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Administrative
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Today’s agenda
● Optical flow
● Lucas-Kanade method
● Pyramids for large motion
● Horn-Schunk method
● Segmentation from motion
● Tracking
● Applications

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005]
http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf
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From images to videos
● A video is a sequence of frames captured over time
● Now our image data is a function of space (x, y) and time (t)
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Why is motion 
useful?
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Why is motion 
useful?
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Optical flow

● Definition: optical flow is the apparent motion of brightness 
patterns in the image

● Note: apparent motion can be caused by lighting changes without 
any actual motion
○ Think of a uniform rotating sphere under fixed lighting (has 

motion but no optical flow)
○ vesus a stationary sphere under moving illumination (no motion 

but has optical flow)

GOAL: Recover image motion at each pixel from optical flow
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Optical flow 
without motion!
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Picture courtesy of Selim Temizer - Learning and Intelligent Systems (LIS) Group, MIT 

Optical flow

of an image gives us 
the apparent motion 
of every pixel

It is a function of the 
spatio-temporal 
image brightness 
variations 
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● Given two subsequent frames, 
● estimate the apparent motion field u(x,y), v(x,y) between them
● u(x, y) measuring the horizontal movement of the pixel at location 

(x, y).
● v(x, y) measures the vertical movement.

 
● Together, the pixel at (x, y, t-1) goes to (x+u, y+v, t)

Formalizing optical flow

I(x,y,t–1) I(x,y,t)
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3 assumptions when estimating optical flow

1. small motions: points do not move very far

2. spatial coherence: points move like their neighbors 

3. brightness constancy: the brightness of a pixel remains constant 
between consecutive frames
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Key Assumptions: small motions

* Slide from Michael Black, CS143 2003

The small motions assumption: 
Between consecutive frames the 
change in pixel locations is small 
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Key Assumptions: spatial coherence
 

* Slide from Michael Black, CS143 2003

The spatial coherence assumption: 
Neighboring pixels typically move 
together because they belong to the 
same rigid object. 
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Key Assumptions: brightness constancy

* Slide from Michael Black, CS143 2003

The brightness constancy 
assumption: Average brightness of 
pixels in a patch stays the same across 
consecutive frames, although their 
location might change
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● Brightness Constancy Equation:

I(x,y,t–1) I(x,y,t)

The brightness constancy constraint

17



Ruta Desai, Chun-Liang Li Apr 30, 2025Lecture 10 -

● Brightness Constancy Equation:

Linearizing the right side using Taylor expansion:

I(x,y,t–1) I(x,y,t)

Hence,

Image derivative along x

The brightness constancy constraint

Image derivative along t
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Derivative filters are now 3 dimensional 

19

Derivative in x direction now has a new dimension looking at 
past and future frames

Backward derivative at 
frame t 

Derivative in the x direction doesn’t look 
at frame t+1

Derivative in x doesn’t look at
frame t-1
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Similar for y direction
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frame t 

Derivative in the x direction doesn’t look 
at frame t+1
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New backward derivative in the time t dimension
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The brightness constancy constraint

● Q. How many equations and unknowns per pixel?
•One equation, two unknowns (u,v)

Can we use this equation to recover image motion (u,v) at each 
pixel?
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The aperture problem
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The aperture problem

Perceived motion
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The aperture problem

Actual motion
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The aperture problem

Perceived motion
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The barber pole illusion

http://en.wikipedia.org/wiki/Barberpole_illusion
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The brightness constancy constraint

● Q. How many equations and unknowns per pixel?

