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Detecting Lines
Lecture 5
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Administrative

A1 is out
- It is graded
- Due April 18th
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Central but we 
can drop the 1/2

So far: discrete derivatives in 3 ways

Backward

Forward
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●Using Backward differentiation:

●Using Forward differentiation:

●Using Central differentiation: 

So far: Designing filters that perform 
differentiation 
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So far: Calculating gradient magnitude and direction
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Today’s agenda

Optional reading:
Szeliski, Computer Vision: Algorithms and Applications, 2nd Edition
Sections 7.1, 8.1.4

6

● Edge detector with noisy images
● Sobel Edge detector
● Canny edge detector
● Hough Transform
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● Edge detector with noisy images
● Sobel Edge detector
● Canny edge detector
● Hough Transform

Today’s agenda

Optional reading:
Szeliski, Computer Vision: Algorithms and Applications, 2nd Edition
Sections 7.1, 8.1.4
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Characterizing edges
An edge is a place of rapid change in the image intensity function

image
intensity function

(along horizontal scanline)
first 

derivative

edges correspond to
extrema of derivative
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Intensity profile
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Q. What will happen if we use this edge detector 
on a noisy pixels?
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Effects of noise
● Consider a single row or column of the image

○ Plotting intensity as a function of position gives a signal

Source: S. Seitz
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Effects of noise
● Consider a single row or column of the image

○ Plotting intensity as a function of position gives a signal

Where is the edge?

Source: S. Seitz
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• Differentiation filters respond strongly to noise
– Image noise results in pixels that look very different from 

their neighbors

– Generally, the larger the noise the larger the gradient

• Q. What is a potential quick fix for noisy images?

Effects of noise

Source: D. Forsyth13



Raymond Yu April 14, 2025Lecture 5 -

• Differentiation filters respond strongly to noise
– Image noise results in pixels that look very different from 

their neighbors

– Generally, the larger the noise the stronger the response

• Q. What is a potential quick fix for noisy images?
• Smoothing the image should help, by forcing pixels different 

to their neighbors (=noise pixels?) to look more like 
neighbors

Effects of noise

Source: D. Forsyth14
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Smoothing with different filters
● Mean smoothing

● Gaussian  (smoothing * derivative)

Slide credit: Steve Seitz15
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Smoothing with 
different filters

16



Raymond Yu April 14, 2025Lecture 5 -

Solution: input function
f

Source: S. Seitz

Let’s look at a single image row:
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Solution: smooth first
f

h

f * h
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Solution: smooth first

To find edges, look for 
peaks in

f

h

f * h
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Derivative theorem of convolution
• This theorem gives us a very useful property:

f
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Derivative of a gaussian (DoG)
• This theorem gives us a very useful property:

Source: S. Seitz

f
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Derivative of a gaussian (DoG)
• This theorem gives us a very useful property:

• This saves us one operation:

We can precompute:

Source: S. Seitz

f
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Derivative of Gaussian filter (central derivative)

2D-gaussian

*       [1    0   -1] = 

x - derivative
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Derivative of Gaussian filter along x and y directions

x-direction y-direction
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Derivative of Gaussian filter
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Smoothed derivative removes noise, but blurs edge. 
Also finds edges at different “scales”.

Tradeoff between smoothing at different scales

1 pixel 3 pixels 7 pixels

Source: D. Forsyth26
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Designing an edge detector
• Criteria for an “optimal” edge detector:

○ Good detection: the optimal detector must minimize the probability 
of false positives (detecting spurious edges caused by noise), as 
well as that of false negatives (missing real edges)

27
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Designing an edge detector
• Criteria for an “optimal” edge detector:

○ Good detection: the optimal detector must minimize the probability 
of false positives (detecting spurious edges caused by noise), as 
well as that of false negatives (missing real edges)

○ Good localization: the edges detected must be as close as 
possible to the true edges
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Designing an edge detector
• Criteria for an “optimal” edge detector:

○ Good detection: the optimal detector must minimize the probability 
of false positives (detecting spurious edges caused by noise), as 
well as that of false negatives (missing real edges)

○ Good localization: the edges detected must be as close as 
possible to the true edges

