Lecture 2
Pixels and Filters

Slide credit: Ranjay Krishna
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Administrative

AO is out.

- Due on 4/7, but it is ungraded

- Meant to help you with python and numpy basics

- Learn how to do homeworks and submit them on gradescope.
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Administrative

- Recording

- Hopefully the microphone will fix the recording from today’s lecture
- Section

- Will go over Linear algebra basics this week in recitation
- TAhours

- Start from next week
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Final exam

e Monday Jun 9th 2:30 - 4:20 (in person) @ BAG 154
o We will send out form for students to apply to take the make up

® Will contain written questions from the concept covered in class or any
questions in the homeworks.

® Can require you to solve technical math problems.

® Will contain a lot of multiple choice and true-false questions. We will
release a practice final towards the end of the quarter.
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Recap: Computer vision extracts geometric 3D
information from 2D images

Input RGB-D 6D pose and size Per-frame 3D Prediction

TRI & GATech’s ShaPO (ECCV’22): https://zubair-irshad.github.io/projects/ShAPO.html
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So far: why is computer vision hard?

2D Image 3D Scene

Graphics
P

— It is an ill posed

Pixel Matrix Objects Material prObIem
13 54 ;1 121 139 Shape/Geometry ~ Motion

Semantics 3D Pose
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CSE 455 Roadmap

Pixels Video Camera Segment ML g
Convolutions  Motion Camera Segmentation | jnear Models

Edges Tracking 3D Geometry Clustering (Conv) Neural networks
Descriptors Detection

From Convolutions to Convolutions
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“Every model is wrong, but some are useful”
George E.P. Box
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Today’s agenda

Color spaces

Image sampling and quantization
Image histograms

Images as functions

Filters

Properties of systems

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 7
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Today’s agenda

e Color spaces

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 7
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How to compute the weights of the primaries to match any

Color signal
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Matching functions: the amount of each primary needed to match
a monochromatic light source at each wavelength
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Explaining Color - A Simplified “Model”

INlumination Reflectance
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Foundations of Vision, by Brian Wandell, Sinauer Assoc.,
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The Physics of Light Sources _
Some examples of the spectra of light sources

A. Ruby Laser B. Gallium Phosphide Crystal

# Photons
# Photons
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Wavelength (nm.) Wavelength (nm.)

C. Tungsten Lightbulb D. Normal Daylight
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The Physics of Reflectance

Some examples of the reflectance spectra of surfaces
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Physiology of Human Vision

Three kinds of cones:

Cone mosaic
440 530 560 nm.

V .

N
o
o

IS
w
O
pd
<
o)
o)
n 50
m
<
]
=
|_
<
|
w
(0

400 450 500 550 600650

WAVELENGTH (nm.)

Ruta Desai, Chun-Liang Li Lecture 2 - 16 April 02, 2025



A Slightly Complex “Model”

(a)

Ilumination Human cones

[Mlumination Reflectance Scattered light = Cone sensitivities  Cone absorptions

N SR T
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Color is a psychological phenomenon

* Do we really see the same color?
* The result of interaction between

physical light in the environment and our
visual system.

« A psychological property of our visual
experiences when we look at objects and
lights, not a physical property of those
objects or lights.

VISION SCIENCE

Photons to Phenomenology

Stephen E. Palmer
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Linear color spaces

 Defined by a choice of three primaries

» The coordinates of a color are given by the weights of the primaries
used to match it

mixing two lights mixing three lights produces
produces colors that lie colors that lie within the
along a straight line in triangle they define in color
color space space
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RGB space

Primaries are monochromatic lights (for monitors, they
correspond to the three types of phosphors)

RGB primaries

B =645.2nm
B P; = 525.3 nm
;= 444.4nm
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Blue Light LED (90’s)

Shuji Nakamura,
Nobel Prize in Physics 2014
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Other spaces: CIE XYZ

* Primaries (X, Y and Z) are imaginary
* X: Represents a mix of red and green.
* Y: Represents luminance (brightness).

e Z: Represents a mix of blue and green.

2D visualization: draw (x,y), where
X = X[(X+Y+2), y = Y/(X+Y+2)

http://en.wikipedia.org/wiki/CIE_1931 color_space
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http://en.wikipedia.org/wiki/CIE_1931_color_space

Other color spaces: HSV

Green Yellow

Cyan ¢ il
alue

\ \ \/ e e Green (120°)

Blue Magenta Red (00)
Blue (240" )

Gireen Yellow
///_‘ 1¥ Saturation
/ N Value
4 [ " Hue
Cyan Red (angle)
-
\ / 0 Saturation
BIuM(-lngcnm !

