# Lecture 9

Saliency and Retargeting

Ruta Desai, Chun-Liang Li



# Administrative

- A2 is due May 2nd





# Administrative

Recitation

- Geometric transformations
- May cover some exam practice questions if time allows as last time

#### Ruta Desai, Chun-Liang Li



# CSE 455 Roadmap

| Pixels                               | Video              | Camera                | Segment                                 | ML                                      |
|--------------------------------------|--------------------|-----------------------|-----------------------------------------|-----------------------------------------|
| Convolutions<br>Edges<br>Descriptors | Motion<br>Tracking | Camera<br>3D Geometry | Segmentation<br>Clustering<br>Detection | Linear Models<br>(Conv) Neural networks |

#### Ruta Desai, Chun-Liang Li



# Today's agenda

- Image retargeting
- Seam carving
- Applications
- Forward algorithm

#### Ruta Desai, Chun-Liang Li



### **Content Retargeting**

#### ВВС

Innovation Culture Arts Travel Earth Video Live





The Year of the Snake is here - and millions ross Asia and the world are welcoming it with family, friends, prayers and plenty of

●LIVE Lunar New Year: Millions

Snake

worldwide welcome the Year of the

Trump offers millions of federal workers eight months' pay to resign The buyout offer to those who do not want to return to the office is part of the president's on to shrink the US government

ins ago US & Canada Australian sect members guilty of

causing girl's death The defendants had denied the diabetic girl here are no official numbers yet on how many people may have been injured or killed at her insulin, believing God would save her, court heard.

Mona Lisa to be moved as part of

In pictures: Kumbh Mela crowd crush

crush at India's huge Kumbh Mela festival

Life sentence for hitman who killed suspect in 1985 Air India bombings

Tanner Fox is one of two hitmen who killed Ripudaman Singh Malik in Canada in 2022. It is still unknown who hired them.

3 hrs ago US & Canad

3 hrs ago | US & Canada

Only from the BBC

'Ambulances zipping past': BBC reporter at site of crowd surge in India

France's president says a second museum entrance will be built, while non-EU residents will also pay more to visit. 10 hrs ago | Europe

48 mins ago Australia

major Louvre overhaul



11 of the best TV shows to watch this February Inside the race for Greenland's mineral wealth From the return of HBO's holiday-resort satire to a political thriller starring Robert De Niro The territory's untapped mineral wealth has caught the eye of both mining firms and and the latest violent period drama from Peaky Blinders creator Stephen Knigh Donald Trump

2 days ago Business

#### 17 hrs ago Culture More news >

How China's 'AI heroes' South Korea plane fire overcame US curbs to stun causes mass evacuation Silicon Valley 15 hrs ago | Asia

Italy's PM investigated over Danish PM in whirlwind release of Libyan war crimes suspect 10 hrs ago | Europe

EU trip as Greenland unease grows 9 hrs ago | Europe

'Half our house is gone': Palestinians face worst fears in north Gaza

PC



 LIVE Worshippers feared killed in crowd crush at India's huge Kumbh Mela festival

There are no official numbers yet on how many people may have been injured or killed at the festival.

#### • In pictures: Kumbh Mela crowd crush

'Ambulances zipping past': BBC reporter at site of crowd surge in India



the Year of the Snake



#### **LIVE** Lunar New Year: Millions worldwide welcome

The Year of the Snake is here - and millions across Asia and the world are welcoming it, with family, friends, prayers and plenty of food

#### Trump offers millions of federal workers eight months' pay to resign

The buyout offer to those who do not want to return to the office is part of the president's plan to shrink the US government.

32 mins ago | US & Canada

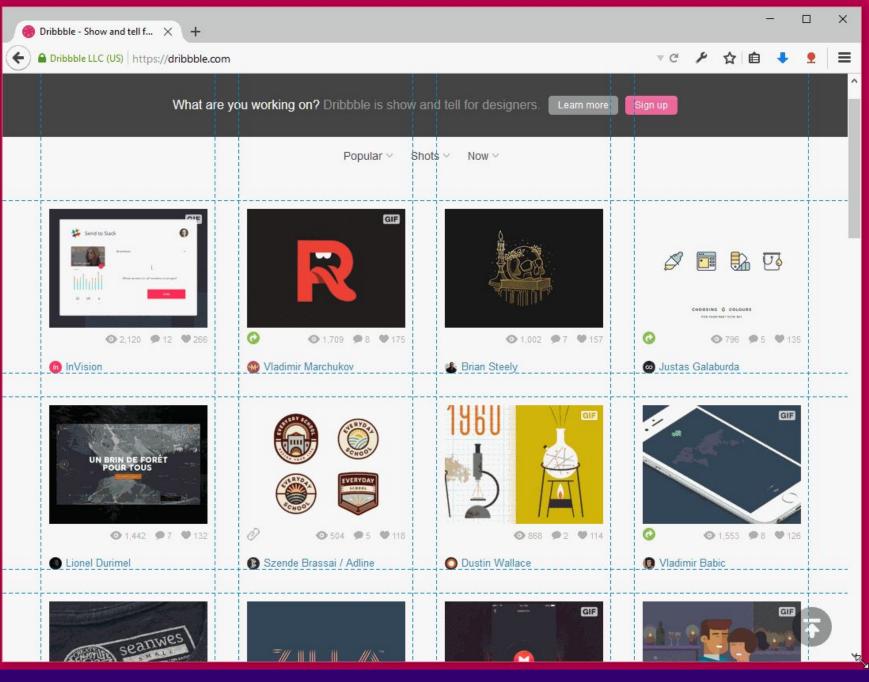
#### Australian sect members guilty of causing girl's death

The defendants had denied the diabetic girl her insulin, believing God would save her, a court heard.

48 mins ago Australia

#### Mona Lisa to be moved as part of major Louvre overhaul

France's president says a second museum entrance will be built, while non-EU residents will also pay more to visit.


10 hrs ago | Europe

iPhone

### Apr 28, 2025

#### Ruta Desai, Chun-Liang Li

## Page Layout



#### Ruta Desai, Chun-Liang Li

Lecture 9 - 7

### **Display Devices**



#### Ruta Desai, Chun-Liang Li

#### Lecture 9 - 8

### Have you ever seen this?

The following film has been modified from its original version. It has been formatted to fit this screen.

#### Ruta Desai, Chun-Liang Li





Ruta Desai, Chun-Liang Li



## Simple Media Retargeting Operators



Le Sectorizing





#### Ruta Desai, Chun-Liang Li



### **Content-aware Retargeting Operators**

Contentaware

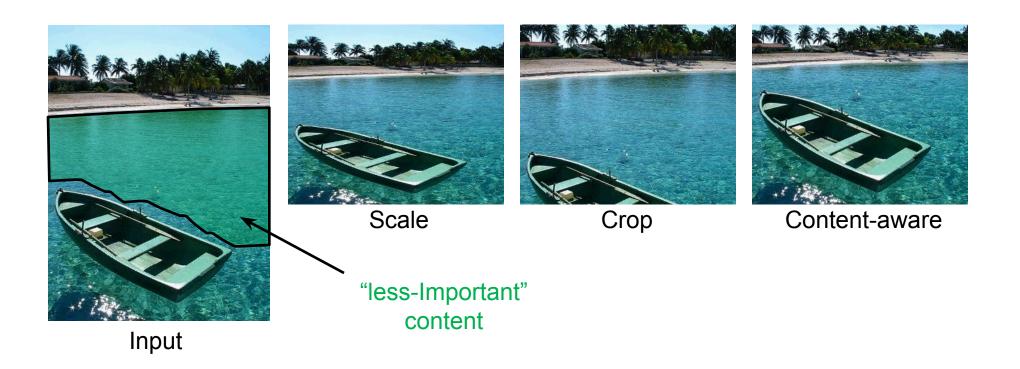


content












#### Ruta Desai, Chun-Liang Li

### Lecture 9 - 12

### **Content-aware Retargeting**



#### Ruta Desai, Chun-Liang Li



## Image Retargeting ("More" Formally)

Problem statement

- Input image I of size n x m
- Output image I' of size n' x m'

Output image should be geometrically and semantically consistent with input image

#### Ruta Desai, Chun-Liang Li



# How can we define consistency?

In large, we would expect retargeting to:

- 1. Adhere to the geometric constraints (display/aspect ratio)
- 2. Preserve the important content and structures
- 3. Limit artifacts

#### Ruta Desai, Chun-Liang Li



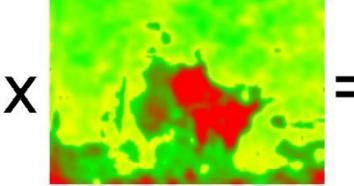
# How can we define consistency?