Problem: The component of the flow perpendicular to the gradient (i.e., 
parallel to the edge) cannot be measured

edge

(u,v)

(u’,v’)

gradient

(u+u’,v+v’)

If (u, v ) satisfies the equation, 
so does (u+u’, v+v’ ) if 

•One equation, two unknowns (u,v)

Can we use this equation to recover image motion (u,v) at each 
pixel?
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Today’s agenda

● Optical flow
● Lucas-Kanade method
● Pyramids for large motion
● Horn-Schunk method
● Segmentation from motion
● Tracking
● Applications

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005]
http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf
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How to get more equations for a pixel?
● Add in the Spatial coherence constraint:
● Assume the pixel’s neighbors have the same (u,v)

○ If we use a 5x5 window, that gives us 25 equations per pixel

B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In Proceedings of the International Joint 
Conference on Artificial Intelligence, pp. 674–679, 1981.
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Lucas-Kanade flow
● Overconstrained linear system:
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Lucas-Kanade flow
● Overconstrained linear system

The summations are over all pixels in the 5 x 5 window

Multiplying by AT to solve for d gives us:

33



Ruta Desai, Chun-Liang Li Apr 30, 2025Lecture 10 -

Conditions for solving this Lucas-Kanade equation

Q. Does this remind anything to you?

When is This Solvable?
• ATA should be invertible 
• ATA should not be too small, otherwise it is close to being non-invertible

– eigenvalues λ
1
 and λ 

2
 of ATA should not be too small

• ATA should be well-conditioned
–  λ 

1
/ λ 

2
 should not be too large (λ 

1
 = larger eigenvalue)
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• Eigenvectors and eigenvalues of ATA relate to edge direction and 
magnitude 

• The eigenvector associated with the larger eigenvalue points in the 
direction of fastest intensity change

• The other eigenvector is orthogonal to it

M = ATA is the Harris corner detector!
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Interpreting the eigenvalues

λ1

λ2

“Corner”
λ1 and λ2 are large,
 λ1 ~ λ2

λ1 and λ2 are small “Edge” 
λ1 >> λ2

“Edge” 
λ2 >> λ1

“Flat” 
region

Classification of image points using eigenvalues of the second moment 
matrix:
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Edges are harder to track

– gradients very large or very small
– large λ

1
, small λ

2

All the points on an edge 
look the same. It is hard to 
estimate where each point 
will move to.
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Low-texture region

– gradients have small magnitude

– small λ
1
, small λ

2

Low-texture regions have 
small eigenvalues. The 
matrix is harder to invert 
and get accurate 
estimates of optical flow
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These points are easier to 
estimate optical flow for.

This makes sense 
intuitively: You could say 
that corners and blobs 
(things that are easier to 
detect) are easier to track 
over time.

High-texture region

– gradients are different, large magnitudes

– large λ
1
, large λ

2
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Errors in Lucas-Kanade

What are the potential causes of errors in this procedure?
○ Suppose ATA is easily invertible
○ Suppose there is not much noise in the image

• When our assumptions are violated
– Brightness constancy is not satisfied
– The motion is not small
– A point does not move like its neighbors

• window size is too large
• what is the ideal window size?
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Improving accuracy
● Recall our small motion assumption

– Can solve using Newton’s method (which is out of scope for this class)
– Lukas-Kanade method does one iteration of Newton’s method

• Better results are obtained via more iterations

• This is not exact
– To do better, we need to add higher order terms back in:

higher order terms

• This is a polynomial root finding problem
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Iterative Lucas-Kanade Algorithm

1. Estimate velocity at each pixel by solving Lucas-Kanade equations
2. Warp I(t-1) towards I(t) using the estimated flow field

Calculate I(t) using the calculated optical flow
3. Repeat until convergence
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4. Smaller motions might move in a direction opposite to motion
– E.g. a cheetah’s muscles move opposite direction of motion. 

3. Lighting changes can make things seem to move 
– for example, if a singular light source moves around a stationary sphere

When do the optical flow assumptions fail?

In other words, in what situations does the displacement of pixel patches 
not represent physical movement of points in space?