* Perceptually meaningful dimensions: Hue, Saturation (Brightness), Value (Intensity)
e Useful in data augmentation for training large models
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Other color spaces: HSV
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Today’s agenda

e Image sampling and quantization

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 7
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Image Formation

@ Light Source

Lens

Sensor
Plane

Physical
Object
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Camera sensors produce discrete outputs
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https://ai.stanford.edu, “'syyeung/cvwe‘b/Picturesl/imagemétrix.png

https://commons.wikimedia.org/wiki/File:Mirrorless_Camera_Sensor.jpg
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Camera sensors produce discrete outputs

=

https://ai.stanford.edu, “'syyeung/cvweb/Pict‘u résl}imagemétrix.png‘

https://commons.wikimedia.org/wiki/File:Mirrorless_Camera_Sensor.jpg
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Types of Images

Grayscale
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Binary image representation

)

Row 1

0: Black e ojojo 0jo
. OW q v
1: White
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Grayscale image representation
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10|5|9

100

Saturation

Q. If you used HSV to represent grayscale images, is
the slider representing hue? Or saturation? Or value™
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B channel o R channel
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Color image - one channel

R channel
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Types of Images

Grayscale

[0, 1, ..., 255] 0,1, ..., 255]"3
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Digital Images
are sampled

What happens when we zoom
into the images we capture?
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Errors due to Sampling

N

- i

Q: How to compensate the error?
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Resolution

is a sampling parameter, defined in dots per inch (DPI) or
equivalent measures of spatial pixel density
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Resolution
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Images are Sampled and Quantized

* An image contains discrete number of pixels
—Pixel value:
*“grayscale”
(or “intensity”): [0,255]

148
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Images are Sampled and Quantized

* An image contains discrete number of pixels
—Pixel value: [90, 0, 53]
*“grayscale”
(or “intensity”): [0,255]
*“color”

—RGB: [R, G, B] [249, 215, 203]

Q: Why [0, 255] but not [0, 1]?

[213, 60, 67]
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With this loss of information (from sampling and
guantization),

How many possible 256x256x3 images do we have?

256{256x256x3} = 221572864 .+

How many images can a person perceive in the
whole life?

1 (img/sec) X 86,400 (sec/day) x 365 (day/year) x 80 (years) = 2,500,000,000

Q: What'’s the implication?
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With this loss of information (from sampling and
guantization),

Can we still use images for useful tasks?
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Today’s agenda

e Image histograms

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 7
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Starting with grayscale images:

e Histogram captures the
distribution of gray levels in the
image.

e How frequently each gray level
occurs in the image 2000

2500

1500

1000

500

250
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Grayscale histograms in code

e Histogram of an image provides the frequency of the brightness
(intensity) value in the image.

Here is a simple implementation of calculating histograms:

def histogram(im):
h = np.zeros(256)
for row in im.shape[O]:
for col in im.shape[1]:
val = im[row, col]
h[val] +=1
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Grayscale histograms in code

2500

def histogram(im):
h = np.zeros(256)
for row in im.shape[O]:
for col in im.shape[1]:
val = im[row, col]
h[val] +=1

1500

500
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Visualizing Histograms for patches

Q: How to use histogram for

E——y  refrieval?
0 256

Count: 10192 Min: 9
Mean: 133.711 Max: 255
StdDev: 55.391 Mode: 178 (180)

0 256

Count: 10192 Min: 11
Mean: 104.637 Max: 254
StdDev: 89.862 Mode: 23 (440)

Slide credit: Dr. Mubarak
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Histogram — use case

In emphysema, the inner walls of the lungs'
air sacs called alveoli are damaged, causing

them to eventually rupture.

You can take a picture of the lung with
special dye to mark the alveoli

0.10 4

0.05 4

n e— e althy Untreated
— =— =—Healthy Control
= = = EFmphysematous
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Histogram — use case

a) Video Frames

,[DDDL JDEDI_‘H ﬂljﬂﬂﬂ lﬂ i ‘H 0

b) Frame features (histograms)

Video Shot Boundary Detection and Condensed
Representation : A Review
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Histograms are a convenient representation to
extract information
e Commonly used before deep learning or low-power devices

e A very cheap “representation”
e Still useful even in deep learning era (really?!?!)

e Q: Is image/histogram an one-to-one mapping transformation?
e Can we develop better transformations than histograms?
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Today’s agenda

e |mages as functions

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 7
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Images are a function!!!