In large, we would expect retargeting to:

- 1. Adhere to the geometric constraints (display/aspect ratio)
- 2. Preserve the important content and structures
- 3. Limit artifacts

Very ill-posed!

- $\circ$  How do we define what is important?
  - Is there a universal important vs unimportant?
- Would different people find different image regions more or less important?
- $\circ$  What about artistic impression in the original content?


#### Ruta Desai, Chun-Liang Li



### Importance (Saliency) Measures

- A function  $\mathcal{S}: n \times m \rightarrow [0, 1]$
- Ideas from human perception







First stage: coarse scan over entire image Second stage: more focused attention on specific region

Wang et al. A Two-stage approach to saliency detection in images 2008

#### Ruta Desai, Chun-Liang Li



## Importance (Saliency) Measures

- A function  $\mathcal{S}: n \times m \rightarrow [0, 1]$
- More sophisticated: attention models, eye tracking (gazing studies), face detectors, ...



Judd et al. Learning to predict where people look ICCV 2009

#### Ruta Desai, Chun-Liang Li



### General Retargeting Framework

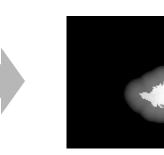




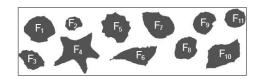


#### Ruta Desai, Chun-Liang Li




## General Retargeting Framework

**Step 1.** Define an energy function **E(I)** (interest, importance, saliency)





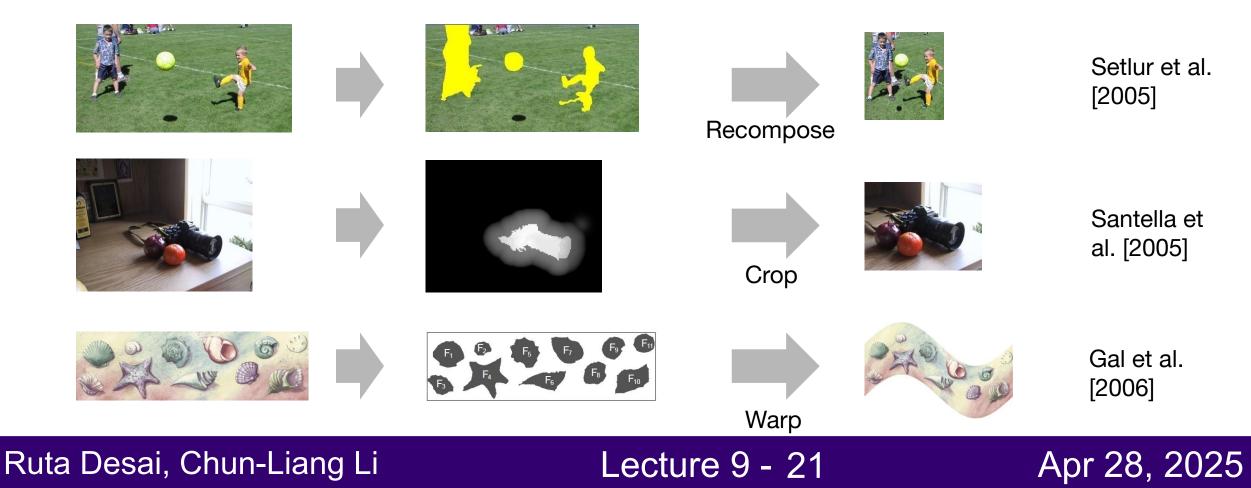






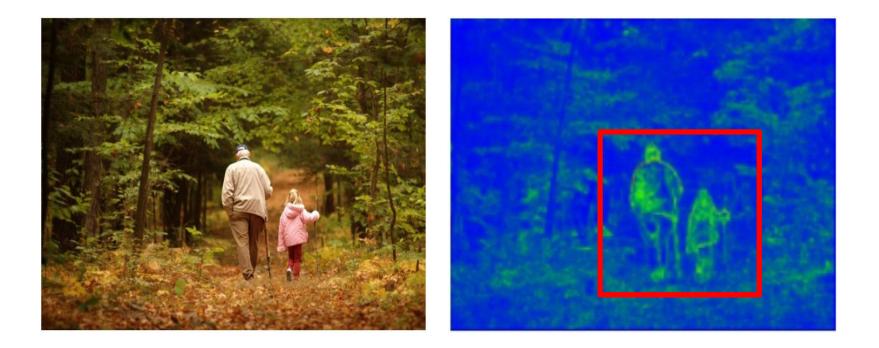



#### Ruta Desai, Chun-Liang Li




## **General Retargeting Framework**

**Step 1.** Define an energy function **E(I)** (interest, importance, saliency)




**Step 2.** Use some operator(s) to change the image I



# **Potential Retargeting Approaches**

• Optimal Cropping Window



#### Ruta Desai, Chun-Liang Li



# **Potential Retargeting Approaches**

 Done manually in the movie industry for many years







Apr 28, 2025

#### Ruta Desai, Chun-Liang Li

# Today's agenda

- Image retargeting
- Seam carving
- Applications
- Forward algorithm

#### Ruta Desai, Chun-Liang Li



# Seam Carving

- Assume input I is size m x n
- Output I is m x n',
  - where n'<n
- Basic Idea: remove unimportant pixels from the image
   Onimportant = pixels with less "energy"



# Seam Carving

- Assume input I is size m x n
- Output I is m x n',
  - o where n'<n</p>
- Basic Idea: remove unimportant pixels from the image
   Onimportant = pixels with less "energy"

$$E(I) = \left|\frac{\partial I}{\partial x}\right| + \left|\frac{\partial I}{\partial y}\right| \qquad \qquad E(I) = \sqrt{\left(\frac{\partial I}{\partial x}\right)^2 + \left(\frac{\partial I}{\partial y}\right)^2}$$

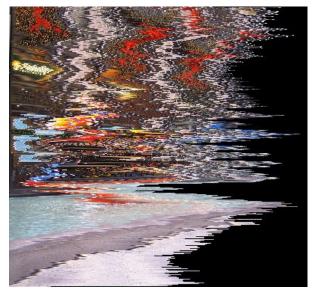
- Intuition for gradient-based energy:
  - $\circ$  Preserve edges we are sensitive to edges
  - $\circ$  Try remove content from smoother areas
  - Simple enough for producing some nice results

#### Ruta Desai, Chun-Liang Li



# Let's do an experiment




We calculate the energy for this image.

Q1. Can we just remove the K **pixels** with the lowest energy?

#### Ruta Desai, Chun-Liang Li







## **Pixel Removal**

Optimal

#### Ruta Desai, Chun-Liang Li



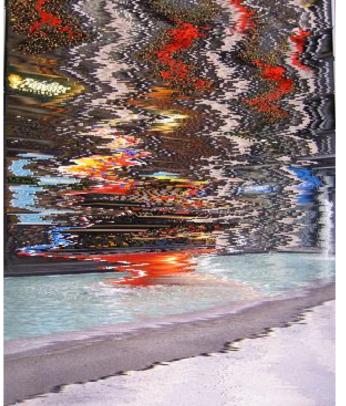
# Let's do an experiment



We calculate the energy for this image.

Q1. Can we just remove the K **pixels** with the lowest energy?

Q2. Can we remove the K **pixels** with the lowest energy **per rows**?


#### Ruta Desai, Chun-Liang Li







## **Pixel Removal**



Least-energy pixels (per row)

#### Ruta Desai, Chun-Liang Li

#### Lecture 9 - 30

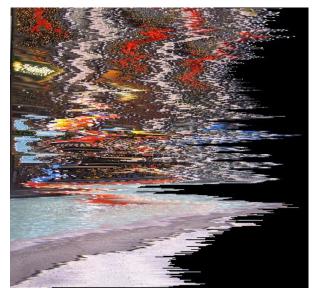
# Let's do an experiment



We calculate the energy for this image.

Q1. Can we just remove the K **pixels** with the lowest energy?

Q2. Can we remove the K **pixels** with the lowest energy **per column**?


Q3. Can we remove the K **columns** with the lowest energies?

