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Lecture 4
Derivatives and edges
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Administrative

A1 is out
- It is graded
- Due April 18
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Administrative

3

Recitation

● Friday 1:30-2:20pm @ BAG 154

This week:
We will go over Python & Numpy basics
- will have polls
- prep for final exam
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So far: 2D impulse function

● A special function
● 1 at the origin [0,0].
● 0 everywhere else

 

44
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● The moving average filter equation again:

So far: We get the impulse response when we 
pass an impulse function through a LSI system

Pass in an impulse function Record its response
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So far: write down f as a sum of impulses

f[2,2]f[2,1]f[2,0]

f[1,2]f[1,1]f[1,0]

f[1,1]f[0,1]f[0,0]

Let’s say our input f is a 3x3 image:
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000

000

0f[0,1]0
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000
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010

100

000

000
=    f[0,0]
✕

 +     f[0,1]
✕

+   …     + f[2,2]✕
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So far: write down f as a sum of impulses
● Superposition:

● We can now use superposition to see what the output g is:
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So far: We derived convolutions
● An LSI system is completely specified by its impulse response.

○ For any input f, we can compute the output g in terms of the impulse response h.

Discrete Convolution

8
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original smoothed (3x3)

– =

=

Let’s add it back to get a sharpening system:

+

Detailed

Detailedoriginal Sharpened

9

So far: We created a sharpening system by combining filters 
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Equivalent to a convolution without the flip

1010
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Today’s agenda
● Convolutions and Cross-Correlation
● Edge detection
● Image Gradients
● A simple edge detector
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Today’s agenda
● Convolutions and Cross-Correlation
● Edge detection
● Image Gradients
● A simple edge detector
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[n,m]

2D Discrete Convolution

Kernel h[k, l]

f[0,0] f[0,1]

f[1,0]

Image f[k, l]Output  f *h

h[-1,0] h[-1,1]h[-1,-1]

h[0,0] h[0,1]h[0,-1]

h[1,0] h[1,1]h[1,-1]
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2D Discrete Convolution

Kernel h[k, l] Kernel h[-k, -l]

Fold Shift

Kernel h[n-k, m-l]

h[n,m]

h[-1,0] h[-1,1]h[-1,-1]

h[0,0] h[0,1]h[0,-1]

h[1,0] h[1,1]h[1,-1]

h[1,0] h[1,-1]h[1,1]

h[0,0] h[0,-1]h[0,1]

h[-1,0] h[-1,-1]h[-1,1]

14
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2D Discrete Convolution

f[0,0] f[0,1]

f[1,0]

f[n,m]

Kernel h[n-k, m-l]Image f[k, l]Output  f *h

[n,m] h[n,m]

15
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2D Discrete Convolution

Element-wise multiplication
Image f[k, l] • Kernel h[n-k, m-l]

f[0,0] f[0,1]

f[1,0]

[n,m]

16

Output  f *h Image f[k, l]
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f[0,0] f[0,1]

f[1,0]

2D Discrete Convolution

Element-wise multiplication
Image f[k, l] • Kernel h[n-k, m-l]

17

Output  f *h Image f[k, l]
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f[0,0] f[0,1]

f[1,0]

2D Discrete Convolution

Element-wise multiplication
Image f[k, l] • Kernel h[n-k, m-l]

18

Output  f *h Image f[k, l]



Raymond Yu April 9th, 2025Lecture 4 -

f[0,0] f[0,1]

f[1,0]

2D Discrete Convolution

19

Element-wise multiplication
Image f[k, l] • Kernel h[n-k, m-l]

Output  f *h Image f[k, l]
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2D Discrete Convolution
●  

20
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2D convolution example

Slide credit: Song Ho Ahn

21
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2D convolution example

Slide credit: Song Ho Ahn
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2D convolution example

Slide credit: Song Ho Ahn
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2D convolution example

Slide credit: Song Ho Ahn
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2D convolution example

Slide credit: Song Ho Ahn
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2D convolution example

Slide credit: Song Ho Ahn
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2D convolution example

Slide credit: Song Ho Ahn
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Original

?=*

Practice with convolution

28

0 00

1 00

0 00

28
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Filtered 
(no change)

*

29

Original

=
0 00

1 00

0 00

Practice with convolution
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*

30

Practice with convolution

Original

?=
0 00

0 10

0 00
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Shifted right
By 1 pixel

*

31

Practice with convolution

Original

=
0 00

0 10

0 00
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*

32

Practice with convolution

Original

?=
1 11

1 11

1 11
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Blurry output

*

33

Practice with convolution

Original

=
1 11

1 11

1 11
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- = ?