This is a new formalism that will allow us to borrow ideas from signal
processing to extract meaningful information.

2D Image 3D Scene At every pixel
location, we get an
intensity value for that
pixel.

Graphics
/—-\

The world captured
by the image
continues beyond the

il confines of the image

Vision
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Images as discrete functions

* Also popular in high-dimensional statistics and machine learning
— function v.s. vector

* Digital images are usually discrete:
— Sample the 2D space on a regular grid

o Dixel intensity

m

* Represented as a matsiv af int —
10 10 9 34 0

10 53 197 45 46 0 0 43

n 176 135 5 1583 191 55 0 49

2 1 i 29 26 37 0 77

0 39 144 147 187 102 g2 203

255 262 0 166 123 g2 0 3

166 63 127 17 1 0 99 30
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Images as discrete function f

* The input to the image function is a pixel location, [n m]
* The output to the image function is the pixel intensity

/ pixel intensity
m

62 7'5 23 119 120 05 4 0
10 10 9 62 s 34 0 #6:-5) f[0, 5] = 120
10 £8 197 46 46 0 0 48
N yi7e 135 5 188 191 68 0 49
2 i i 29 % 37 0 77
0 89 14d 147 187 102 62 208
255 | 252 0 166 123 62 0 31
166 |83 127 17 i 0 99 30
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Images as discrete function f

* Also popular in high-dimensional statistics and machine learning
— function v.s. vector

, 02=0.2, m—
, 02210, m—
2250, —— |
?=0.5, = -

Ruta Desai, Chun-Liang Li Lecture 2 - 56 April 02, 2025



Images as discrete function f

* The input to the image function is a pixel location, [n m]
e The output to the image function is the pixel intensity

Q1. What is f[0, 0]?

I pixel intensity

23 119 120 105 4 0

9 g2 12 78 34 0

197 46 46 0 0 43

5 188 191 &5 0 49
2 1 1 29 24 a7 0 77
0 39 144 147 187 102 82 208
255 252 0 166 123 g2 0 a1
1686 53 127 17 1 0 99 30
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Images as discrete function f

* The input to the image function is a pixel location, [n m]
e The output to the image function is the pixel intensity

Q2. What is [0, 4]? / pixel intensity

m
>
62 79 23 119 120 05 4 0
10 10 9 62 s 34 0
l 10 £8 197 46 46 0 0 48
N yi7e 135 5 188 191 68 0 49
2 i i 29 % 37 0 77
0 89 14d 147 187 102 62 208
255 | 252 0 166 123 62 0 31
166 |83 127 17 i 0 99 30
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Images as discrete function f

* The input to the image function is a pixel location, [n m]
e The output to the image function is the pixel intensity

Q2. What is [0, -8]?

m
>
g2 79 23 119 120 105 4 0
10 10 9 52 12 73 34 0
l 10 53 197 45 45 0 0 43
n 178 135 5 188 191 &5 0 49
2 1 1 29 24 a7 0 77
0 39 144 147 187 102 82 203
255 252 0 166 123 g2 0 a1
166 53 127 17 1 ] 99 a0

Ruta Desai, Chun-Liang Li Lecture 2 - 59 April 02, 2025



Images as coordinates

We can represent this function as f.
f[n, m] represents the pixel intensity at that value.

fl=t 1 f[—i._ 0] fl=1.1] Znayniorlmtngc:rn e
flnom]= | .. flo,-1]  f[0o,0]  f[0,1] ... E |
ven negative!!
T flL,-1]  f[1,0] f[1,1]
Notation for .

discrete
functions
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We don’t have the intensity values for

negative indices

fln,m] =

—1,0] f[-1.1]
Fio¥or £[0, 1]
FlLo

n and m can be
any integer

Even negative!!