#### Ruta Desai, Chun-Liang Li





Optimal



## **Pixel Removal**



Least-energy pixels (per row)

Least-energy columns

#### Ruta Desai, Chun-Liang Li

#### Lecture 9 - 32

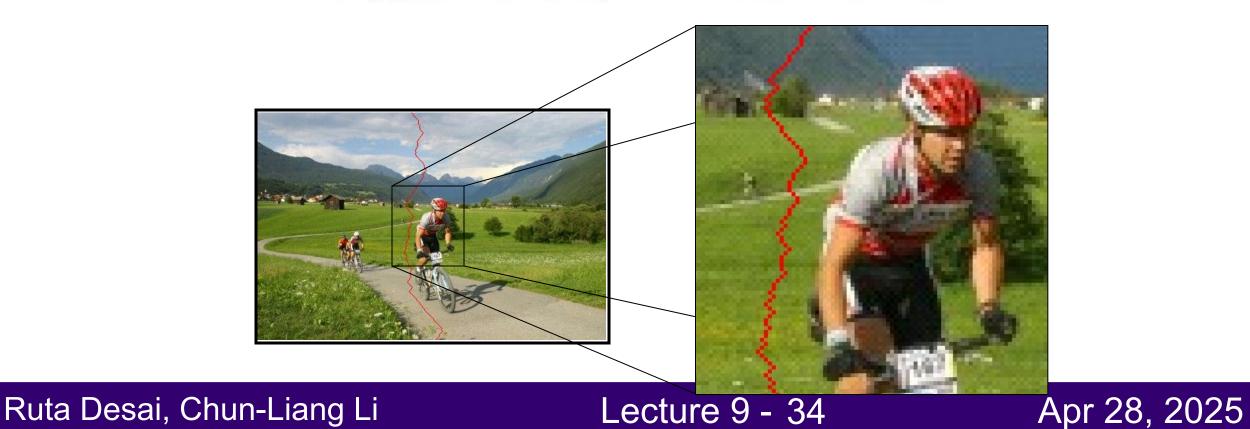
# Solution: A Seam

• A seam is a connected path of pixels from top to bottom (or left to right). Exactly one in each row (or column)

$$s^x = \{s^x_i\}_{i=1}^n$$
  
 $s^x = \{x(i), i\}_{i=1}^n$   
for every row i

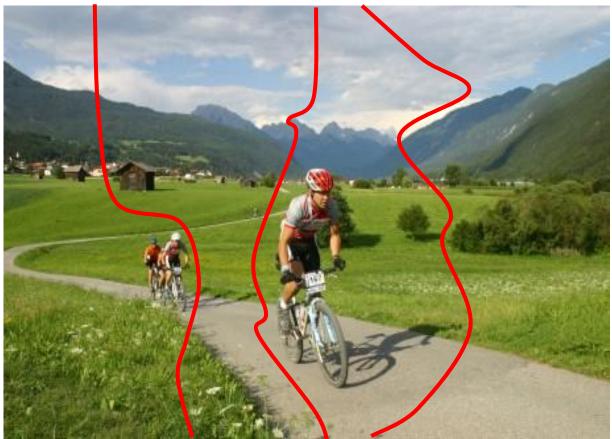
s.t. 
$$\forall i, |x(i) - x(i-1)| \le 1$$

Ensure that seam is "connected". Columns can only change by a maximum of 1 column


#### Ruta Desai, Chun-Liang Li

#### Lecture 9 - 33

# A Seam


• A connected path of pixels from top to bottom (or left to right). Exactly one in each row

$$\mathbf{s}^{\mathbf{x}} = \{s_i^x\}_{i=1}^n = \{(x(i), i)\}_{i=1}^n, \text{ s.t. } \forall i, |x(i) - x(i-1)| \le 1$$
$$\mathbf{s}^{\mathbf{y}} = \{s_j^y\}_{j=1}^m = \{(j, y(j))\}_{j=1}^m, \text{ s.t. } \forall j | y(j) - y(j-1)| \le 1$$



### How do we find the optimal Seam?

Q: How many seam do we have for an image? O(???)



$$E(\mathbf{I}) = \left|\frac{\partial}{\partial x}\mathbf{I}\right| + \left|\frac{\partial}{\partial y}\mathbf{I}\right| \Longrightarrow s^* = \arg\min_{S} E(s)$$

#### Ruta Desai, Chun-Liang Li

#### Lecture 9 - 35

### The Optimal Seam



Q: How many seam do we have for an image? O(???)

$$E(\mathbf{I}) = \left|\frac{\partial}{\partial x}\mathbf{I}\right| + \left|\frac{\partial}{\partial y}\mathbf{I}\right| \implies s^* = \arg\min_{S} E(s)$$

#### Ruta Desai, Chun-Liang Li

Lecture 9 - 36

## Brute force is not practical, but you must have seen this

An example here, and there are many more

#### 746. Min Cost Climbing Stairs

Easy 🖏 Topics 🔒 Companies 😡 Hint

You are given an integer array cost where cost[i] is the cost of ith step on a staircase. Once you pay the cost, you can either climb one or two steps.

You can either start from the step with index 0, or the step with index 1.

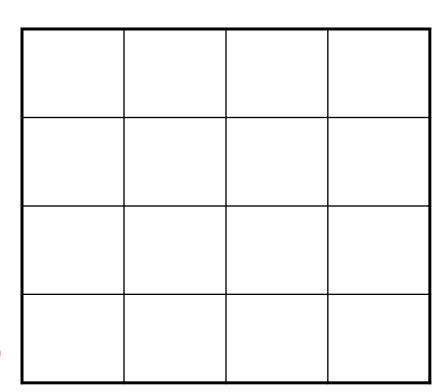
Return the minimum cost to reach the top of the floor.

**A:** sol[i] = cost[i] + min(sol[i-1], sol[i-2])

Ruta Desai, Chun-Liang Li



**Input**: Given an energy E(i, j)


| 5 | 8 | 12 | 3 |
|---|---|----|---|
| 4 | 2 | 3  | 9 |
| 7 | 3 | 4  | 2 |
| 5 | 5 | 7  | 8 |

Energy - E(i, j)

#### Ruta Desai, Chun-Liang Li

### Lecture 9 - 38

- Create a cost matrix M with the following property:
  - M(i, j) = minimal cost of a seam going through pixel (i, j)
  - $\circ$  starting from j=0



| 5 | 8 | 12 | 3 |
|---|---|----|---|
| 4 | 2 | 3  | 9 |
| 7 | 3 | 4  | 2 |
| 5 | 5 | 7  | 8 |

Energy - E(i, j)

M(i, j)

### Ruta Desai, Chun-Liang Li



M(i, 0) = E(i, 0) of a seam going through pixel (i, j)

| 5 | 8 | 12 | 3 |
|---|---|----|---|
|   |   |    |   |
|   |   |    |   |
|   |   |    |   |

| 5 | 8 | 12 | 3 |
|---|---|----|---|
| 4 | 2 | 3  | 9 |
| 7 | 3 | 4  | 2 |
| 5 | 5 | 7  | 8 |

Energy - E(i, j)

Apr 28, 2025

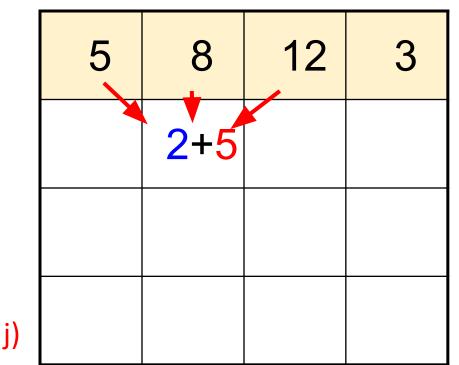
M(i, j)

### Ruta Desai, Chun-Liang Li

Q. What do you think should be this value?

| 5 | 8 | 12 | 3 |
|---|---|----|---|
|   | ? |    |   |
|   |   |    |   |
|   |   |    |   |

| 5 | 8 | 12 | 3 |
|---|---|----|---|
| 4 | 2 | 3  | 9 |
| 7 | 3 | 4  | 2 |
| 5 | 5 | 7  | 8 |


Energy - E(i, j)

Apr 28, 2025

M(i, j)

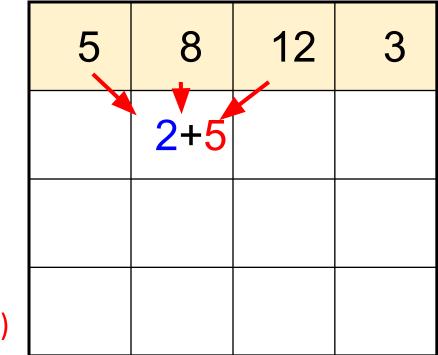
### Ruta Desai, Chun-Liang Li

M(i, j) = total energy of seam going through pixel (i, j) from j=0



| 5 | 8 | 12 | 3 |
|---|---|----|---|
| 4 | 2 | 3  | 9 |
| 7 | 3 | 4  | 2 |
| 5 | 5 | 7  | 8 |