1. Well, television (movies) screens appear to contain objects in motion
– Yet our TVs and monitors are actually stationary

2. Motion that doesn’t cause changes in pixels
– e.g. A uniform rotating sphere. Nothing seems to move, yet it is rotating 
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Today’s agenda
● Optical flow
● Lucas-Kanade method
● Pyramids for large motion
● Horn-Schunk method
● Segmentation from motion
● Tracking
● Applications
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• Small motion:  points do not move very far

• Brightness constancy:  the brightness of a pixel remains 
constant between consecutive frames

• Spatial coherence: points move like their neighbors

Key assumptions (Errors in Lucas-Kanade)
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Revisiting the small 
motion assumption

● Is this motion small enough?
○ Probably not—it’s much larger 

than one pixel (2nd order terms 
dominate)

○ How might we solve this 
problem?
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Reduce the 
resolution so that 
assumption 
holds
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image Iimage 
H

Gaussian pyramid of image t-1 Gaussian pyramid of image t

frame tFrame t-1 u=10 
pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

Coarse-to-fine optical flow estimation
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image Iimage J

Gaussian pyramid of image t-1 Gaussian pyramid of image t

frame tframe t-1

Coarse-to-fine optical flow estimation

run iterative L-K

run iterative L-K

warp & 
upsample

.

.

.
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Optical Flow 
Results
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• http://www.ces.clemson.edu/~stb/klt/
• OpenCV

Optical Flow 
Results

51
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● Optical flow
● Lucas-Kanade method
● Pyramids for large motion
● Horn-Schunk method
● Segmentation from motion
● Tracking
● Applications

Today’s agenda

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005]
http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf
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• Small motion:  points do not move very far

• Brightness constancy:  the brightness of a pixel remains 
constant between consecutive frames

• Spatial coherence: points move like their neighbors

Key assumptions (Errors in Lucas-Kanade)
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Horn-Schunk method for optical flow
● The flow is formulated as a global energy function which is should be 

minimized:
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Horn-Schunk method for optical flow
● The flow is formulated as a global energy function which is should be 

minimized:
● The first part of the function is the brightness constancy.
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Horn-Schunk method for optical flow
● The flow is formulated as a global energy function which is should be 

minimized:
● The second part is the smoothness constraint. It’s trying to make sure that 

the changes between pixels are small.
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Horn-Schunk method for optical flow
● The flow is formulated as a global energy function which is should be 

minimized:
● 𝞪 is a regularization constant. Larger values of 𝞪 lead to smoother flows 

across time.
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Horn-Schunk method for optical flow

● The flow is formulated as a global energy function which is should be 
minimized:

● This minimization can be solved by taking the derivative with respect to u 
and v, we get the following 2 equations:
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Horn-Schunk method for optical flow

● By taking the derivative with respect to u and v, we get the following 2 
equations:

● Where                           is called the Lagrange operator. It is hard to 
calculate. So we estimate it using 
Intuition: Lagrange is the second derivative. The estimation measures the 
deviation from the average change.

● where             is the weighted average of u measured at (x,y) over its 
neighborhood of 5 x 5 pixels
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● Now we substitute                                                 in:

● To get:

● Which is linear in u and v and can be solved analytically for each pixel 
individually. 

Horn-Schunk method for optical flow
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● Analytical solution for:

● is:

Horn-Schunk method for optical flow
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Iterative Horn-Schunk

● Similar to iterative Lucas-Kanade, there is an iterative version of 
Horn-Schunk algorithm.

● Since the solution depends on    and    , this calculation becomes more 
accurate as we iteratively update the average flow.

