Lecture 2 Pixels and Filters

Slide credit: Ranjay Krishna

Ruta Desai, Chun-Liang Li

Lecture 2 - 1

Administrative

A0 is out.

- Due on 4/7, but it is ungraded
- Meant to help you with python and numpy basics
- Learn how to do homeworks and submit them on gradescope.

Administrative

- Recording
 - Hopefully the microphone will fix the recording from today's lecture
- Section
 - Will go over Linear algebra basics this week in recitation
- TA hours
 - Start from next week

Final exam

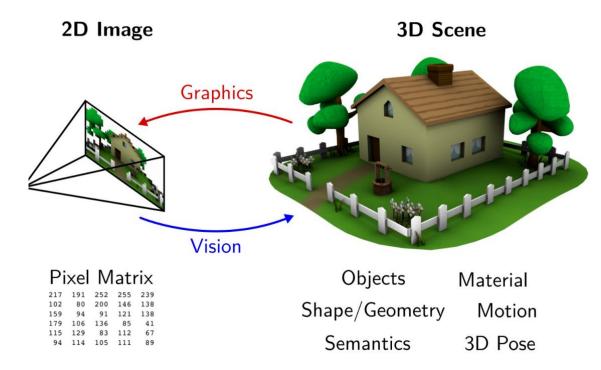
- Monday Jun 11th 10:30am 12:20pm @ TBD
- Monday Jun 9th 2:30 4:20 (in person) @ BAG 154
 - We will send out form for students to apply to take the make up
- Will contain written questions from the concept covered in class or any questions in the homeworks.
- Can require you to solve technical math problems.
- Will contain a lot of multiple choice and true-false questions. We will release a practice final towards the end of the quarter.

Ruta Desai, Chun-Liang Li

Recap: Computer vision extracts geometric 3D information from 2D images

Input RGB-D

6D pose and size Per-frame 3D Prediction



TRI & GATech's ShaPO (ECCV'22): https://zubair-irshad.github.io/projects/ShAPO.html

Ruta Desai, Chun-Liang Li

Lecture 2 - 6

So far: why is computer vision hard?

It is an ill posed problem

Ruta Desai, Chun-Liang Li

Lecture 2 - 7

CSE 455 Roadmap

Pixels Video		Camera	Segment	ML
Convolutions Edges Descriptors	Motion Tracking	Camera 3D Geometry	Segmentation Clustering Detection	Linear Models (Conv) Neural networks

From Convolutions to Convolutions

April 02, 2025

Ruta Desai, Chun-Liang Li

"Every model is wrong, but some are useful"

George E.P. Box

Ruta Desai, Chun-Liang Li

Lecture 2 - 9

Today's agenda

- Color spaces
- Image sampling and quantization
- Image histograms
- Images as functions
- Filters
- Properties of systems

Some background reading: Forsyth and Ponce, Computer Vision, Chapter 7

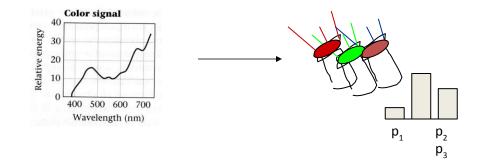
April 02, 2025

Lecture 2 - 10

Ruta Desai, Chun-Liang Li

Today's agenda

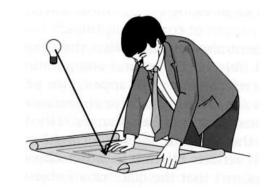
Color spaces

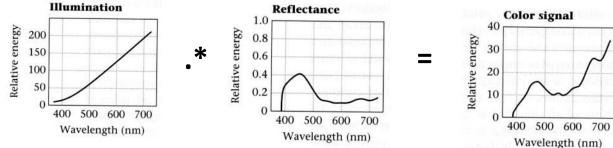

- Image sampling and quantization
- Image histograms
- Images as functions
- Filters
- Properties of systems

Some background reading: Forsyth and Ponce, Computer Vision, Chapter 7

Ruta Desai, Chun-Liang Li

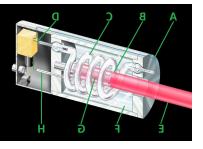
How to compute the weights of the primaries to match any spectral signal