Energy - E(i, j)


Apr 28, 2025

M(i, j)

### Ruta Desai, Chun-Liang Li

The recurrence formula

$$\mathbf{M}(i, j) = E(i, j) + \min(\mathbf{M}(i-1, j-1), \mathbf{M}(i-1, j), \mathbf{M}(i-1, j+1))$$



| 5 | 8 | 12 | 3 |
|---|---|----|---|
| 4 | 2 | 3  | 9 |
| 7 | 3 | 4  | 2 |
| 5 | 5 | 7  | 8 |

Energy - E(i, j)

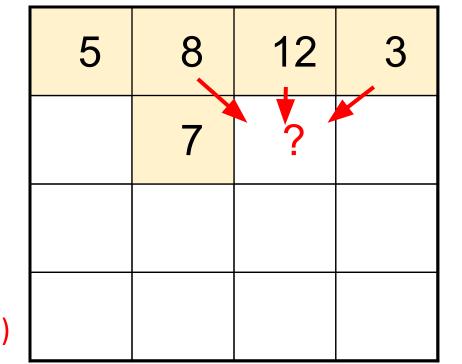
Apr 28, 2025

M(i, j)

### Ruta Desai, Chun-Liang Li

| 5 | 8 | 12 | 3 |
|---|---|----|---|
|   | 7 |    |   |
|   |   |    |   |
|   |   |    |   |

| 5 | 8 | 12 | 3 |
|---|---|----|---|
| 4 | 2 | 3  | 9 |
| 7 | 3 | 4  | 2 |
| 5 | 5 | 7  | 8 |


Energy - E(i, j)

M(i, j)

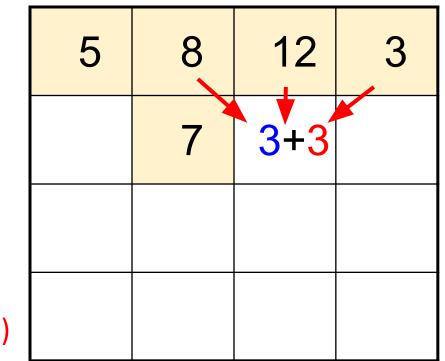
#### Ruta Desai, Chun-Liang Li



$$\mathbf{M}(i, j) = E(i, j) + \min(\mathbf{M}(i-1, j-1), \mathbf{M}(i-1, j), \mathbf{M}(i-1, j+1))$$



| 5 | 8 | 12 | 3 |
|---|---|----|---|
| 4 | 2 | 3  | 9 |
| 7 | 3 | 4  | 2 |
| 5 | 5 | 7  | 8 |


Energy - E(i, j)

M(i, j)

#### Ruta Desai, Chun-Liang Li



$$\mathbf{M}(i, j) = E(i, j) + \min(\mathbf{M}(i-1, j-1), \mathbf{M}(i-1, j), \mathbf{M}(i-1, j+1))$$



| 5 | 8 | 12 | 3 |
|---|---|----|---|
| 4 | 2 | 3  | 9 |
| 7 | 3 | 4  | 2 |
| 5 | 5 | 7  | 8 |

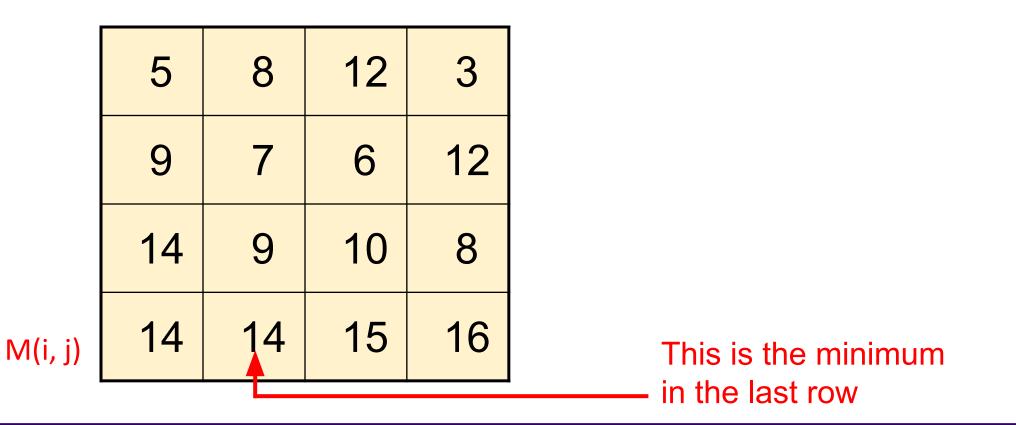
Energy - E(i, j)

M(i, j)

### Ruta Desai, Chun-Liang Li



$$\mathbf{M}(i, j) = \underbrace{E(i, j)}_{+} + \min(\mathbf{M}(i-1, j-1), \underbrace{\mathbf{M}(i-1, j)}_{+}, \underbrace{\mathbf{M}(i-1, j+1)}_{+}) \\ \hline 5 & 8 & 12 & 3 \\ \hline 9 & 7 & 6 & 12 \\ \hline 14 & 9 & 10 & 8 \\ \hline 14 & 14 & 15 & 8+8 \\ \hline \end{array}$$


M(i, j)

### Ruta Desai, Chun-Liang Li

#### Lecture 9 - 47

## Searching for minimum seam

Backtrack: Find the minimum M(i, j=m)



Ruta Desai, Chun-Liang Li

Lecture 9 - 48

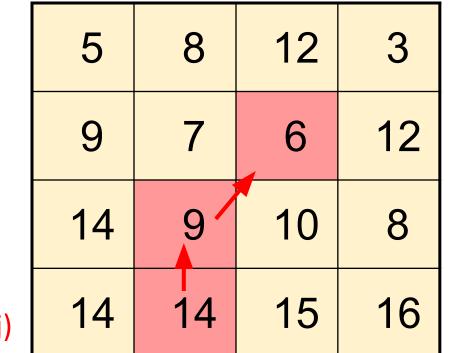
### Backtrack

After finding minimum M(i, j) at row j,

find minimum M(i, j-1) but only be looking at neighboring locations: i-1, i, i+1

|   | 5  | 8  | 12 | 3  |
|---|----|----|----|----|
|   | 9  | 7  | 6  | 12 |
|   | 14 | 9  | 10 | 8  |
| ) | 14 | 14 | 15 | 16 |

| 5 | 8 | 12 | 3 |
|---|---|----|---|
| 4 | 2 | 3  | 9 |
| 7 | 3 | 4  | 2 |
| 5 | 5 | 7  | 8 |

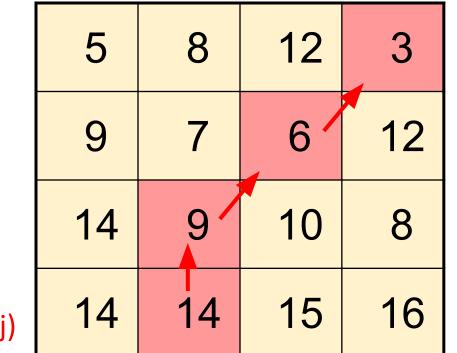

Energy - E(i, j)

Apr 28, 2025

M(i, j)

### Ruta Desai, Chun-Liang Li

### **Searching for Minimum**




M(i, j)

### Ruta Desai, Chun-Liang Li



### **Searching for Minimum**



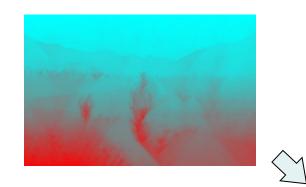
M(i, j)

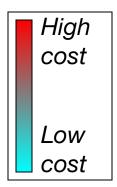
### Ruta Desai, Chun-Liang Li



## The Optimal Seam - dynamic programming

• The recursion relation


$$\mathbf{M}(i, j) = E(i, j) + \min(\mathbf{M}(i-1, j-1), \mathbf{M}(i-1, j), \mathbf{M}(i-1, j+1))$$


• Q: What is the time complexity?