● After each calculate, re-calculate     and  
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What we will learn today?
● Optical flow
● Lucas-Kanade method
● Pyramids for large motion
● Horn-Schunk method
● Segmentation from motion
● Tracking
● Applications
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• Small motion:  points do not move very far

• Brightness constancy:  the brightness of a pixel remains 
constant between consecutive frames

• Spatial coherence: points move like their neighbors

Key assumptions 
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Gestalt – common fate

65



Ruta Desai, Chun-Liang Li Apr 30, 2025Lecture 10 -

Segmentation using motion
● Use optical flow as the feature representation of each 

pixel
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Segmentation using motion
● Use any of the segmentation algorithms: (k-means, Agglomerative clustering, 

mean shift)
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Segmentation using motion
● Use any of the segmentation algorithms: (k-means, Agglomerative clustering, 

mean shift)
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● Use any of the segmentation algorithms: (k-means, Agglomerative clustering, 
mean shift)

Segmentation using motion

J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993.
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Today’s agenda

● Optical flow
● Lucas-Kanade method
● Pyramids for large motion
● Horn-Schunk method
● Segmentation from motion
● Tracking
● Applications
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Single object tracking
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Multiple object tracking
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Tracking with a fixed camera

73



Ruta Desai, Chun-Liang Li Apr 30, 2025Lecture 10 -

Tracking with a fixed camera

74



Ruta Desai, Chun-Liang Li Apr 30, 2025Lecture 10 -

Tracking with a moving camera
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Challenges in Feature tracking
● Figure out which features can be tracked 

○ Efficiently track across frames 
● Some points may change appearance over time 

○ e.g., due to rotation, moving into shadows, etc. 
● Drift: small errors can accumulate over time
● Points may appear or disappear.

○ need to be able to add/delete tracked points.
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What are good features to track?
● Intuitively, we want to avoid smooth regions and edges. But is there a more 

is principled way to define good features?

● What kinds of image regions can we detect easily and consistently? 
○ SIFT blobs!
○ Harris corners!
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Optical flow can help track features

Once we have the features we 
want to track, lucas-kanade or 
other optical flow algorithm can 
help track those features
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Feature-tracking/Mapping

Courtesy of Jean-Yves Bouguet – Vision Lab, California Institute of Technology
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Courtesy of Jean-Yves Bouguet – Vision Lab, California Institute of Technology

80
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Simple KLT tracker
1. Find a good point to track (harris corner)
2. For each Harris corner compute optical flow (translation or affine) 

between consecutive frames. 
3. Link motion vectors in successive frames to get a track for each Harris 

point 
4. Introduce new Harris points by applying Harris detector at every m (10 or 

15) frames 
5. Track new and old Harris points using steps 1‐3
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KLT tracker for fish

Video credit: Kanade82
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Tracking cars

Video credit: Kanade83
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Tracking movement

Video credit: Kanade84
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What we will learn today?
● Optical flow
● Lucas-Kanade method
● Pyramids for large motion
● Horn-Schunk method
● Segmentation from motion
● Tracking
● Applications
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Uses of motion

● Segmenting objects based on motion cues
● Tracking objects
● Learning dynamical models
● Improving video quality

○ Motion stabilization
○ Super resolution

● Recognizing events and activities
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Estimating 3D structure
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Segmenting objects based on motion cues

● Motion segmentation
○ Segment the video into multiple coherently moving objects

S. J. Pundlik and S. T. Birchfield, Motion Segmentation at Any Speed, 
Proceedings of the British Machine Vision Conference  (BMVC) 2006
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Z.Yin and R.Collins, "On-the-fly Object Modeling while Tracking," IEEE Computer Vision and Pattern 
Recognition (CVPR '07), Minneapolis, MN, June 2007. 

Tracking objects

89



Ruta Desai, Chun-Liang Li Apr 30, 2025Lecture 10 -

D. Ramanan, D. Forsyth, and A. Zisserman. Tracking People by Learning their Appearance. PAMI 2007.

Tracker

Recognizing events and activities

90
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W. Choi, K. Shahid, S. Savarese, "What are they doing? : Collective Activity Classification Using Spatio-Temporal Relationship Among 
People", 9th International Workshop on Visual Surveillance (VSWS09) in conjuction with ICCV 09
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Juan Carlos Niebles, Hongcheng Wang and Li Fei-Fei, Unsupervised Learning of Human Action Categories Using 
Spatial-Temporal Words, (BMVC), Edinburgh, 2006. 