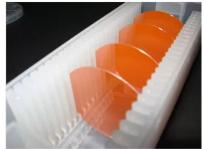



Matching functions: the amount of each primary needed to match a monochromatic light source at each wavelength

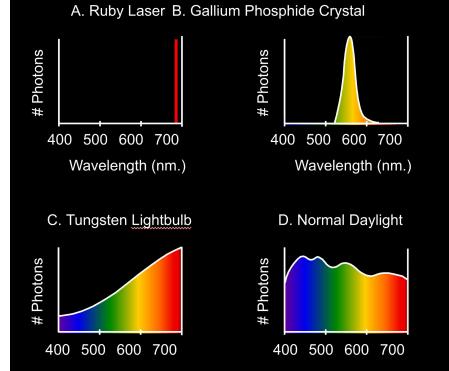
Ruta Desai, Chun-Liang Li

Explaining Color - A Simplified "Model"



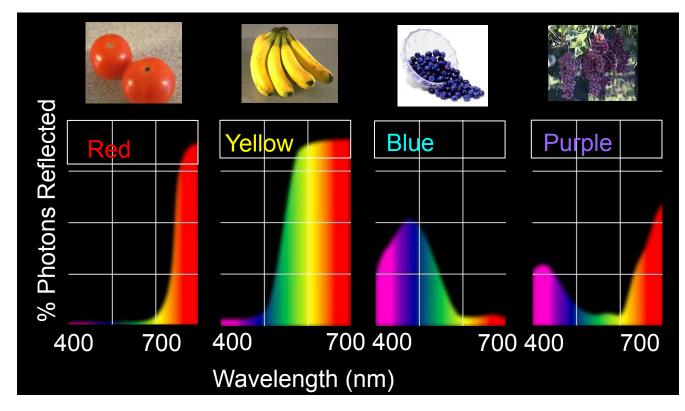

Foundations of Vision, by Brian Wandell, Sinauer Assoc.,

Ruta Desai, Chun-Liang Li



The Physics of Light Sources

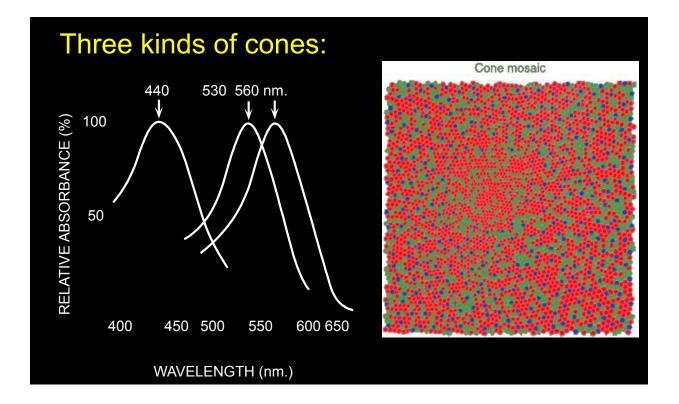
Some examples of the spectra of light sources



Ruta Desai, Chun-Liang Li

Lecture 2 - 14

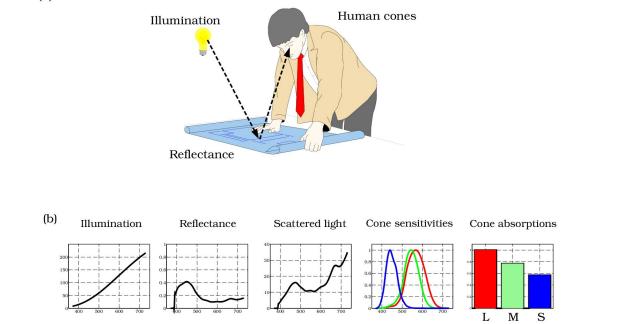
The Physics of Reflectance


Some examples of the <u>reflectance</u> spectra of <u>surfaces</u>

Ruta Desai, Chun-Liang Li

Lecture 2 - 15

Physiology of Human Vision

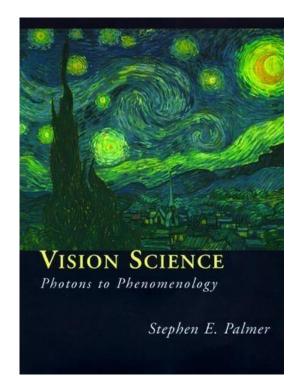


Ruta Desai, Chun-Liang Li

Lecture 2 - 16

A Slightly Complex "Model"