○ Single response: the detector must return one point only for each 
true edge point; that is, minimize the number of local maxima around 
the true edge

29
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● Edge detector with noisy images
● Sobel Edge detector
● Canny edge detector
● Hough Transform

Today’s agenda

Optional reading:
Szeliski, Computer Vision: Algorithms and Applications, 2nd Edition
Sections 7.1, 8.1.4
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Sobel Operator
● uses two 3×3 kernels which are convolved with the original image 

to calculate approximations of the derivatives 
● one for horizontal changes, and one for vertical

31
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Sobel Operation
● Smoothing + differentiation

Gaussian smoothing differentiation
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Sobel Operation
● Magnitude:

● Angle or direction of the gradient:
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Sobel Filter 
example

Step 1: Calculate the 
gradient magnitude at 
every pixel location.

Step 2: Threshold the 
values to generate a 
binary image

34
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Sobel Filter Problems

● Poor Localization (Detects multiple adjacent edges)
● Thresholding value favors certain directions over others

○ Can miss diagonal edges more than horizontal or vertical edges
○ False negatives

35
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● Edge detector with noisy images
● Sobel Edge detector
● Canny edge detector
● Hough Transform

What we will learn today

36
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So far: A simple edge detector
• This theorem gives us a very useful property:

• This saves us one operation:

We can precompute:

Source: S. Seitz

f
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Canny edge detector
• This is probably the most widely used edge detector in 

computer vision
• Theoretical model: optimal edge detection when pixels 

are corrupted by additive Gaussian noise
• Theory shows that first derivative of the Gaussian 

closely approximates the operator that optimizes the 
product of signal-to-noise ratio 

J. Canny, A Computational Approach To Edge Detection, IEEE Trans. Pattern 
Analysis and Machine Intelligence, 8:679-714, 1986. 

38

http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=4767846&arnumber=4767851&count=16&index=4
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1. Suppress Noise
2. Compute gradient magnitude and direction 
3. Apply Non-Maximum Suppression

○ Assures minimal response
4. Use hysteresis and connectivity analysis to detect edges

Canny edge detector

39
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Example

● original image

40
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1. Suppress Noise
2. Compute gradient magnitude and direction 
3. Apply Non-Maximum Suppression

○ Assures minimal response
4. Use hysteresis and connectivity analysis to detect edges

Canny edge detector

41
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Derivative of Gaussian filter

x-direction y-direction

42
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Compute gradients (DoG)

X-Derivative of Gaussian Y-Derivative of Gaussian Gradient Magnitude
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Get orientation at each pixel

44
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Compute gradients (DoG)

X-Derivative of Gaussian Y-Derivative of Gaussian Gradient Magnitude
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Canny edge detector

46

1. Suppress Noise
2. Compute gradient magnitude and direction 
3. Apply Non-Maximum Suppression

○ Assures minimal response
4. Use hysteresis and connectivity analysis to detect edges
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Non-maximum suppression
● Assumption we make: An edge occurs where gradient is maximum

○ Even if their magnitude is above the threshold
● Suppress non-maxima neighboring edges

○ Only suppress edges that are in the same direction nearby
○ Don’t suppress other edges

47
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Intuition behind non-maximum suppression

Let’s assume that out of the 
points:
p, 
q,
r

q has the largest gradient.
Then p and r are not real edges 
and should be suppressed

48

q
p

r



Raymond Yu April 14, 2025Lecture 5 -

What the output looks like after 
Non-max Suppression

Before                         After

49
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What if p = [n1, m1] or r = [n2, m2], is not a pixel location

50

q is a maximum if the value is larger 
than those at both p and at r. 

How should we calculate magnitude 
at p and r? 
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What if p = [n1, m1] or r = [n2, m2], is not a pixel location

51

q is a maximum if the value is larger 
than those at both p and at r. 

