris + RANSAC

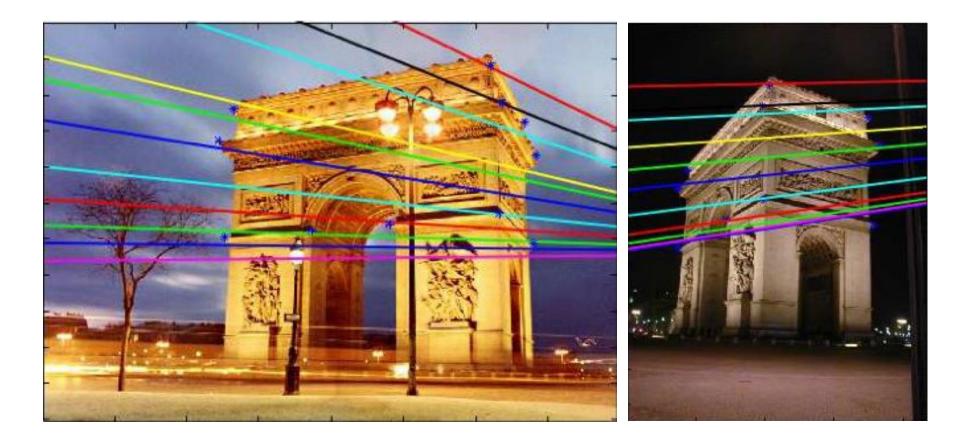
Raymond Yu

You can use the corresponding points to calculate F

Once you have F, you can map points to epipolar lines:



Here are a bunch of epipolar lines across these two images



Raymond Yu

Today's agenda

- Triangulation
- Epipolar geometry
- Essential matrix
- Fundamental matrix
- Structure from motion

Structure-from-Motion

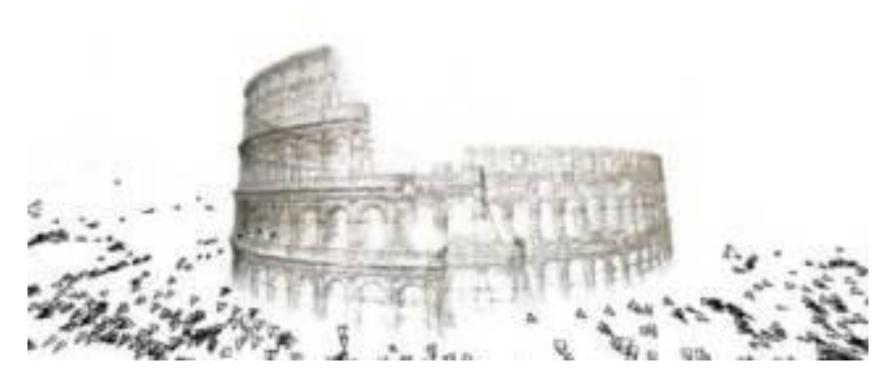
Given many images, how can we

- a) figure out where they were all taken from?
- b) build a 3D model of the scene?

N. Snavely, S. Seitz, and R. Szeliski, <u>Photo tourism: Exploring photo collections in 3D</u>, SIGGRAPH 2006. <u>http://phototour.cs.washington.edu/</u>