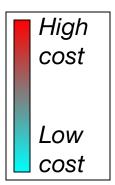
 $O(s \cdot n \cdot m)$ (s=3 in the original algorithm)



### Vertical cost maps






### Ruta Desai, Chun-Liang Li

### Lecture 9 -

### Horizontal cost maps







**Horizontal Cost** 

### Ruta Desai, Chun-Liang Li



### Seam Carving





### Ruta Desai, Chun-Liang Li



## The Seam-Carving Algorithm

```
Algorithm: Seam carving
Input: Image I of size m x n
Output: Image I' of size m x n' where n' < n
I' = I
Do d=(n-n') times
Compute energy map on I'
Find optimal seam in E
Remove s from im
Return I'
```

For vertical resize: transpose the image

**Running time**: O(dmn) or O(dsmn)

### Ruta Desai, Chun-Liang Li



### Changing Aspect Ratio





### Ruta Desai, Chun-Liang Li



### Another example



Ruta Desai, Chun-Liang Li



### Example seam carving



### Ruta Desai, Chun-Liang Li

### Lecture 9 - 59

### Example seam carving



### Ruta Desai, Chun-Liang Li

### Lecture 9 - 60

### **Changing Aspect Ratio**



Original

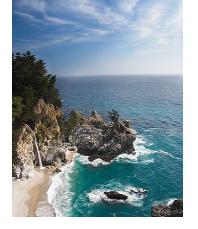


### Retargeting



Scaling

#### Ruta Desai, Chun-Liang Li


### Lecture 9 - 61

### Changing Aspect ratio













Scaling

Apr 28, 2025

### Ruta Desai, Chun-Liang Li

### **Changing Aspect Ratio**



Original

Retarget

Scaling

### Ruta Desai, Chun-Liang Li

### Lecture 9 - 63

### **Changing Aspect Ratio**



Original



Retarget



#### Ruta Desai, Chun-Liang Li

### Lecture 9 - 64

## Questions

• Q: Will the result be the same if the image is flipped upside down?



Q. What if we simultaneously want to reduce both width and height?

m x n -> m' x n'

- 1. Should we remove horizontal seam first?
- 2. Should we remove vertical seams first?
- 3. Alternate between the two?
- 4. Any other ideas?

### Ruta Desai, Chun-Liang Li



### What if we simultaneously want to reduce both width and height?

m x n -> m' x n'

- 1. Should we remove horizontal seam first?
- 2. Should we remove vertical seams first?
- 3. Alternate between the two?
- 4. Any other ideas?



Exercise: the optimal order can be found! Dynamic Prog (again! but this is not easy)





#### Ruta Desai, Chun-Liang Li



## **Retargeting in Both Dimensions**

• Let T(r,c) denote a new cost matrix of obtaining an image of size (n-r)x(m-c).

$$\mathbf{T}(r,c) = \min(\mathbf{T}(r-1,c) + E(\mathbf{s}^{\mathbf{x}}(\mathbf{I}_{n-r-1\times m-c})), \mathbf{T}(r,c-1) + E(\mathbf{s}^{\mathbf{y}}(\mathbf{I}_{n-r\times m-c-1})))$$

### Ruta Desai, Chun-Liang Li



## **Retargeting in Both Dimensions**

• Let T(r,c) denote a new cost matrix of obtaining an image of size (n-r)x(m-c).

$$\mathbf{T}(r,c) = \min(\mathbf{T}(r-1,c) + E(\mathbf{s}^{\mathbf{x}}(\mathbf{I}_{\mathbf{n}-\mathbf{r}-\mathbf{1}\times\mathbf{m}-\mathbf{c}})), \mathbf{T}(r,c-1) + E(\mathbf{s}^{\mathbf{y}}(\mathbf{I}_{\mathbf{n}-\mathbf{r}\times\mathbf{m}-\mathbf{c}-\mathbf{1}})))$$

where  $E(\mathbf{s}^{\mathbf{x}}(\mathbf{I}_{n-r-1\times m-c}))$  is the cost of removing a horizontal seam from the image  $\mathbf{I}_{n-r-1\times m-c}$ 

Ruta Desai, Chun-Liang Li



### **Optimal Order Map**

#### Removal of horizontal seams ???

Removal of vertical seams

### Ruta Desai, Chun-Liang Li



## Is it optimal...

- ... for removing ONE seam?
- ... for removing multiple seams?



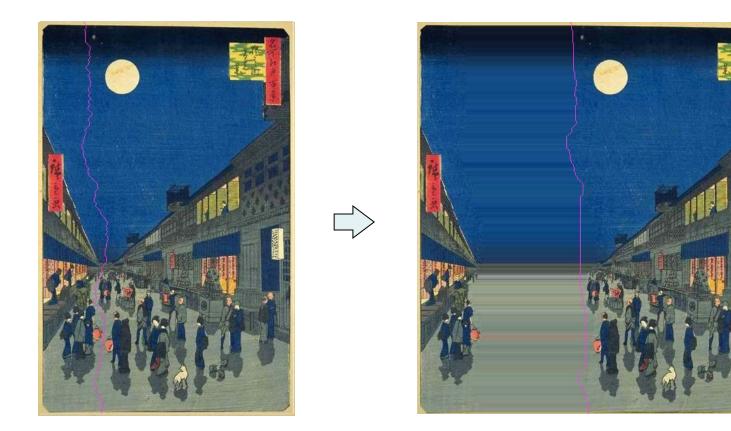


## Is it optimal...

- ... for removing ONE seam?
- ... for removing multiple seams?

Consider HVV (how many possible orderings?)
Cost(V) on HV not necessarily equal Cost(V) on VH
But we keep track of only one: min(HV,VH)...




# Today's agenda

- Image retargeting
- Seam carving
- Dynamic programming
- More Applications
- Forward algorithm

#### Ruta Desai, Chun-Liang Li



### Image expansion - Repeat the lowest energy seam?



#### Ruta Desai, Chun-Liang Li



### Image Expansion – Repeat the K lowest energy seams



Scaling



Ruta Desai, Chun-Liang Li



# Can you tell if this image has been enlarged or reduced?





#### Ruta Desai, Chun-Liang Li



## **Combined Insert and Remove**





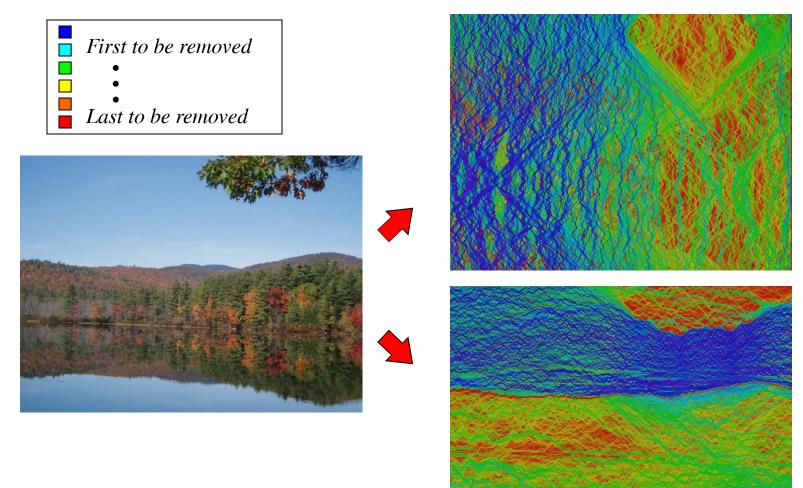
#### Insert & remove seams



Scaling

#### Ruta Desai, Chun-Liang Li

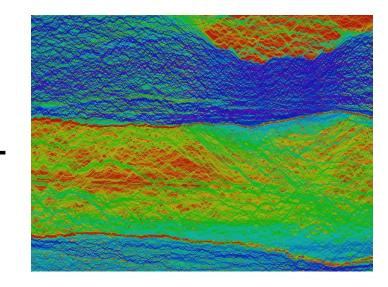



# Multi-Size Images

- We can create a new <u>representation</u> of an image that will allow adapting it to different sizes!
  - 1. Precompute all seams once
  - 2. Realtime resizing / transmit with content

#### Ruta Desai, Chun-Liang Li




# Multi-Size Images



#### Ruta Desai, Chun-Liang Li

#### Lecture 9 -

# Multi-Size Image Representation





#### Ruta Desai, Chun-Liang Li



### Multi-Size Image Representation









#### Ruta Desai, Chun-Liang Li



## **Content Enhancement**



#### Q. How to not touch objects when using seam carving?

Ruta Desai, Chun-Liang Li



# Replace E(i, j) with user defined energies

Recall our seam equation

 $\mathbf{M}(i, j) = E(i, j) + \min(\mathbf{M}(i-1, j-1), \mathbf{M}(i-1, j), \mathbf{M}(i-1, j+1))$ 

Set E(i, j) to be infinity is a user wants to keep this pixel Set E(i, j) to be negative number if a user wants to get rid of it.