(Note that filter sums to 1)

Original

34

What happens if a system contains multiple filters?
1 11

1 11

1 11

0 00

2 00

0 00
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-

= +

Original

35

What happens if a system contains multiple filters?
1 11

1 11

1 11

0 00

2 00

0 00

-
1 11

1 11

1 11

0 00

1 00

0 00

0 00

1 00

0 00
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original smoothed (3x3)

– =

Detailed

Detailedoriginal Sharpened

36

= + -
1 11

1 11

1 11

0 00

1 00

0 00

0 00

1 00

0 00

What does blurring take away?

36
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original smoothed (3x3)

– =

=

Let’s add it back to get a sharpening system:

+

Detailed

Detailedoriginal Sharpened

37

What does blurring take away?
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Convolution in 2D – Sharpening filter

Sharpening system: Accentuates differences with local average

Original

Sharpening system

38
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Implementation detail: Image support and 
edge effect

•A computer will only convolve finite support signals. 
•  That is: images that are zero for n,m outside some 
rectangular region

• numpy’s convolution performs 2D convolution of finite-support 
signals.

 N1 ×M1

N2 ×M2 

(N1 + N2 − 1) × (M1 +M2 − 1)* =

39

39
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Image support and edge effect
•A computer will only convolve finite support signals. 
• What happens at the edge?

 f

h

• zero “padding”
• edge value replication
• mirror extension
• more (beyond the scope of this class)

40

40
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Today’s agenda
● Convolutions and Cross-Correlation
● Edge detection
● Image Gradients
● A simple edge detector

41
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• Equivalent to a convolution without the flip
• Use it to measure ‘similarity’ between f and h.

42
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C
o

u
rtesy o

f J. 
Fessler

(Cross) correlation – example

43
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(Cross) correlation – example
C

o
u

rtesy o
f J. 

Fessler

44
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numpy’s 
correlate

C
o

u
rtesy o

f J. 
Fessler

C
o

u
rtesy o

f J. 
Fessler

(Cross) correlation – example

45
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(Cross) correlation – example
Left Right

scanline

N
o

rm
. c

ro
ss

 c
o

rr
. s

co
re
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Figure from “Computer Vision for Interactive Computer Graphics,” W.Freeman et al, IEEE Computer Graphics and Applications, 1998 copyright 1998, IEEE

Cross Correlation Application: Vision 
system for TV remote control

- uses template matching

47
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Properties of cross correlation
• Associative property:

• Distributive property:

The order doesn’t matter!

48
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49
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Convolution vs. (Cross) Correlation

● When is correlation equivalent to convolution?
● In other words, Q. when is f**g = f*g? 

50
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Convolution vs. (Cross) Correlation

● A convolution is an integral that expresses the amount of overlap of one 
function as it is shifted over another function. 
○ convolution is a filtering operation

● Correlation compares the similarity of two sets of data. Correlation 
computes a measure of similarity of two input signals as they are shifted 
by one another. The correlation result reaches a maximum at the time 
when the two signals match best .
○ correlation is a measure of relatedness of two signals

51

51
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What we will learn today
● Convolutions and Cross-Correlation
● Edge detection
● Image Gradients
● A simple edge detector

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 8

52
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Q. What do you see?

53
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(A) Cave painting at Chauvet, 
France, about 30,000 
B.C.;

(B) Aerial photograph of the 
picture of a monkey as 
part of the Nazca Lines 
geoglyphs, Peru, about 
700 – 200 B.C.; 

(C) Shen Zhou (1427-1509 
A.D.): Poet on a mountain 
top, ink on paper, China; 

(D) Line drawing by 7-year 
old I. Lleras (2010 A.D.). 
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We know edges are special from human 
(mammalian) vision studies

Hubel & Wiesel, 1960s
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We know edges are special from human 
(mammalian) vision studies
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Walther, Chai, Caddigan, Beck & Fei-Fei, PNAS, 2011

59
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Edge detection
• Goal:  Identify sudden changes (discontinuities) in an 

image

○ Intuitively, most semantic and shape information from 
the image can be encoded in the edges

○ More compact than pixels

• Ideal: artist’s line drawing (but artist is also using 
object-level knowledge)

60
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Why do we care about edges?