Raymond Yu

Large-scale structure-from-motion

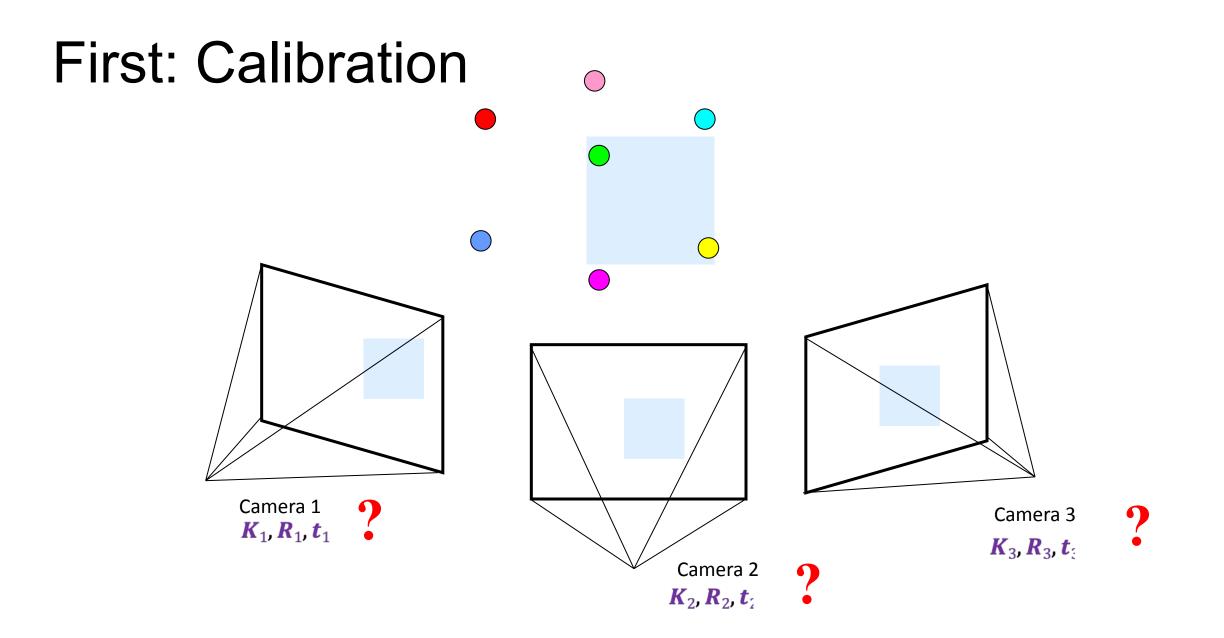


Lecture 13 - 94

Dubrovnik, Croatia. 4,619 images (out of an initial 57,845 downloaded from Flickr). 3.5M points!

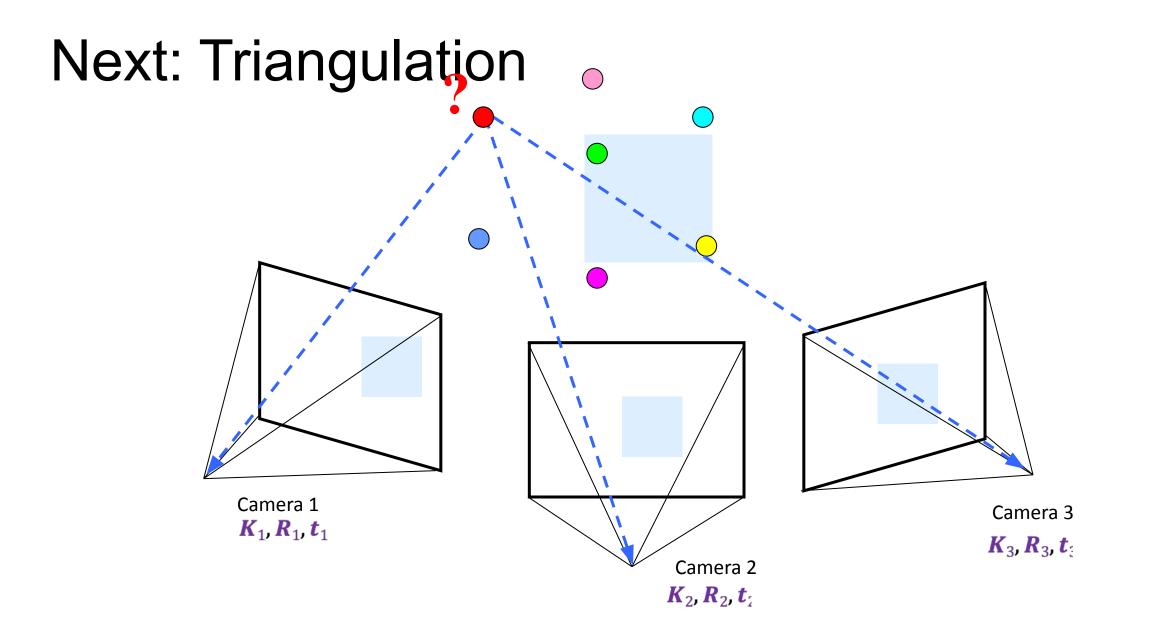
Raymond Yu

Building Rome in a Day, Agarwal et al, ICCV'09 http://grail.cs.washington.edu/rome/