Ruta Desai, Chun-Liang Li



# **Object Removal**





#### Ruta Desai, Chun-Liang Li

#### Lecture 9 - 84

# **Object Removal**



Input

Retargeted

Pigeon Removed

Girl Removed

#### Ruta Desai, Chun-Liang Li



# Let's delete a shoe from this image



#### Ruta Desai, Chun-Liang Li



# Find the missing Shoe in the left image!





#### Ruta Desai, Chun-Liang Li



### Solution: black shoe is gone



Ruta Desai, Chun-Liang Li



# Let's delete another shoe. Find the new missing shoe!







#### Ruta Desai, Chun-Liang Li



## Solution



#### Ruta Desai, Chun-Liang Li



# We can stack these edits. Find the missing show from the bottom right image by deleteing from the upper right









#### Ruta Desai, Chun-Liang Li



# Solution



#### Ruta Desai, Chun-Liang Li

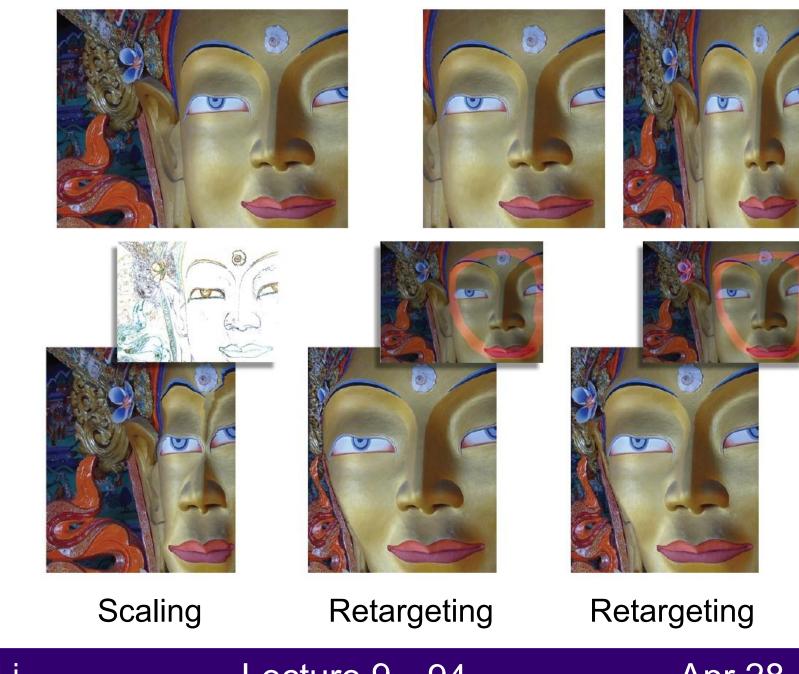


# Use face detector to set energies of faces high








Energy with gradients

Energy with face detectors

#### Ruta Desai, Chun-Liang Li



# With User Constraints



Ruta Desai, Chun-Liang Li

#### Lecture 9 - 94

# Today's agenda

- Image retargeting
- Seam carving
- More Applications
- Forward algorithm

#### Ruta Desai, Chun-Liang Li

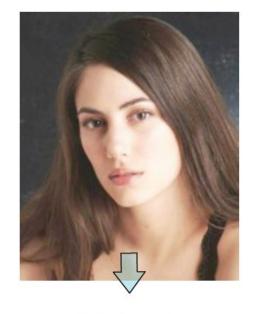


# Seam carving creates artifacts breaks edges



#### Ruta Desai, Chun-Liang Li

#### Lecture 9 - 96


## Limitations

#### Content





#### Structure



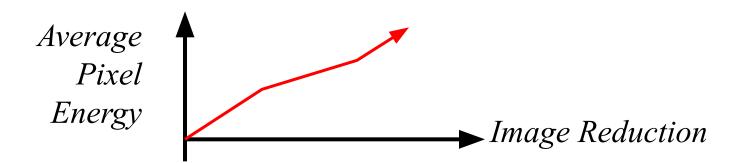


#### Ruta Desai, Chun-Liang Li

#### Lecture 9 - 97

# Questions

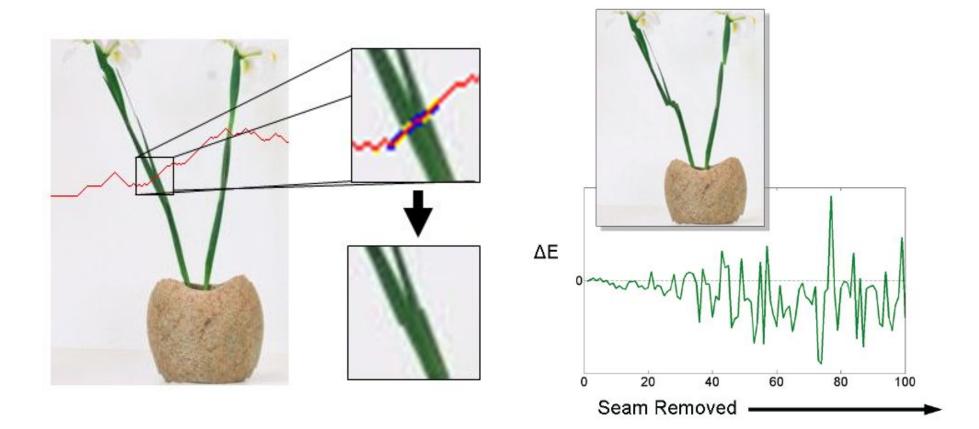
Q: What happens to the avg pixel energy in the image during seam carving?


#### Ruta Desai, Chun-Liang Li



# **Preserved Energy**

If we measure the average energy of pixels in the image after applying a resizing operator...

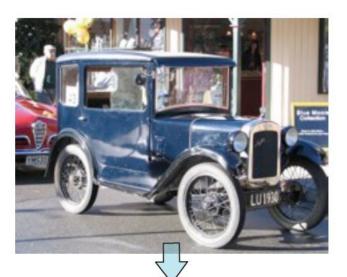

...the average should increase!



Ruta Desai, Chun-Liang Li

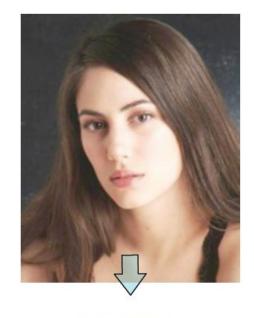
Lecture 9 - 99

# **Inserted Energy**




Ruta Desai, Chun-Liang Li




## Limitations

#### Content





#### Structure





#### Ruta Desai, Chun-Liang Li

#### Lecture 9 - 101

# Seam carving creates artifacts breaks edges







#### Ruta Desai, Chun-Liang Li



# **Preserved Energy**





Energy



E(i, j)



Energy increases after 15% every seam removal



30%



40%



Ruta Desai, Chun-Liang Li



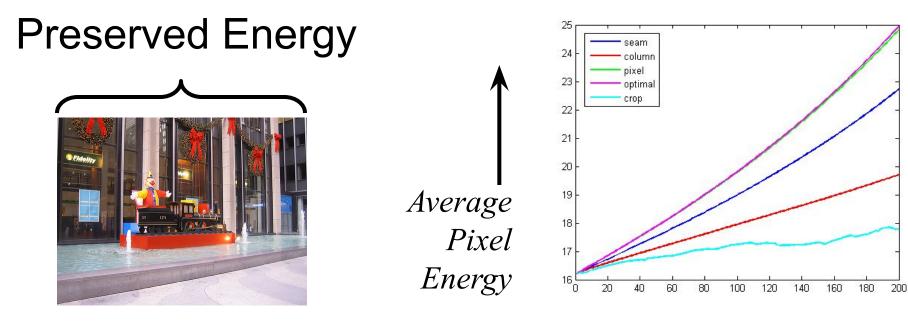
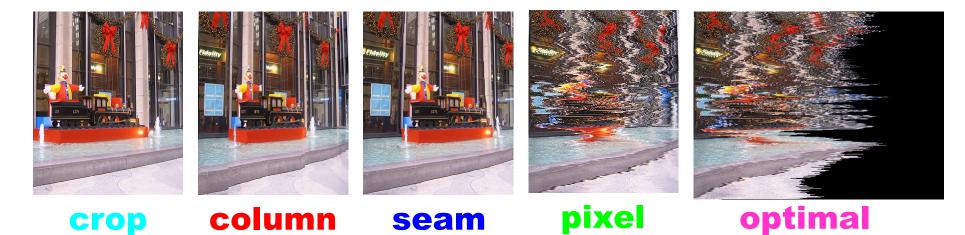
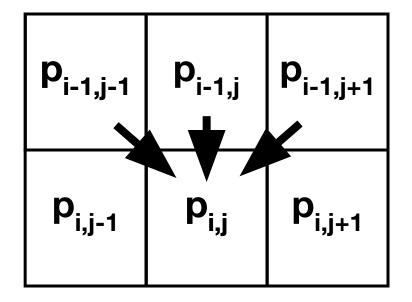




Image Reduction  $\longrightarrow$ 



Ruta Desai, Chun-Liang Li



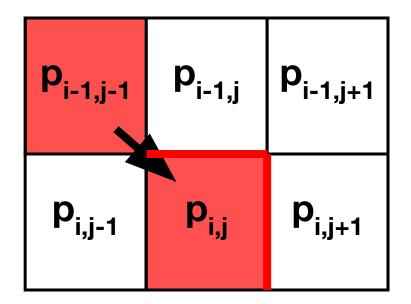

# Minimize Inserted Energy

 Instead of removing the seam of least energy, remove the seam that <u>inserts the least energy</u> to the image (forward looking) !