How should we calculate magnitude 
at p and r? 
Calculate p and r as averaged values 
of top k=8 closest pixel locations
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In code, you will calculate gradient magnitudes at every q and 
set it to zero if it is not the local max

52

[nr, mr]

[nq, mq]
[np, mp]
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What the output looks like after 
Non-max Suppression

Before                         After
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Canny edge detector
1. Suppress Noise
2. Compute gradient magnitude and direction 
3. Apply Non-Maximum Suppression

○ Assures minimal response
4. Use hysteresis and connectivity analysis to detect edges

54
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Problem: Also, you have too many disconnected 
edges

Problem: if your threshold is too high (left) or too 
low (right), you have too many or too few edges

55
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What the output of hysteresis looks like:

56

Before                         After
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Hysteresis thresholding connects edges to 
create long edges
● How does it work?

● Define two thresholds: Low and High
○ If less than Low => not an edge
○ If greater than High => strong edge

○ If between Low and High => weak edge 

57
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Hysteresis thresholding
If the gradient at a pixel is between Low and High thresholds,

○ Consider its neighbors iteratively then declare it an “edge pixel” if it is 
connected to an ‘strong edge pixel’ directly or via pixels between Low 
and High

58
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strong edge pixel

strong edge pixel

All the white pixels are not edges (below the low threshold)
The black pixels below are strong edges (above the high threshold)
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weak but connected 
edge pixels

60

Now, let’s assume all the red pixels are weak edges 
(between low and high thresholds)
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Keep these because they are 
connected to strong edges

61

Now, let’s assume all the red pixels are weak edges 
(between low and high thresholds)

Remove these edges
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Final Canny Edges

62
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Canny edge detector

1. Filter image with x, y derivatives of Gaussian 

2. Find magnitude and orientation of gradient

3. Non-maximum suppression:
○ Reduce multi-pixel wide edges down to single pixel edge

4. Thresholding and linking (hysteresis):
○ Define two thresholds: low and high

○ Connect edges together and remove everything else 

63
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Effect of σ (Gaussian kernel spread/size)

Canny with Canny with original 

The choice of σ depends on desired behavior
• large σ detects large scale edges

• small σ detects fine features
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Gradients
(e.g. Canny)

Human

65
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45 years of edge 
detection

Source: Arbelaez, Maire, Fowlkes, and Malik. TPAMI 2011 (pdf)
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What we will learn today

67

● Edge detector with noisy images
● Sobel Edge detector
● Canny edge detector
● Hough Transform
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Hough transform
How Transform edge detections into lines

68
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Hough transform
● It was introduced in 1962 (Hough 1962) and first used to find lines in 

images a decade later (Duda 1972). 

● Caveat: Hough transform can detect lines, circles and other shapes
○ but only for shapes that can be expressed as a math equation.

● It gives us good detections even when the image is noisy and even if the 
shape is partially hidden.

69
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Input to Hough transform algorithm
● We have performed some edge detection (Sobel filter, Canny Edge 

detector, etc.), including a thresholding of the edge magnitude image. 
● Thus, we have some pixels that may partially describe the boundary of 

some objects.

70
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Detecting lines using Hough transform
● We wish to find sets of pixels that make up straight lines. 
● Instead of using [n, m], this might be easier to do with (x, y)

How do we transform [n, m] to (x, y)?
- Simple: We assume 

- n = y, 
- m = x.

- So, f[n, m] = f[y, x]

71
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● Consider a line that passes through two points in 
the image
○ (x1, y1) and (x2, y2)

● Straight lines that pass that point have the form:
y= a*x + b 

● How do we calculate the parameters (a, b)?
a = (y2 - y1) / (x2 - x1)

b = y1 - a × x1

Detecting lines using Hough transform

72
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● Consider a line that passes through two points in 
the image
○ (x1, y1) and (x2, y2)

● Straight lines that pass that point have the form:
y= a*x + b 

● How do we calculate the parameters (a, b)?
a = (y2 - y1) / (x2 - x1)

b = y1 - a × x1

Detecting lines using Hough transform
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Detecting lines using Hough transform

74

● Problem: We don’t know which pairs of edge points belong to the 
same line. 

● That’s where Hough transform comes in!
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The Hough transform

75

● Consider a line that passes through a single point in the image
○ (xi, yi)

● All straight lines that pass that point have the form:
yi= a*xi + b 
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The Hough transform

● This equation can be rewritten as follows: 
○ b = -a*xi + yi

76

yi = a*xi + b 
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The Hough transform

● This equation can be rewritten as follows: 
○ b = -a*xi + yi
○ We can now consider 

x and y as parameters
○ a and b as coordinates. 