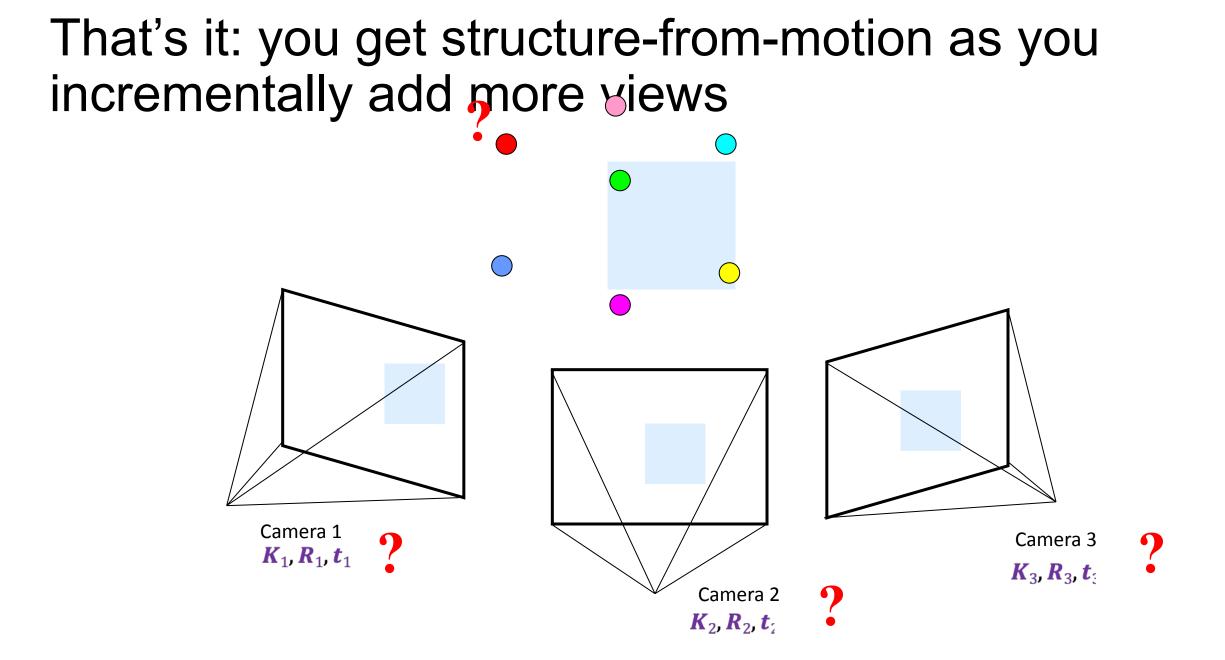
Raymond Yu

Lecture 13 - 95



Raymond Yu

Lecture 13 - 96

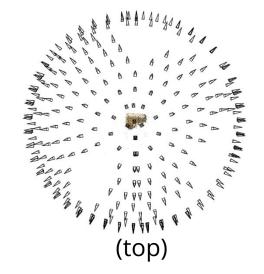


Raymond Yu

Lecture 13 - 97

Structure-from-Motion

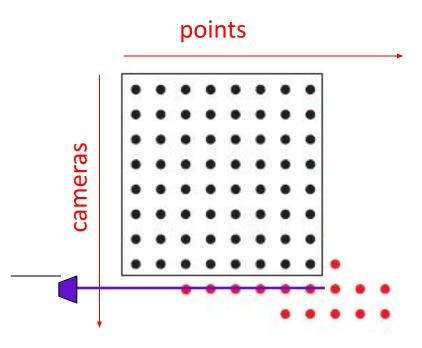
Reconstruction (side)