● Extract information, recognize objects

● Recover geometry and viewpoint

Vanishing
 point

Vanishing
 line

Vanishing
 point

 Vertical vanishing
 point

(at infinity)

Source: J. Hayes61
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Origins of edges

depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity

62
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Surface normal discontinuity

Closeup of edges

63



Raymond Yu April 9th, 2025Lecture 4 -

Depth discontinuity

Closeup of edges

64
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Closeup of edges

Surface color discontinuity
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What we will learn today
● Convolutions and Cross-Correlation
● Edge detection
● Image Gradients
● A simple edge detector
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Review: Derivatives in 1D - example

Q. What is the dy/dx?

67
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Review: Derivatives in 1D - example
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Derivatives in 1D - example

Q. What is the dy/dx?
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Derivatives in 1D - example

70
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Approximating derivatives using numerical 
differentiation

71
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Approximating derivatives using numerical 
differentiation

Change in f at x

Change in x

72
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In discrete derivatives with images, smallest value of x is 
1 pixel

73

This is called a forward derivative
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But change at x can be measured in many 
different ways

Backward

74
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But change at x can be measured in many 
different ways

Backward

Forward

75
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But change at x can be measured in many 
different ways

Backward

Forward

Central

76
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●Using Backward differentiation

Q. What is the equation in width (2nd) dimension? 

Designing filters that perform differentiation 

77
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●Using Backward differentiation

Designing filters that perform differentiation 

78
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●Using Backward differentiation

Q. Let’s write this as a filter

Designing filters that perform differentiation 

1 11

1 11

1 11

Remember the 
moving average 
filter:

79
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●Using Backward differentiation

Q. Let’s write this as a filter

Designing filters that perform differentiation 

1 11

1 11

1 11

Remember the 
moving average 
filter:

? ??

? ??

? ??

80
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●Using Backward differentiation

Q. Let’s write this as a filter

Designing filters that perform differentiation 

1 11

1 11

1 11

Remember the 
moving average 
filter:

? ??

1 ??

? ??
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●Using Backward differentiation

Q. Let’s write this as a filter

Designing filters that perform differentiation 

1 11

1 11

1 11

Remember the 
moving average 
filter:

? ??

1 ??

? ??
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●Using Backward differentiation

Q. Let’s write this as a filter

Designing filters that perform differentiation 

1 11

1 11

1 11

Remember the 
moving average 
filter:

? ?0

1 ??

? ??

83
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●Using Backward differentiation

Q. Let’s write this as a filter

Designing filters that perform differentiation 

1 11

1 11

1 11

Remember the 
moving average 
filter:

? ?0

1 ??

? ??

84
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●Using Backward differentiation

Q. Let’s write this as a filter

Designing filters that perform differentiation 

1 11

1 11

1 11

Remember the 
moving average 
filter:

0 00

1 ??

? ??

85
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●Using Backward differentiation

Q. Let’s write this as a filter

Designing filters that perform differentiation 

1 11

1 11

1 11

Remember the 
moving average 
filter:

0 00

1 ??

? ??

86
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●Using Backward differentiation

Q. Let’s write this as a filter

Designing filters that perform differentiation 

1 11

1 11

1 11

Remember the 
moving average 
filter:

0 00

1 ??

0 00

87
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●Using Backward differentiation

Q. Last ones: What are these two?

Designing filters that perform differentiation 

1 11

1 11

1 11

Remember the 
moving average 
filter:

0 00

1 ??

0 00

88
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●Using Backward differentiation

Q. Last ones: What are these two?

Designing filters that perform differentiation 

1 11

1 11

1 11

Remember the 
moving average 
filter:

0 00

1 -10

0 00

89
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●Using Backward differentiation:

Designing filters that perform differentiation 

1 11

1 11

1 11

Remember the 
moving average 
filter:

1 -10

90
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●Using Backward differentiation:

●Using Forward differentiation:

Q. What is the formula?

Designing filters that perform differentiation 

1 -10

91
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●Using Backward differentiation:

●Using Forward differentiation:

Q. What is the filter look like?

Designing filters that perform differentiation 

1 -10

? ??

