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Lecture 3
Systems and (Convolutions)
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Administrative

A0 is due today. 
- It is ungraded

A1 is out
- It is graded (10% of your grade)
- Due on 4/18
- 10%, 15%, 20%, 15%, 10% for H1~HW5

Section this week:
- We will go over Python & Numpy basics
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So far: 2D discrete system (filters)

- System: a sequence of filter
- S is the system operator, defined as a mapping or assignment of 

possible input function f[n,m] to some possible output function  g[n,m].
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So far: Moving Average
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So far: Image Segmentation

● Use a simple pixel threshold:
255,

5
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● Properties of filters 
● Linear shift invariant systems
● Impulse functions
● LSI + impulse response (Convolution)

What we will learn today?
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● Amplitude linearity:
○ Additivity  –  f(x+y) = f(x) + f(y) 

○ Homogeneity – f(αx) = α f(x)

Properties of systems
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Let 

Is Moving Average Additive?
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Is Moving Average Homogeneous?
Exercise: 
Showing moving average filter is homogeneous
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● Amplitude linearity:
○ Additivity

 
○ Homogeneity

Properties of systems

15

Exercise: prove homogeneity by 
your own
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Properties of systems

16

● Amplitude linearity:
○ Additivity

 
○ Homogeneity

○ From above, we get Superposition (Linear Combination)

This is an important property. Make sure you know how to prove if 
any system has this property
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Q. Is the moving average filter stable?

● Other properties:
○ Stability

Properties of systems

17
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(It’s related to Lipschitz condition in ML & Statistics)
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Proof of stability
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Proof of stability
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Proof of stability
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(Triangle Inequality)
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Proof of stability
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Proof of stability
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Proof of stability
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(Triangle Inequality)



Ruta Desai, Chun-Liang Li April 7, 2025Lecture 3 -

● Amplitude properties:
○ Stability

○ Invertibility

Properties of systems

24
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● Amplitude properties:
○ Stability

○ Invertibility

Properties of systems

25

Q. Is the 3x3 moving average filter invertible?

(Last time, we had a discussion of information loss of moving average)
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A simple 1D moving average
● Consider a 1D moving avg problem of [1, 2, 3, 4] and the window size is 3

● The avg is [1, 2, 3, 7/3]
○ (0 + 1 + 2)/3 = 1
○ (1 + 2 + 3)/3 = 2
○ (2 + 3 + 4)/3 = 3
○ (3 + 4 + 0)/3 = 7/3

● Invertibility: can you infer back [1, 2, 3, 4] by [1, 2, 3, 7/3]? 
○ if we know window size is 3 and zero paddings
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A simple 1D moving average

27

- Boundary condition is important
- Exercise: what leads to invertible or non-invertible moving average?
- What is implication? 

- With different assumptions and conditions, we can make many operation invertible, which allows us 
to recover the image back (e.g. denoising)
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Properties of systems
● Spatial properties

○ Shift invariance:

28
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Original image

What does shifting an image look like?
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Shifted image
n

0
 = 1

m
0
 = 1

What does shifting an image look like?
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Is the moving average system is shift invariant? 

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
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Is the moving average system is shift invariant? 
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Is the moving average system is shift invariant? 
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Is the moving average system is shift invariant? 
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Is the moving average system is shift invariant? 
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Is the moving average system is shift invariant? 
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Is the moving average system is shift invariant? 
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What we will learn today?
● Properties of filters (continued)
● Linear shift invariant systems
● Impulse functions
● LSI + impulse response (Convolution)
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Linear Systems (filters)

• Linear filtering:
– Form a new image whose pixels are a weighted sum of 

original pixel values

–  Use the same set of weights at each point

• S is a linear system (function) iff it S satisfies

superposition property (linear combination)

 

39
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• Q. Is the moving average a linear system?  YES

Linear Systems (filters)

40
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Linear Systems (filters)

• Q. Is the moving average a linear system?

• Q. Is thresholding a linear system?

41
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Linear Systems (filters)

• Q. Is the moving average a linear system?

• Q. Is thresholding a linear system?
○ Let f1[0,0] = f2[0,0] = 99
○ So, S[f1[0,0]] = S[f2[0,0]] = 0
○ But S[f1[0,0] + f2[0,0]] = 1

42
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Linear shift invariant (LSI) systems

● Satisfies two properties:

 

• Superposition (linear combination) property 

• Shift invariance:

43
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● We are going to use this as an example to dive into interesting properties about 
linear shift-invariant systems.

● Why are linear shift invariant systems important?