Raymond Yu

Incremental Structure-from-Motion

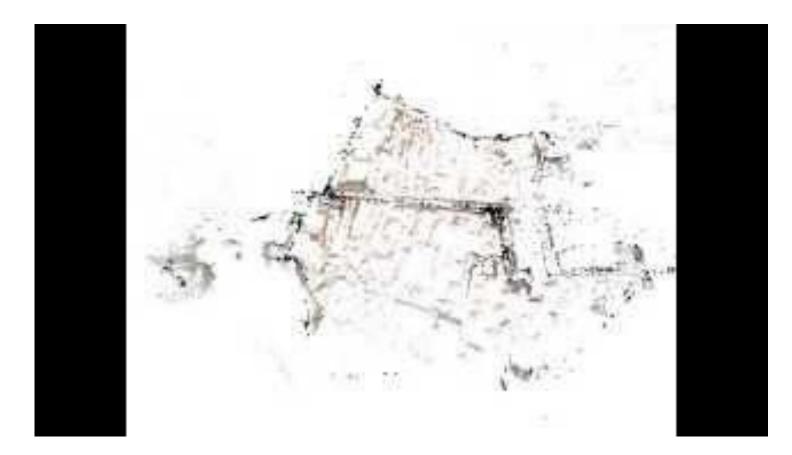
- Estimate motion between two images by calculating the fundamental matrix
- Estimate 3D structure by triangulation
- For each additional view:
 - Determine motion of new camera using all the known 3D points that have correspondence in the new image
 - Add new structure by estimating the new points in the new image



Raymond Yu

Lecture 13 -

Incremental structure from motion



Time-lapse reconstruction of Dubrovnik, Croatia, viewed from above

Raymond Yu

Lecture 13 - 100

COLMAP

Sparse model of central Rome using 21K photos produced by COLMAP's SfM pipeline.

Dense models of several landmarks produced by COLMAP's MVS pipeline.

https://colmap.github.io/

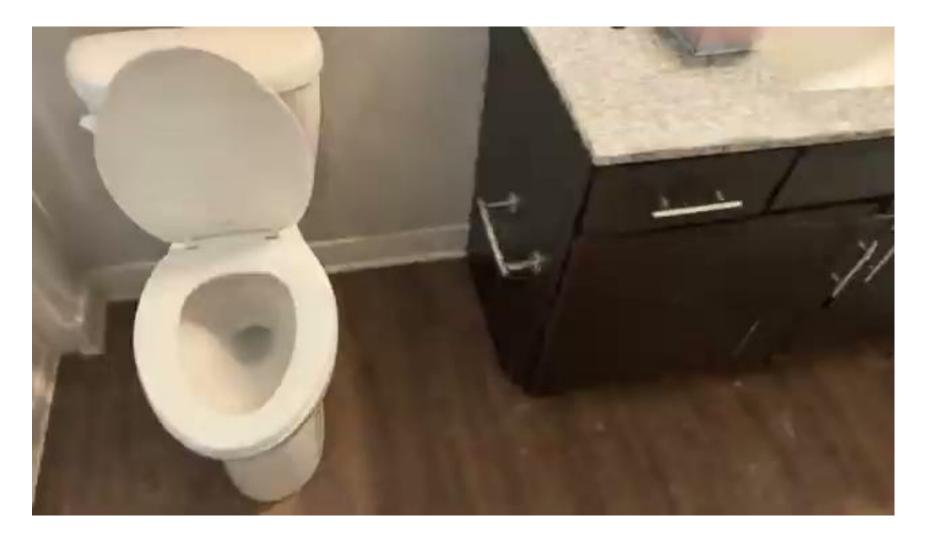
Raymond Yu

Lecture 13 - 101

DRAWER: Digital Reconstruction and Articulation With Environment Realism CVPR 2025.

Raymond Yu

Raymond Yu



http://drawer-art.github.io/

May 12th, 2025

Raymond Yu

Creating games in our reconstructed world

Dancing??