92
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●Using Backward differentiation:

●Using Forward differentiation:

Designing filters that perform differentiation 

1 -10

-1 01

93
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●Using Backward differentiation:

●Using Forward differentiation:

●Using Central differentiation: 

Designing filters that perform differentiation 

1 -10

-1 01

Q. What is the formula?
94



Raymond Yu April 9th, 2025Lecture 4 -

●Using Backward differentiation:

●Using Forward differentiation:

●Using Central differentiation: 

Designing filters that perform differentiation 

1 -10

-1 01

Q. What is 
the filter?

? ??

95
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●Using Backward differentiation:

●Using Forward differentiation:

●Using Central differentiation: 

Designing filters that perform differentiation 

1 -10

-1 01

0 -11

96
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Derivative in width dimension for one row
Using backward differentiation: 1 -10

97
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Derivative in width dimension for one row
Using backward differentiation: 1 -10

?

98
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 = 0 x          + 10x          + 15x

Derivative in width dimension for one row
Using backward differentiation: 1 -10

?

99

1 0-1
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Derivative in width dimension for one row
Using backward differentiation: 1 -10

  ?

100

 = 10 x          + 15x          + 10x1 0-1
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Derivative in width dimension for one row
Using backward differentiation: 1 -10

  ?

101

 = 15 x          + 10x          + 10x1 0-1
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Derivative in width dimension for one row
Using backward differentiation: 1 -10

  ?

102

 = 10 x          + 10x          + 25x1 0-1
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Derivative in width dimension for one row
Using backward differentiation: 1 -10

  ?       ?     ?

103

 = 0 x          + 10x          + 15x1 0-1
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Derivative in width dimension for one row
Using backward differentiation: 1 -10

104
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Discrete derivation in 2D:

105
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Discrete derivation in 2D:

106
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Discrete derivation in 2D:

107
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2D discrete derivative - example

108
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2D discrete derivative - example

    ?           ?          ?           ?           ?
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2D discrete derivative - example

110

 = 0 x

 + 10x          

+ 10x 1

0

-1
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2D discrete derivative - example

    ?           ?          ?           ?           ?
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2D discrete derivative - example

112

 = 10x

 + 10x          

+ 10x 1

0

-1
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2D discrete derivative - example

    ?           ?          ?           ?           ?
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2D discrete derivative - example

114

 = 10x

 + 10x          

+ 10x 1

0

-1
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2D discrete derivative - example

    ?           ?          ?           ?           ?
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2D discrete derivative - example

116

 = 10x

 + 10x          

+ 10x 1

0

-1
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2D discrete derivative - example

    ?           ?          ?           ?           ?

117



Raymond Yu April 9th, 2025Lecture 4 -

2D discrete derivative - example

118

 = 10x

 + 10x          

+   0x 1

0

-1
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Let’s do the other one

119
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Let’s do the other one

120

?
?
?
?
?
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Let’s do the other one

121

 = 0 x          +10x         +10x 10-1
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Let’s do the other one

122

?
?
?
?
?
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Let’s do the other one

123

 =10x          +10x         +20x 10-1
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Let’s do the other one

124

?
?
?
?
?
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Let’s do the other one

125

 =10x          +20x         +20x 10-1
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Let’s do the other one

126

?
?
?
?
?
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Let’s do the other one

127

 =20x          +20x         +20x 10-1
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Let’s do the other one

128

?
?
?
?
?
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Let’s do the other one

129

 =20x          +20x         +  0x 10-1
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2D discrete derivative filters

Q. What does this filter do?

130
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2D discrete derivative filters

Q. What does this filter do?
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Q. Which filter was applied?

A B

132
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Q. Which filter was applied?

A B

133
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What we will learn today
● Convolutions and Cross-Correlation
● Edge detection
● Image Gradients
● A simple edge detector

134
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Characterizing edges
An edge is a place of rapid change in the image intensity function

image
intensity function

(along horizontal scanline)
first 

derivative

edges correspond to
extrema of derivative

135
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The gradient vector points in the direction of most rapid increase in intensity

Image gradient
The gradient of an image: 
 

Source: Steve Seitz136
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The gradient vector points in the direction of most rapid increase in intensity

Image gradient
The gradient of an image: 
 

The edge strength is given by the gradient magnitude

137
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Finite differences: example

Original
Image

Gradient 
magnitude

width-direction height-direction

138
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Intensity profile

G
ra

di
en

t
In

te
ns

ity
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Summary

140

● Convolutions and Cross-Correlation
● Edge detection
● Image Gradients
● A simple edge detector



Raymond Yu April 9th, 2025Lecture 4 -

Next time: Detecting lines

141