# **Tracking Inserted Energy**




Three possibilities when removing pixel P<sub>i,j</sub>

#### Ruta Desai, Chun-Liang Li



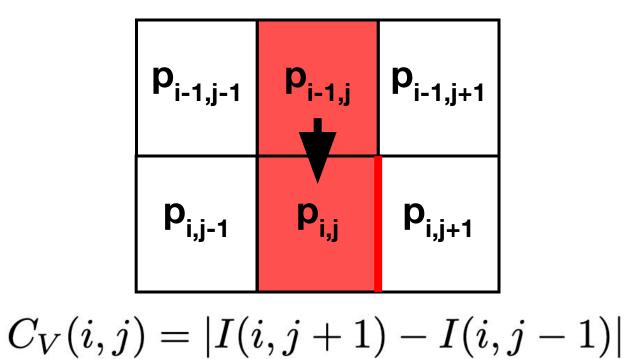
# Pixel P<sub>i,j</sub> : Left Seam



 $C_L(i,j) = |I(i,j+1) - I(i,j-1)| + |I(i-1,j) - I(i,j-1)|$ 

#### Ruta Desai, Chun-Liang Li

Lecture 9 - 107


# Pixel P<sub>i,j</sub> : Right Seam

$$C_R(i,j) = |I(i,j+1) - I(i,j-1)| + |I(i-1,j) - I(i,j+1)|$$

#### Ruta Desai, Chun-Liang Li

#### Lecture 9 - 108

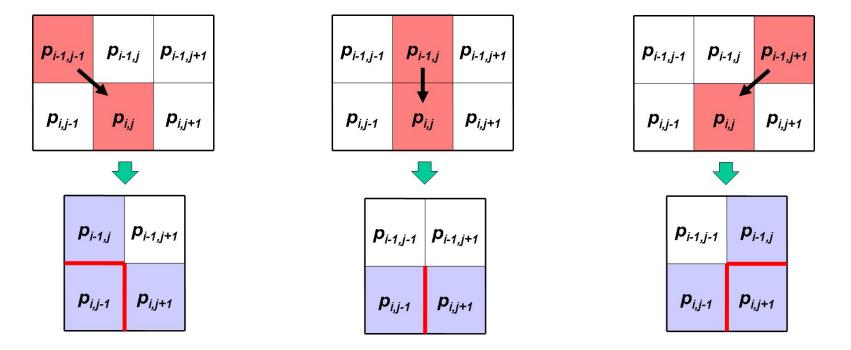
# Pixel P<sub>i,j</sub> : Vertical Seam



#### Ruta Desai, Chun-Liang Li

Lecture 9 - 109

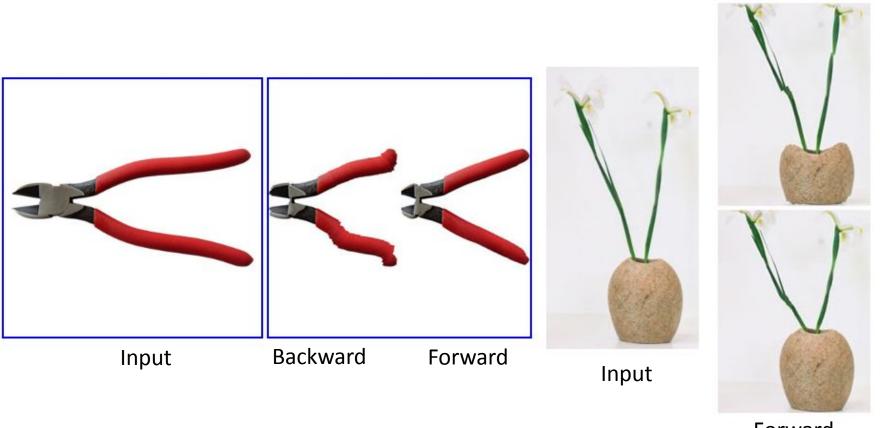
## Old Backward Cost Matrix


$$M(i,j) = E \quad (j) + \min \begin{cases} M(i-1,j-1) \\ M(i-1,j) \\ M(i-1,j+1) \end{cases}$$

Ruta Desai, Chun-Liang Li



## New Forward Looking Cost Matrix


$$M(i,j) = E(i,j) + min egin{cases} M(i-1,j-1) + C_L(i,j) \ M(i-1,j) + C_V(i,j) \ M(i-1,j+1) + C_R(i,j) \end{cases}$$