77

yi = a*xi + b 
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● b = -a*xi + yi
● If our coordinates were (a,b) instead of (x, y):

○ We could say the above equation is a line in 
(a,b)-space

○ parameterized by x and y. 
○ So: one point (xi,yi) gives a line in (a,b) 

space. 

The Hough transform

78

yi = a*xi + b 
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The Hough transform
● So: one point (xi,yi) gives a line in (a,b) space.
● Another point (xj,yj) will give rise to another line in (a,b)-space.

79
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The Hough transform

80

● Doing this for 6 edge points will 
result in an graph like the one on 
the right.

● In (a,b) space these lines will 
intersect in a point (a’, b’)
○ On the right, a’ = 1, b’ = 1

● All points on the line defined by (xi, 
yi) and (xj , yj) in (x, y)-space will 
parameterize lines that intersect in 
(a’, b’) in (a,b) space.
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The need to quantize and “vote”
Not all intersections will be valid lines.

Consider two edge points that are not part of a real 
edge:
- They might still intersect in (a, b) space.

Problem: How do we identify intersections that are 
belong to the same edge versus random points?

81
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Intuition behind voting

The more lines intersect at the same (a’, b’) point, the 
more likely y=a’x + b’ is a real edge in the image.

So, we need to count how many lines intersect at a point 
and keep the ones with high count

82
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Counting in quantized (a, b)-space
1. Quantize the parameter space (a b) by 

dividing it into cells 
a. [[amin, amax],[bmin,bmax]]

2. For each pair of points (xi, yi) and (xj, yj), 
find the intersection (a’,b’)  in (a,b)-space.

3. Increase the value of a cell that (a’, b’) 
belongs to by 1.

4. Cells receiving more than a certain number 
of counts (also called ‘votes’) are assumed 
to correspond to lines in (x,y) space.

83
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Output of Hough transform
● Here are the top 20 most voted lines in the image:

84
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Other Hough transformations
● We can represent lines as polar coordinates instead of y = a*x + b

● Polar coordinate representation:
○ x*cosθ + y*sinθ = ρ

● We can transform points in (x, y) space to curves in (ρ θ)-space
○ (x y) and (ρ θ)?

85
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Other Hough transformations
● Note that lines in (x, y)-space are not 

lines in (ρ, θ)-space

● Curves in (ρ, θ)-space intersect 
similarly like in (a, b)-space.

86
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Other Hough transformations

87

● x*cosθ + y*sinθ = ρ

● Q. For a vertical line in (x, y)-space, 
what are the θ and ρ values?
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Other Hough transformations

88

● x*cosθ + y*sinθ = ρ

● Q. For a vertical line in (x, y)-space, 
what are the θ and ρ values?
○ θ=0, ρ=x

● Q. For a horizontal line in (x, y)-space, 
what are the θ and ρ values?
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Hough transform remarks
● Advantages:

○ Conceptually simple.
○ Easy implementation 
○ Handles missing and occluded data very gracefully.
○ Can be adapted to many types of forms, not just lines

● Disadvantages:
○ Computationally complex for objects with many parameters. 
○ Looks for only one single type of object 
○ Can be “fooled” by “apparent lines”. 
○ The length and the position of a line segment cannot be determined. 
○ Co-linear line segments cannot be separated.

89
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Hough transform remarks
● Advantages:

○ Conceptually simple.
○ Easy implementation 
○ Handles missing and occluded data very gracefully.
○ Can be adapted to many types of forms, not just lines

● Disadvantages:
○ Computationally complex for shapes with many parameters. 
○ Looks for only one single shape of object 
○ Can be “fooled” by “apparent lines”. 
○ The length and the position of a line segment cannot be determined. 
○ Co-linear line segments cannot be separated.
○ Runs in O(N2) since all pairs of points should be considered

90
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Applications

91
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Summary

Optional reading:
Szeliski, Computer Vision: Algorithms and Applications, 2nd Edition
Sections 7.1, 8.1.4

92

● Edge detector with noisy images
● Sobel Edge detector
● Canny edge detector
● Hough Transform
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Next time

93

Lines and Corners