(a)

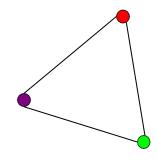


Ruta Desai, Chun-Liang Li

Lecture 2 - 17

Color is a psychological phenomenon

- Do we really see the same color?
- The result of interaction between physical light in the environment and our visual system.
- A psychological property of our visual experiences when we look at objects and lights, not a physical property of those objects or lights.


Ruta Desai Chun-Liang Li

Lecture 2 - 18

Linear color spaces

- Defined by a choice of three primaries
- The coordinates of a color are given by the weights of the primaries used to match it

•

mixing two lights produces colors that lie along a straight line in color space

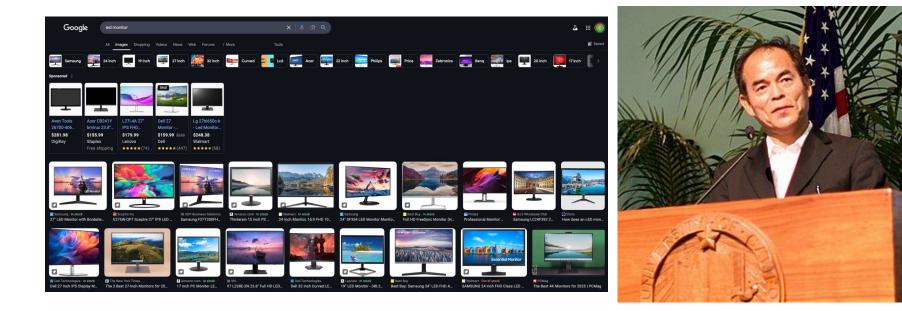
Ruta Desai, Chun-Liang Li

mixing three lights produces colors that lie within the triangle they define in color space

Lecture 2 - 19

RGB space

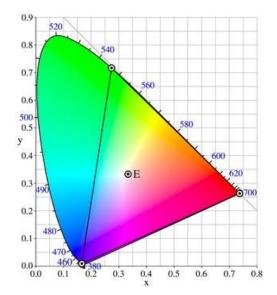
Primaries are monochromatic lights (for monitors, they correspond to the three types of phosphors)



 $p_1 = 645.2 \text{ nm}$ $p_2 = 525.3 \text{ nm}$ $p_3 = 444.4 \text{ nm}$

Ruta Desai, Chun-Liang Li

Blue Light LED (90's)

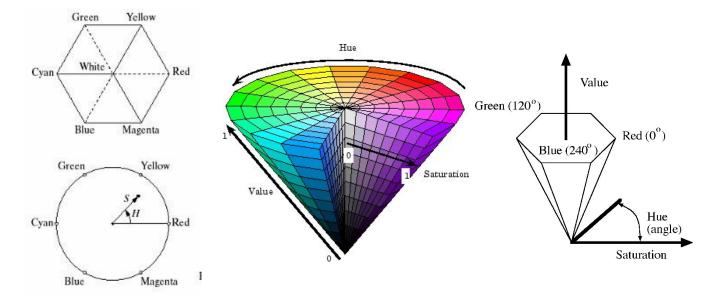

Shuji Nakamura, Nobel Prize in Physics 2014

Ruta Desai, Chun-Liang Li

Lecture 2 - 21

Other spaces: CIE XYZ

- Primaries (X, Y and Z) are imaginary
- X: Represents a mix of red and green.
- Y: Represents luminance (brightness).
- Z: Represents a mix of blue and green.
- 2D visualization: draw (x,y), where
 x = X/(X+Y+Z), y = Y/(X+Y+Z)



http://en.wikipedia.org/wiki/CIE_1931_color_space

Ruta Desai, Chun-Liang Li

Lecture 2 - 22

Other color spaces: HSV

- Perceptually meaningful dimensions: Hue, Saturation (Brightness), Value (Intensity)
- Useful in data augmentation for training large models