Ruta Desai, Chun-Liang Li
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Images as functions

* An Image as a function f from R? to R®:
- if grayscale, C=1,
« if color, C=3
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Images as functions

* An Image as a function f from R? to R®:
- if grayscale, C=1,
« if color, C=3
« f [n, m] gives the intensity at position [n, m]
» Has values over a rectangle, with a finite range:
f. [0,H] x [0,W]—[0,255]

Y
Domain support range
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Images as functions

* An Image as a function f from R? to R®:
- if grayscale, C=1,
« if color, C=3
« f [n, m] gives the intensity at position [n, m]
» Has values over a rectangle, with a finite range:
f. [0,H] x [0,W]—[0,255]

R —— ——

Domain ;{upport range
e Doesn’t have values outside of the image rectangle

f. [-inf,inf] x [-inf,inf] —-[0,2595]
e we assume that f[n, m] = 0 outside of the image
rectangle
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Images as functions

e An Image as a function f from R? to R®:

 f [n, m] gives the intensity at position [n, m]
* Defined over a rectangle, with a finite range:
fila,b] X [¢,d }+{0,255]

Y
Domain support range
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During my PhD Defense

Philips asked me a question about
image as a function, and | didn’t get it

Prof. Philips Isola (MIT)
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A year later

“‘NeRF: Representing Scenes as Neural
Radiance Fields for View Synthesis”, ECCV
2020

e Image as a function + neural network

e One of the most important paper in the
recent CV development

e >10,000 citations in 5 years

NeRF: Representing Scenes as
Neural Radiance Fields for View Synthesis

Ben Mildenhall'*  Pratul P. Srinivasan'*  Matthew Tancik!*
Jonathan T. Barron? Ravi Ramamoorthi® Ren Ng!

1UC Berkeley 2Google Research  *UC San Diego

Abstract. We present a method that achieves state-of-the-art results
for synthesizing novel views of complex scenes by optimizing an under-
lying continuous volumetric scene function using a sparse set of input
views. Our algorithm represents a scene using a fully-connected (non-
convolutional) deep network, whose input is a single continuous 5D coor-
dinate (spatial location (z,y,2) and viewing direction (6, ¢)) and whose
output is the volume density and view-dependent emitted radiance at
that spatial location. We synthesize views by querying 5D coordinates
along camera rays and use classic volume rendering techniques to project
the output colors and densities into an image. Because volume rendering
is naturally differentiable, the only input required to optimize our repre-
sentation is a set of images with known camera poses. We describe how to
effectively optimize neural radiance fields to render photorealistic novel
views of scenes with complicated geometry and appearance, and demon-
strate results that outperform prior work on neural rendering and view
synthesis. View synthesis results are best viewed as videos, so we urge
readers to view our supplementary video for convincing comparisons.

arXiv:2003.08934v2 [cs.CV] 3 Aug 2020

Keywords: scene representation, view synthesis, image-based render-
ing, volume rendering, 3D deep learning
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Histograms are also a type of function
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Today’s agenda

e Filters

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 7

Ruta Desai, Chun-Liang Li Lecture 2 - 69 April 02, 2025



Systems and Filters

Filtering:
— Forming a new image whose pixel values are
transformed from original pixel values

Goals of filters:
e Goal is to extract useful information from images,
or transform images into another domain where

we can modify/enhance image properties
* Features (edges, corners, blobs...)
e super-resolution; in-painting; de-noising
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Applications of filters

De-noising Super-resolution
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Intuition behind systems

e We will view systems as a sequence of filters applied to an image
o function v.s. functions of functions
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Repea: Images produce a 2D matrix with pixel
intensities at every location

et | flo. -1 S -1
fln,m]= | |.. | f[—1,0] 0,01 f[1,0]
T flI=1,1] | BEleeE —f Ll
Notation for 0’s .
discrete - -
functions
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Systems use Filters

e we define a system as a unit that converts an input function f[n,m]
into an output (or response) function g[n,m]
o where (n,m) index into the function
o In the case for images, (n,m) represents the spatial position in
the image.

n,m| — ystem — gmn,m
f S S
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2D discrete system
(system is a sequence of filters)

S is the system operator, defined as a mapping or assignment
of possible inputs f[n,m] to some possible outputs g[n,m].

fln,m| — | System S | — g[n, m|

Other notations:

g=S|f], gn,m]=S8{f[n,m]}

fln, m] =, gln,m|
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Filter example #1: Moving Average

Original image

Q. What do you think will happen to the
photo if we use a moving average
filter?

Assume that the moving average
replaces each pixel with an average
value of itself and all its neighboring
pixels.

soertLl
Tsata
------
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Filter example #1: Moving Average