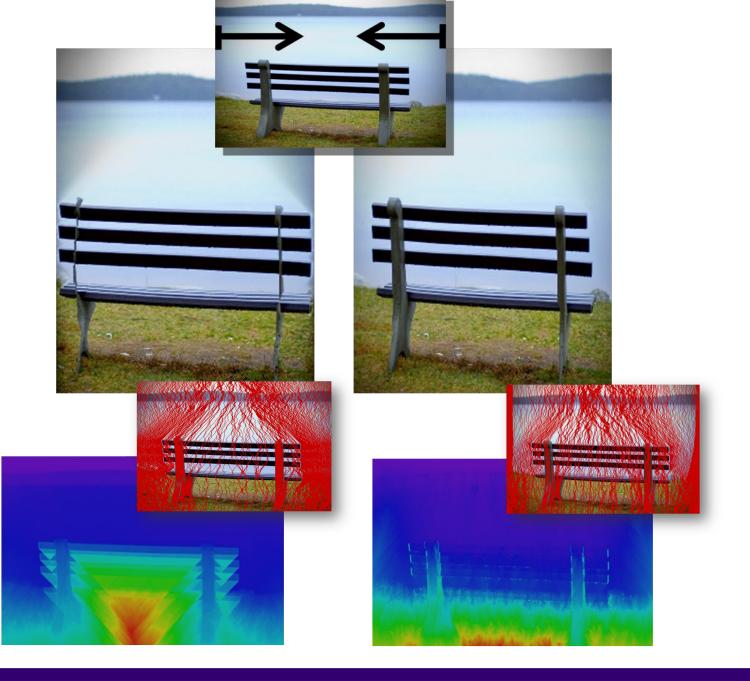


#### Ruta Desai, Chun-Liang Li

#### Lecture 9 - 111

# Results




Forward

Backward

#### Ruta Desai, Chun-Liang Li

## Lecture 9 - 112

## Results



#### Ruta Desai, Chun-Liang Li

## Lecture 9 - 113

## Backward vs. Forward



Backward

Forward

#### Ruta Desai, Chun-Liang Li

### Lecture 9 - 114

# Results

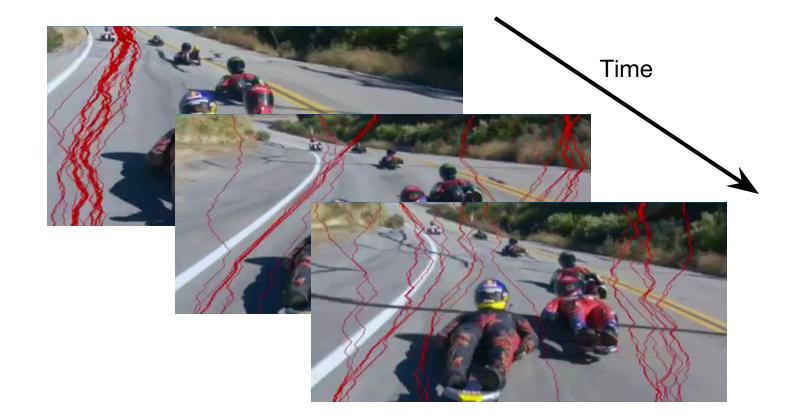


#### Ruta Desai, Chun-Liang Li

### Lecture 9 - 115

# From Images to Videos

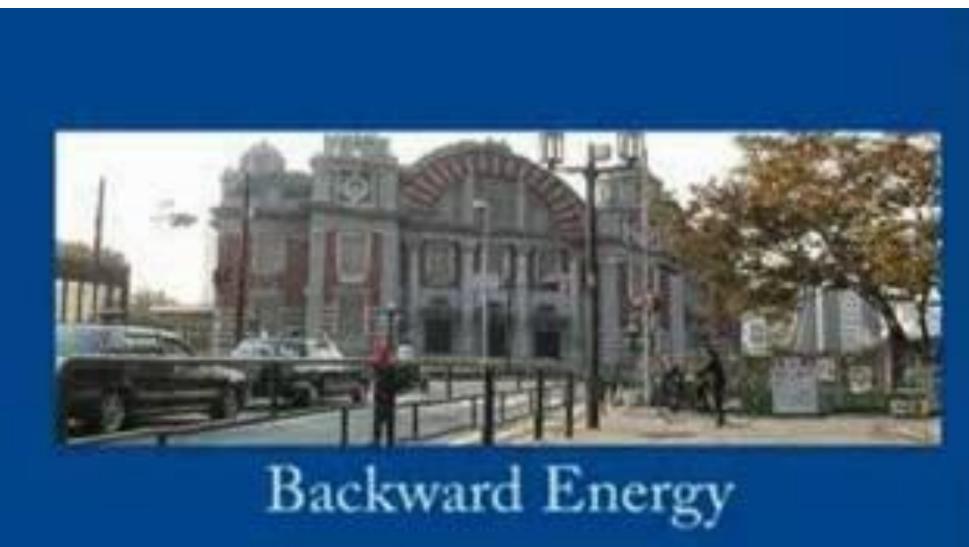
In general, video processing is a much (much!) harder problem


- 1. Cardinality
  - Suppose 1min of video x 30 fps = 1800 frames
  - Say your algorithm processes an image in 1 minute
    - 1 video would take 30 hours !!
- 2. Dimensionality/algorithmic
  - Temporal coherency: human visual system is highly sensitive to motion!

#### Ruta Desai, Chun-Liang Li



# Seam-Carving Video?

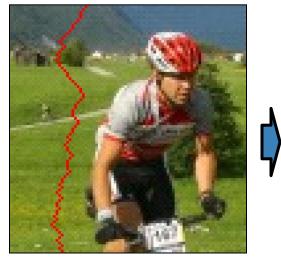

• Naive... frame by frame independently



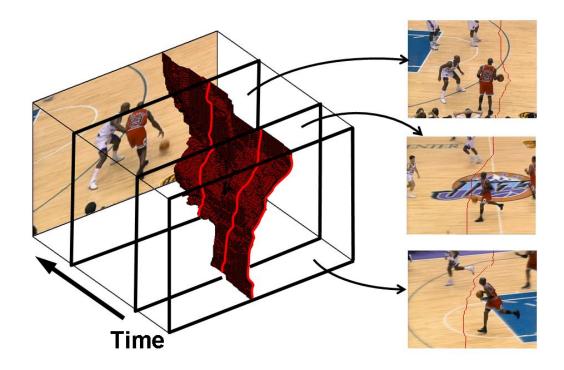
#### Ruta Desai, Chun-Liang Li



# Frame-by-frame Seam-Carving




Let's check out this video

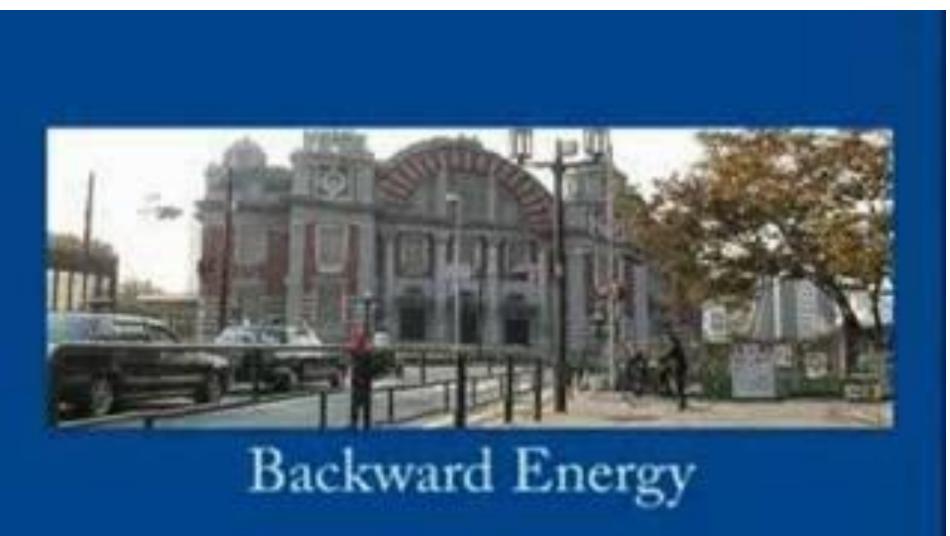

#### Ruta Desai, Chun-Liang Li



# From 2D to 3D



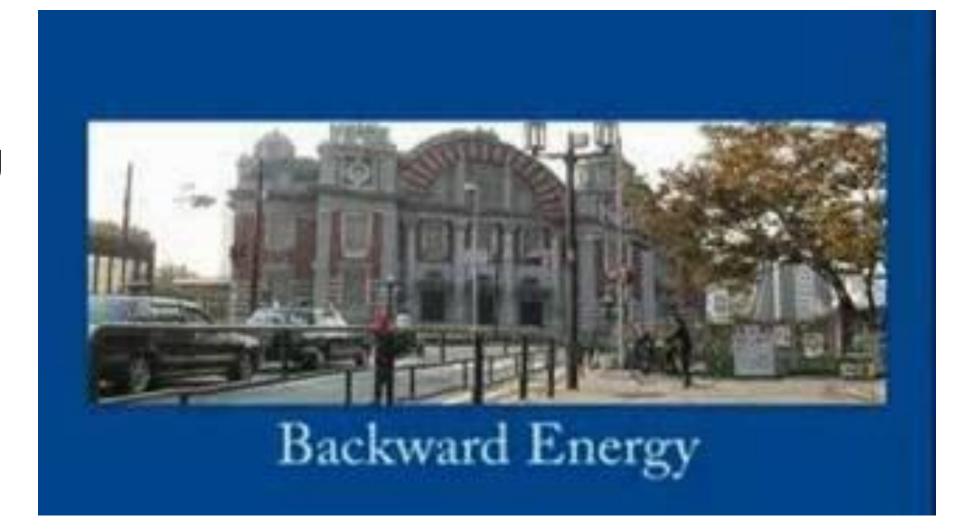
1D paths in images




2D manifolds in video cubes

#### Ruta Desai, Chun-Liang Li




# Example video retargeting



#### Ruta Desai, Chun-Liang Li

#### Lecture 9 - 120

Object detection + seam carving



Ruta Desai, Chun-Liang Li



# Today's agenda

- Image retargeting
- Seam carving
- Dynamic programming
- Applications
- Forward algorithm

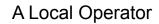
### Ruta Desai, Chun-Liang Li



# Next lecture

Motion & Camera

Ruta Desai, Chun-Liang Li




#### References

- Seam Carving for Content-Aware Image Resizing Avidan and Shamir 2007
- Content-driven Video Retargeting Wolf et al. 2007
- Improved Seam Carving for Video Retargeting Rubinstein et al. 2008
- Optimized Scale-and-Stretch for Image Resizing Wang et al. 2008
- Summarizing Visual Data Using Bidirectional Similarity Simakov et al. 2008
- Multi-operator Media Retargeting Rubinstein et al. 2009
- Shift-Map Image Editing Pritch et al. 2009
- Energy-Based Image Deformation Karni et al. 2009
- Seam carving in Photoshop CS4: <u>http://help.adobe.com/en\_US/Photoshop/11.0/WS6F81C45F-2AC0-4685-8FFD-DBA374BF21CD.html</u>

#### Ruta Desai, Chun-Liang Li







#### Ruta Desai, Chun-Liang Li