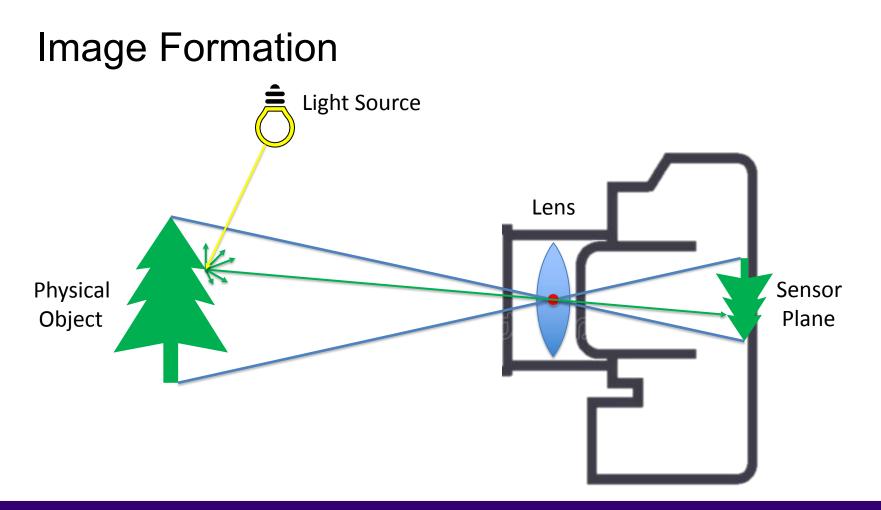
Ruta Desai, Chun-Liang Li

Lecture 2 - 23

Other color spaces: HSV

Ruta Desai, Chun-Liang Li

Lecture 2 - 24


Today's agenda

- Color spaces
- Image sampling and quantization
- Image histograms
- Images as functions
- Filters
- Properties of systems

Some background reading: Forsyth and Ponce, Computer Vision, Chapter 7

Ruta Desai, Chun-Liang Li

Lecture 2 - 25

Ruta Desai, Chun-Liang Li

Lecture 2 - 26

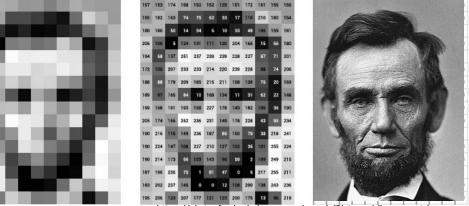
Camera sensors produce discrete outputs

https://commons.wikimedia.org/wiki/File:Mirrorless_Camera_Sensor.jpg

157	153	174	168	150	152	129	151	172	161	155	156		157	153	174	168	150	152	129	151	172	161	155	156
155	182	163	74	75	62	33	17	110	210	180	154		155	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34		10	33	48	105	159	181		180	180	50	14	34	6	10	33	48	106	159	181
206	109	5	124	131	111	120	204	166	15	56	180		206	109	6	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87		201		194	68	137	251	237	239	239	228	227	87	n	201
175	105	207	233	233	214	220	239	228	98		206		172	105	207	233	233	214	220	239	228	98	74	206
186	88	179	209	185	215	211	158	139		20	169		188	88	179	209	185	216	211	158	139	76	20	169
185	97	165	84	10	168	134	11	31	62	22	148		189	97	165	84	10	168	134	11	31	62	22	148
195	168	191	193	158	227	178	143	182	105	36	190		199	168	191	193	158	227	178	143	182	106	36	190
206	174	155	252	236	231	149	178	228	43	95	234		206	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	85	150		38	218	241		190	216	116	149	236	187	86	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224	-	190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	95	50		109	249	215		190	214	173	66	103	143	96	50	2	109	249	215
183	196	235	75				0	6	217	255	211		187	196	235	75	1	81	47	0	6	217	255	211
183	202	237	145			12	108	200	138	243	236		183	202	237	145	0	0	12	108	200	138	243	236
198	206	123	207	177	121	123	200	175	13	96	218		196	206	123	207	177	121	123	200	175	13	96	218