Original image Smoothed image

Ruta Desai, Chun-Liang Li Lecture 2 - 77 April 02, 2025



Visualizing what happens with a moving average filter

f[?’l, m] g[n, m]

The red box is
the h matrix

Courtesy of S. Seitz
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Visualizing what happens with a moving average filter

f[?’l, m] g[n, m]
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Visualizing what happens with a moving average filter

g[n, m]
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Visualizing what happens with a moving average filter

f[?’l, m] g[n, m]

0 10 20 i
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Visualizing what happens with a moving average filter

f[?’l, m] g[n, m]

0 10 20 | 30 ||
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Visualizing what happens with a moving average filter

f[?’l, m] g[n) m]
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Visual interpretation of moving average

A moving average over a 3 x 3 neighborhood window

h is a 3x3 matrix with values 1/9 everywhere.

f[n, m] hl-,- ]

90 | 90§90 | 90 | 90

90190]90|90 |90

O+

90190]90|90 |90

90 90|90 | 90 1 1 1

90190]90|90 |90

90
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Visual interpretation of moving average

A moving average over a 3 x 3 neighborhood window

h is a 3x3 matrix with values 1/9 everywhere.

Q. Why are the values 1/9?

O+
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Filter example #1: Moving Average

In summary:

e This filter “Replaces” each hl-,- ]
pixel with an average of its 11| 1
neighborhood.

O+

e Achieve smoothing effect
(remove sharp features)
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Mathematical interpretation of moving average

How do we represent applying this filter mathematically?

fln,m] — | System S | — g[n, m| A, ]

O+
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Mathematical interpretation of moving average

How do we represent applying this filter mathematically?

fln,m] — | System S | — g[n, m| A, ]

O+

Ruta Desai, Chun-Liang Li Lecture 2 - 88 April 02, 2025



Mathematical
fln,m| — | System S | — g[n, m] formulation of moving
average

£10,0] 910, 0]
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Mathematical

fln,m| — | System S | — g[n, m] formulation of moving
average

9[07 0] — f[_17 _1] + f[—l,O] T .f[_17 1]
+ ..

£10,0] 910, 0]
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Mathematical

fln,m| — | System S | — g[n, m] formulation of moving
average

9[07 0] — f[_17 _1] + f[—l,O] + f[_17 1]
+H f[0, —1] + f[0,0] + f[0, 1]
+ ..

£10,0] 910, 0]
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Mathematical

fln,m| — | System S | — g[n, m] formulation of moving
average

9[07 0] — f[_17 _1] + f[—l,O] T f[_17 1]

+ f10,—1] + £]0,0] + [0, 1]
+f[17_1] "l'f[l?O] +f[171]

£10,0] 910, 0]

Ruta Desai, Chun-Liang Li April 02, 2025



Lastly, divide by 1/9

610,00 = 5[f[=1, 1]+ f1=1,0] + f[-1,1]

+f[07_1]+f[070]+f[071]
+f[17_1] +f[170] +f[171]]

f10,0]

910, 0]

Ruta Desai, Chun-Liang Li
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Now, instead of [0, 0], let's do [n, m]

fn, m] gln, m]
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Now, instead of [0, 0], let's do [n, m]

gln,m|] = ..
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Now, instead of [0, 0], let's do [n, m]
gln,m] =|fln —1,m — 1]_|—|—

f[n> m] g[n’ m]
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Now, instead of [0, 0], let's do [n, m]
gln,m|=fln—1,m—1]+ ..

f[na m] g[n’ m]
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Now, instead of [0, 0], let's do [n, m]
gln,m| = fln—1,m — 1] +fln — 1,m]|+ ..

fn, m] gln, m|

Ruta Desai, Chun-Liang Li April 02, 2025



Now, instead of [0, 0], let's do [n, m]
gln,ml=fln—1,m—1]+ fln—1,m] + ..

fn, m] gln, m|
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Now, instead of [0, 0], let's do [n, m]
gln,m|=fln—1,m—1]+ fln—1,m] +|f[n — 1,m + 1]

fn, m] gln, m]
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Now, instead of [0, 0], let's do [n, m]

g[nam] :f[n_17m_1]+f[n_17m]+f[n_17m+1]
+ fln,m — 1] + fln,m] + f[n, m +1]]

fn, m] gln, m]
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Now, instead of [0, 0], let's do [n, m]
gln,m|=fln—1,m—1]+ fln—1,m|]+ fi[n — 1,m + 1]
+f[nam_1]+f[n7m]+f[n7m+1]