Our visual system is (often) a 
shift invariant system, and linear is easy (for us)

Moving average system is linear shift invariant (LSI)

44
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Human vision are scale and translation invariant

Participants were shown 
some target Korean 
character once and were 
tested on whether they 
can identify the targets 
from other distractors

45

Han et al. Scale and translation-invariance for novel objects in human vision. Nature 2020 [link]

. 

https://www.nature.com/articles/s41598-019-57261-6#:~:text=We%20found%20that%20humans%20have,and%20position%20of%20presented%20objects.
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Very high recognition accuracies

46

Han et al. Scale and translation-invariance for novel objects in human vision. Nature 2020 [link]

. 

Human vision are scale and translation invariant

https://www.nature.com/articles/s41598-019-57261-6#:~:text=We%20found%20that%20humans%20have,and%20position%20of%20presented%20objects.
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What we will learn today?
● Properties of filters (continued)
● Linear shift invariant systems
● Impulse functions
● LSI + impulse response
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2D impulse function

● Let’s look at a special function
● 1 at the origin [0,0].
● 0 everywhere else
● (Similar to delta function)

 

48
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2D impulse function as an image
● Let’s look at a special function
● 1 at the origin [0,0].
● 0 everywhere else

49

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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● The moving average filter equation again:

● By passing an impulse function into an LSI system, we get it’s impulse 
response.
○ We will use h[n, m] to refer to the impulse response

What happens when we pass an impulse 
function through a LSI systems

Pass in an impulse function Record its response
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What happens when we pass an impulse 
function through a LSI systems

Before we do this, let’s remember 
how we used the moving average 
filter last lecture

51

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

C
o

u
rtesy o

f S. 
Seitz
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Remember the Moving Average filter from last lecture
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0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
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Remember the Moving Average filter from last lecture
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0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
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Remember the Moving Average filter from last lecture
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0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
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Remember the Moving Average filter from last lecture
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Remember the Moving Average filter from last lecture

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
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0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
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Remember the Moving Average filter from last lecture
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Now let’s do the same thing with an 
impulse function

58

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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Now let’s do the same thing with an 
impulse function
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0 0 0 0 0 0 0
0 ? 0 0 0 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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Now let’s do the same thing with an 
impulse function
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0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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Now let’s do the same thing with an 
impulse function
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0 0 0 0 0 0 0
0 0 ? 0 0 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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Now let’s do the same thing with an 
impulse function

62

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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Now let’s do the same thing with an 
impulse function
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0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 ? 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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Now let’s do the same thing with an 
impulse function

64

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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Now let’s do the same thing with an 
impulse function
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0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 ? 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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Now let’s do the same thing with an 
impulse function
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0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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Now let’s do the same thing with an 
impulse function

67

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1/9 ? 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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Now let’s do the same thing with an 
impulse function

68

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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Now let’s do the same thing with an 
impulse function

69

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1/9 1/9 1/9 0 0
0 0 ? 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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Now let’s do the same thing with an 
impulse function

70

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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Now let’s do the same thing with an 
impulse function

71

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 ? 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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Now let’s do the same thing with an 
impulse function

72

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

72



Ruta Desai, Chun-Liang Li April 7, 2025Lecture 3 -

Now let’s do the same thing with an 
impulse function

73

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 1/9 1/9 1/9 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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Impulse response of the 3 by 3 moving average filter
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Notice that any response can be written as a 
summation of shifted impulse functions
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Notice that any response can be written as a 
summation of shifted impulse functions
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Notice that any response can be written as a 
summation of shifted impulse functions

The general form for a moving 
average h[n,m]
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Notice that any response can be written as a 
summation of shifted delta functions

78

h[0, 0]  =  1/9 * (δ2[0+1, 0+1] + δ2[0+1, 0-0] + δ2[0+1, 0-1] + 
                δ2[0-0, 0+1]  + δ2[0-0, 0-0]  + δ2[0-0, 0-1] +

       δ2[0-1, 0+1]  + δ2[0-1, 0-0]  + δ2[0-1, 0-1])               
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1 11
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Notice that any response can be written as a 
summation of shifted delta functions

79

h[0, 0]  =  1/9 * (δ2[0+1, 0+1] + δ2[0+1, 0-0] + δ2[0+1, 0-1] + 
                δ2[0-0, 0+1]  + δ2[0-0, 0-0]  + δ2[0-0, 0-1] +

       δ2[0-1, 0+1]  + δ2[0-1, 0-0]  + δ2[0-1, 0-1])               

h[1, 1]  =  1/9 * (δ2[1+1, 1+1] + δ2[1+1, 1-0] + δ2[1+1, 1-1] + 
                δ2[1-0, 1+1]  + δ2[1-0, 1-0]  + δ2[1-0, 1-1] +