Recognizing events and activities
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Crossing – Talking – Queuing – Dancing – jogging 

W. Choi &  K. Shahid & S. Savarese WMC 2010

Recognizing events and activities
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Today’s agenda
● Optical flow
● Lucas-Kanade method
● Horn-Schunk method
● Pyramids for large motion
● Segmentation from motion
● Tracking
● Applications

[Fleet & Weiss, 2005]
http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf

Reading: [Szeliski] Chapters: 8.4, 8.5
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Next time

95

Geometry and cameras
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What does the smoothness regularization doing?
• It’s a sum of squared terms (a Euclidian distance measure).

• We’re putting it in the expression to be minimized.

• => In texture free regions, there is no optical flow

Regularized flow

Optical flow

• => On edges, points will flow to nearest points, solving the aperture problem.
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Dense Optical Flow with Michael Black’s 
method 
● Michael Black took Horn-Schunk’s method one step further, starting from 

the regularization constant:
● Which looks like a quadratic:

● And replaced it with this:

● Why does this regularization work better?
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Affine motion

● Substituting into the brightness constancy 
equation:
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Affine motion

● Substituting into the brightness constancy 
equation:

•  Each pixel provides 1 linear constraint in 6 unknowns

• Least squares minimization:
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How do we estimate the layers?
● 1. Obtain a set of initial affine motion hypotheses

○ Divide the image into blocks and estimate affine motion parameters in each 
block by least squares
■ Eliminate hypotheses with high residual error

•   Map into motion parameter space

•   Perform k-means clustering on affine motion parameters
–Merge clusters that are close and retain the largest clusters to obtain a smaller set of 

hypotheses to describe all the motions in the scene
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○ Divide the image into blocks and estimate affine motion parameters in each 
block by least squares
■ Eliminate hypotheses with high residual error

•   Map into motion parameter space

•   Perform k-means clustering on affine motion parameters
–Merge clusters that are close and retain the largest clusters to obtain a smaller set of 

hypotheses to describe all the motions in the scene
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Synthesizing dynamic textures
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Segmenting objects based on motion cues

● Background subtraction
○ A static camera is observing a scene
○ Goal: separate the static background from the moving foreground
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Super-resolution

Example: A set of low 
quality images
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Super-resolution

Each of these images looks 
like this:
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Super-resolution

The recovery result:
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Problem statement

Slide credit: Yonsei Univ. 

107



Ruta Desai, Chun-Liang Li Apr 30, 2025Lecture 10 -

Problem statement

Slide credit: Yonsei Univ. 
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Problem statement

Slide credit: Yonsei Univ. 
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What we will learn today?
● Feature Tracking
● Simple KLT tracker
● 2D transformations
● Iterative KLT tracker

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005]
http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf
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Problem setting
●  
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KLT objective
●  
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KLT objective

●  
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A little bit of math: Taylor series
●  
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Expanded KLT objective
●  
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Expanded KLT objective
●  
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●  
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Interpreting the H matrix for translation 
transformations
●  

That’s the Harris corner 
detector we learnt in 
class!!!
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Interpreting the H matrix for affine 
transformations

Can you derive this yourself similarly to how we derived 
the translation transformation?
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Overall KLT tracker algorithm
●  
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KLT over multiple frames
● Once you find a transformation for two frames, you will repeat this process 

for every couple of frames.
● Run Harris detector every 15-20 frames to find new features.
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Challenges to consider
● Implementation issues 
● Window size 

○ Small window more sensitive to noise and may miss larger motions 
(without pyramid) 

○ Large window more likely to cross an occlusion boundary (and it’s 
slower) 

○ 15x15 to 31x31 seems typical 
● Weighting the window 

○ Common to apply weights so that center matters more (e.g., with 
Gaussian)
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