+ fln+1,m—1]+ f[n+1,m] + fln+1,m + 1]

fn, m] gln, m]
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Lastly, divide by 1/9

gln,m] = 5fln—Lm 1]+ fln — Lm] + ffn — 1L,m + 1]

+ fln+1,m -1+ fl[n+1,m|+ fln+1,m + 1]]

fn, m] gln, m|

Ruta Desai, Chun-Liang Li April 02, 2025



Mathematical formulation of moving average

We can re-write the equation using summations

O+

A
g[n7m] — § >4 >4f[k7l]

k=771=77 L L

Q. What values will k take?
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Mathematical formulation of moving average

How do we represent applying this filter mathematically?

n—+1 ey

gln,m| = Y Y flk, 1

knll‘” 1111 1

O+

k goes from n-1 to n+1
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Mathematical formulation of moving average

How do we represent applying this filter mathematically?

n+1 ?7?

g[n,m] :% Sj ij[kvl]

k=n—11=77 1 1 1

O+

Q. What values will | take?

Ruta Desai, Chun-Liang Li Lecture 2 - 106 April 02, 2025



Mathematical formulation of moving average

How do we represent applying this filter mathematically?

h[a]
1 1 1
n—+1 m—+1 1
— | 1 1 1
gln,m| = Z Z flk, 1] O
k n—1Il=m-—1 1 1 1

| goes from m-1 to m+1
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Math formula for the moving average filter

A moving average over a 3 x 3 neighborhood window

We can write this operation mathematically:

n—+1 m—+1

7[n, m] Z kal N

A n—1Il=m-—1

O+
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Rewriting this formula

We are almost done. Let’'s rewrite this formula a little bit
Let k,’l = N — k

n—+1 m—+1

7[n, m] Z kal RN

A n—1Il=m-—1

O+
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Rewriting this formula

We are almost done. Let’'s rewrite this formula a little bit
Let k/ — n — k
therefore, kb — n, — L’

n—+1 m—+1

gln,m| Z kal RN

A n—1Il=m-—1

O+

Now we can replace k in the equation above
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Rewriting this formula

We are almost done. Let’'s rewrite this formula a little bit
Let k,’l — n — k
therefore, kb — n, — L’

n—+1 m—+1

7[n, m] Z kal RN

A n—1Il=m-—1

O+

n—k'=n+1 m+1

dnml=5 S Y fln- K.l

n—k/'=n—11l=m-—1
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Rewriting this formula

So now we have this;:
1 n—k'=n+1 m+1

gln,m] = 3 o Y fln-K,] -]

n—k/'=n—1[=m—1

O+
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Rewriting this formula

So now we have this;:
1 n—k'=n+1 m+1

gln,m] = 3 o Y fln-K,] -]

n—k/'=n—1[=m—1

We can simplify the equations in red: l 111 | 1
k =—1 m+1 9 1 1 1
gln,m| = Z Z fln—K,I]
k'=1 [l=m—1
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Rewriting this formula

So now we have this;:

=—1 m+1
Z Z f n-— k, h[ > ]
k'=1 [=m-—1

Remember that summations are just for-loops!!

O+
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Rewriting this formula

So now we have this;:

=—1 m+1
Z Z f n-— k, h[ > ]
k'=1 [=m-—1

Remember that summations are just for-loops!!

O+

1 m—+1

dnml =3 3 3 fln— K0

k'=—11=m—1
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Rewriting this formula

One last change: since there are no more k and only k’,
let’s just write k' as k

m—+1 h[ - ]

gln,m| = Z an—k'l] T,

k’——ll m—1 1
— 1 1 1 1
9
1 1 1 1
LY S -
k_—ll m—1
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Mathematical interpretation of moving average

Let’s repeat for |, just like we did for k

n—+1 m—+1

7[n, m] Z kal RN

A n—1Il=m-—1

;! 1
=3 S: S:f[n—k,m—l]

k=-—1[l=-1

O+
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Mathematical interpretation of moving average

Let’s repeat for |, just like we did for k

n—+1 m—+1

gln,m| Z kal RN

A n—1Il=m-—1

;! 1
=3 S: S:f[n—k,m—l]

k=-—1[l=-1

O+

Q: how to use a larger 5x5 filter?
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Filter example #1: Moving Average

Original image Smoothed image
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Filter example #2: Image Segmentation

Q. How would you use pixel values to design a filter to segment an image so that
you only keep around the edges?
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Filter example #2: Image Segmentation

255, fln,m] > 100
0, otherwise.