       δ2[1-1, 1+1]  + δ2[1-1, 1-0]  + δ2[1-1, 1-1])               
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Yes because h is symmetric 
across the origin

Exercise:  What if we swap n-k for k-n. Does that also work?
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Notice that any response can be written as a 
summation of shifted impulse functions

80
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81
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Exercise: What if h was the filter on the right:

(A)

(B)
Is A correct?
Is B correct?
Are both correct?
Are both wrong?

h[:, -1] = 0

81
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Exercise: What if h was the filter on the right:h[:, -1] = 0

82

h[-1, -1]  =  δ2[-1+1, -1+1] + δ2[-1+1, -1-0] + δ2[-1+1, -1-1] + 
                  δ2[-1+1, -1+1] + δ2[-1-0, -1-0]  + δ2[-1-0, -1-1] +

         δ2[-1+1, -1+1] + δ2[-1-1, -1-0]  + δ2[-1-1, -1-1]               

h[1, 1]  =  δ2[1+1, 1+1] + δ2[1+1, 1-0] + δ2[1+1, 1-1] + 
                δ2[1-0, 1+1]  + δ2[1-0, 1-0]  + δ2[1-0, 1-1] +

       δ2[1-1, 1+1]  + δ2[1-1, 1-0]  + δ2[1-1, 1-1]               
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Exercise: What if h was the filter on the right:h[:, -1] = 0

Because h is not symmetric, we need to invert 
the range if we invert m-l to l-m

83

Exercise: play with few numerical examples!
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● Properties of filters (continued)
● Linear shift invariant systems
● Impulse functions
● LSI + impulse response

What we will learn today?

84
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Property of (LSI) systems
● An LSI system is completely specified by its impulse response.

○ For any input f, we can compute g using only the impulse response h.

or we can use h to represent S

85
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Property of (LSI) systems
● An LSI system is completely specified by its impulse response.

○ For any input f, we can compute g using only the impulse response h.

or we can use h to represent S
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Property of (LSI) systems
● An LSI system is completely specified by its impulse response.

○ For any input f, we can compute g using only the impulse response h.

or we can use h to represent S

○ Let’s derive an expression for g in terms of h. 
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Recall the 3 properties about LSI systems:

  

1. We know what happens when we send a delta function through an LSI 
system:
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Recall the 3 properties about LSI systems:
1. We know what happens when we send a delta function through an LSI 

system:

2. We also know that LSI systems shift the output if the input is shifted:
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Recall the 3 properties about LSI systems:
1. We know what happens when we send a delta function through an LSI 

system:

2. We also know that LSI systems shift the output if the input is shifted:

3. Finally, the superposition (linear combination) principle:
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Key idea: write down f as a sum of impulses

f[2,2]f[2,1]f[2,0]

f[1,2]f[1,1]f[1,0]

f[1,1]f[0,1]f[0,0]

Let’s say our input f is a 3x3 image:

000

000

00f[0,0]

000

000

0f[0,1]0

f[2,2]00

000

000

= + + … +

000

000

001

000

000

010

100

000

000
=    f[0,0]
✕

 +     f[0,1]
✕

+   …     + f[2,2]✕

91
pixel value shifted impulse function
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Key idea: write down f as a sum of impulses
● More generally:
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This is a function 
of n, m

Key idea: write down f as a sum of impulses
● More generally:

● We can now use superposition to see what the output g is:

For given k, l, 
this is a constant
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This is a function 
of n, m

Key idea: write down f as a sum of impulses
● Superposition

● We can now use superposition to see what the output g is:

For given k, l, 
this is a constant
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This is a function 
of n, m

Key idea: write down f as a sum of impulses
● Superposition

● We can now use superposition to see what the output g is:

For given k, l, 
this is a constant

95

Exercise!
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Key idea: write down f as a sum of impulses
● Superposition:

● We can now use superposition to see what the output g is:
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Key idea: write down f as a sum of impulses

● From previous slide:

● Using shift invariance, we get a shifted impulse response:

97

(From previous slide)
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We can write g as a function of h
● We have:

● Which means:

98
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Linear Shift Invariant (LSI) systems
● An LSI system is completely specified by its impulse response.

○ For any input f, we can compute the output g in terms of the impulse response 
h.

Discrete Convolution
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Linear Shift Invariant (LSI) systems
● An LSI system is completely specified by its impulse response (we also 

call them as filters).
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● Linear shift invariant systems
● Impulse functions
● LSI + impulse response

○ Why are they important?

What we will learn today?
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Next time:

More Convolutions & Edges and Lines

102