Exercise: Is this linear or non-linear operation?

e Use a simple pixel threshold: g[m m] — {
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Summary so far

- Beyond examples we have seen today, there are A HUGE number of

possible filters we can design.

- Discrete systems, with filters, convert input discrete signals and convert
them into something more meaningful.

- What are ways we can category the space of possible systems?
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From a signal processing view

Filter — Filter — Filter — Filter — Output

System

Input Image
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In ML langauge

e Neural networks and specifically convolutional neural networks are a
sequence of filters (except they are a non-linear system) that contains
multiple individual linear sub-systems.

o filter as layer & system as model

Convolution Pooling Convolution Pooling Fully Fully
Connected Connected

Output

o

____________ Koo,
H .

Input Image Feature maps Pooled Feature maps Pooled Dog (0.1)
Feature Maps Feature Maps ' Cat(0.4)
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Today’s agenda

e Properties of systems
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Properties of systems

e Amplitude properties:

o Additivity S[fi[n,m] + f;[n,m]] = S[f[n, m]] + S[f;[n, m]]
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Example question:

Q. Is the moving average filter additive?

Slfiln,m| + filn, m|| = S|filn, m|] + S[f;[n, m]]

O+

How would you prove it?

olnml =5 3 " fln—km—1

k=—11=-1

Ruta Desai, Chun-Liang Li Lecture 2 - 127 April 02, 2025



Example question: NEIREE
S| filn, m] + f;ln, m]] = S|fi[n, m|] + S[f;[n, m]] 5 T
Let f'[n,m] = fi[n,m] + f;[n,m] 1 (1] 1
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Example question: NEIREE
S| filn, m] + f;ln, m]] = S|fi[n, m|] + S[f;[n, m]] 5 T
Let f'[n,m] = fi[n,m] + f;[n,m] 1 (1] 1

S[filn, m] + filn, m]] = S[f'[n, m]]
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Example question: NEIREE

S| filn, m] + f;ln, m]] = S|fi[n, m|] + S[f;[n, m]] 5 T

Let f'[n,m] = fi[n,m] + f;[n,m] 1 (1] 1
:% S % Fln—km—1
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Example question: NEIREE
S| filn, m] + f;ln, m]] = S|fi[n, m|] + S[f;[n, m]] 5 T
Let f'[n,m] = fi[n,m] + f;[n,m] 1 (1] 1
=% Z Z f'In—k,m—1]
=% Z Z[fi[n—k,m—l]—l—fj[n—k,m—l]]
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Example question: NEIREE
S| filn, m] + f;ln, m]] = S|fi[n, m|] + S[f;[n, m]] 5 T
Let f'[n,m] = fi[n,m] + f;[n,m] 1 (1] 1

S[filn, m] + filn, m]] = S[f'[n, m]]
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Example question: NEIREE
S| filn, m] + f;ln, m]] = S|fi[n, m|] + S[f;[n, m]] 5 T
Let f'[n,m] = fi[n,m] + f;[n,m] 1 (1] 1

Slfiln,m] + f;[n, ml] = S[f'[n, m]] olnym] = Z an km 1

:% S % Fln—km—1

k=-1il=-1

:% Z Z[fi[n—k,m—l]+fj[n—k,m—l]]

k=—1il=-1

:—Z Zf,[n—km—l]—l— Z ijn—km—l]

k=—11=—1 k——ll——l

= S[filn, m]| + S[f;[n, m]]
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Properties of systems

e Amplitude properties:

o Additivity S[fi[n,m] + f;[n,m]] = S[f[n, m]] + S[f;[n, m]]
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Properties of systems

e Amplitude properties:

o Additivity S[fi[n,m] + f;[n,m]] = S[f[n, m]] + S[f;[n, m]]

o Homogeneity
Slafn, m]] = aS|f[n, m]]
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Another question:

Q. Is the moving average filter homogeneous?

Slafn, m]] = aS[f[n, m]]

O+

Practice proving it at home using:

olnml =5 3 " fln—km—1

k=—11=-1
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What we covered today

Color spaces

Image sampling and quantization
Image histograms

Images as functions

Filters

Properties of systems
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Classic v.s. Deep Learning ?!

Should | take CSE455? Or should | go ahead to take the deep learning class?
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History

- Recent neural networks is invented before 2000’s

- But here is the popular agenda in 2000’s

1 Introduction 1

Whatis computer vision? e A brief history o
Book overview o Sample syllabus « Notation

2 Image formation 29

Geometric primitives and transformations e
Photometric image formation s
The digital camera

3 Image processing 99

Point operators e Linear filtering o
More neighborhood operators e Fourier transforms
Pyramids and wavelets o Geometric transformations e
Global optimization

4 Feature detection and matching 205
Points and patches o
Edges o Lines
5 Segmentation 267

Active contours e Split and merge o
Mean shift and mode finding  Normalized cuts »
Graph cuts and energy-based methods

6 Feature-based alignment 309
2D and 3D feature-based alignment
Pose estimation

Geometric intrinsic calibration

7 Structure from motion 343

Triangulation e Two-frame structure from motion e
‘actorization e Bundle adjustment o
‘onstrained structure and motion

Ruta Desai, Chun-Liang Li

8 Dense motion estimation 381
Translational alignment  Parametric motion o
pline-based motion  Optical flow
Layered motion

9 Image stitching a7
Motion models e Global alignment
Compositing
10 Computational photography 467

Photometic clitraion » High dynaic range imaging ¢
uper-resolution and blur removal
‘matting and compositing
Texture analysis and synthesis

11 Stereo correspondence 533
Epipolar geometry  Sparse correspondence

nse correspondence o Local methods
Global optimization e Multi-view stereo

12 3D reconstruction 577

Shape from X o Active rangefinding o
« Point-ba .
Volumetric representations e Model-based reconstruction e
Recovering texture maps and albe

13 Image-based rendering 619

View interpolation e Layered depth images
Light fields and Lumigraphs  Environment mattes »
Video-based rendering

14 Recognition 655

Object detection e Face recognition e
Instance recognition e Category recognition e
Context and scene understanding o
Recognition databases and test sets
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Deep Learning

- is a powerful tool
- immediately useful (for your problem, and maybe for job hunting)
- it's not the problem (at least not CV problem)
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Why basics?

- Learning the problem (CSE455)
- and knowing the tool (any other deep learning classes)
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Recall the groundbreaking NeRF paper

“‘NeRF: Representing Scenes as Neural
Radiance Fields for View Synthesis”, ECCV
2020

e Image as a function + neural network

e One of the most important paper in the
recent CV development

e >10,000 citations in 5 years

NeRF: Representing Scenes as
Neural Radiance Fields for View Synthesis

Ben Mildenhall'*  Pratul P. Srinivasan'*  Matthew Tancik!*
Jonathan T. Barron? Ravi Ramamoorthi® Ren Ng!

1UC Berkeley 2Google Research  *UC San Diego

Abstract. We present a method that achieves state-of-the-art results
for synthesizing novel views of complex scenes by optimizing an under-
lying continuous volumetric scene function using a sparse set of input
views. Our algorithm represents a scene using a fully-connected (non-
convolutional) deep network, whose input is a single continuous 5D coor-
dinate (spatial location (z,y,2) and viewing direction (6, ¢)) and whose
output is the volume density and view-dependent emitted radiance at
that spatial location. We synthesize views by querying 5D coordinates
along camera rays and use classic volume rendering techniques to project
the output colors and densities into an image. Because volume rendering
is naturally differentiable, the only input required to optimize our repre-
sentation is a set of images with known camera poses. We describe how to
effectively optimize neural radiance fields to render photorealistic novel
views of scenes with complicated geometry and appearance, and demon-
strate results that outperform prior work on neural rendering and view
synthesis. View synthesis results are best viewed as videos, so we urge
readers to view our supplementary video for convincing comparisons.

arXiv:2003.08934v2 [cs.CV] 3 Aug 2020

Keywords: scene representation, view synthesis, image-based render-
ing, volume rendering, 3D deep learning
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Why basics?

- Learning the problem (CSE455)

- and knowing the tool (any other deep learning classes)
- Our goal in CSE455:

- learning foundation, ideas, and basics

- build your taste and intuition to computer vision

Classic approaches are still useful nowadays
- especially in scale (cheap!!)
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Next time:

Linear systems and convolutions
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