https://ai.stanford.edu/~syyeung/cvweb/Pictures1/imagematrix.png

Lecture 2 - 27

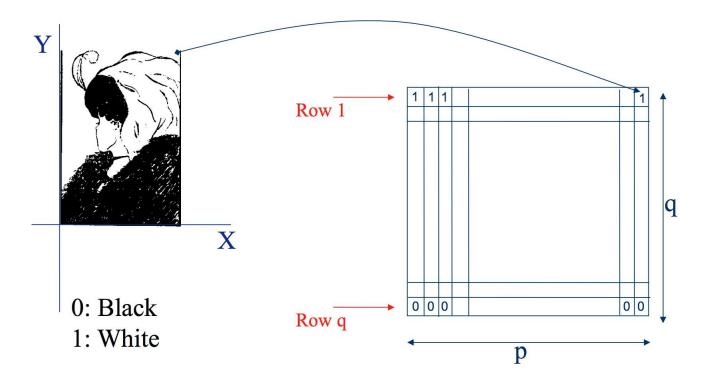

Ruta Desai, Chun-Liang Li

Camera sensors produce discrete outputs

https://commons.wikimedia.org/wiki/File:Mirrorless_Camera_Sensor.jpg

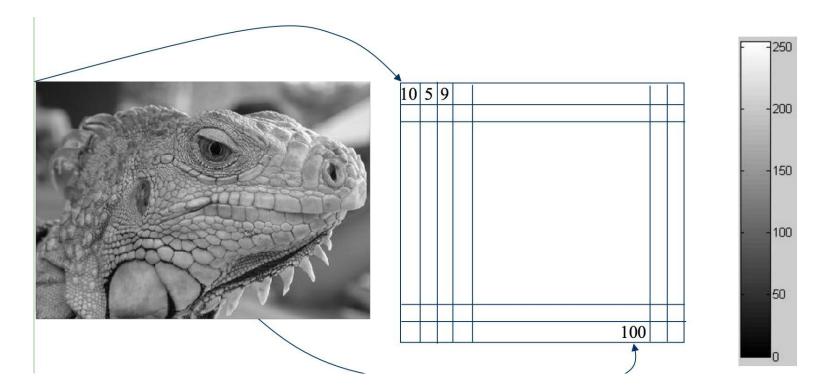
Ruta Desai, Chun-Liang Li

https://ai.stanford.edu/~syyeung/cvweb/Pictures1/imagematrix.png

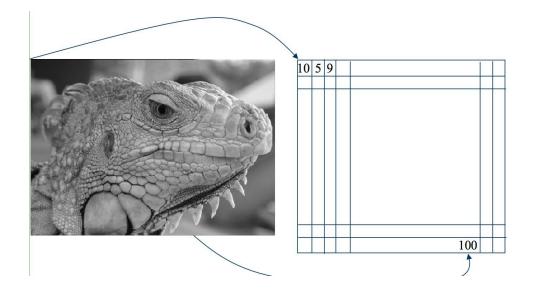

Types of Images

Ruta Desai, Chun-Liang Li

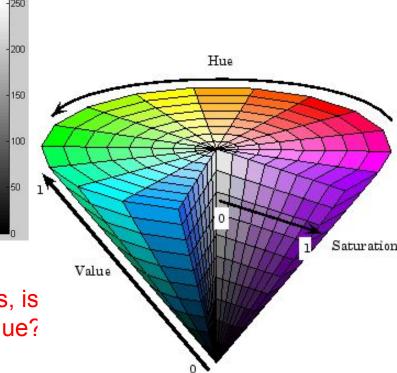
Lecture 2 - 29


Binary image representation

Ruta Desai, Chun-Liang Li


Lecture 2 - 30

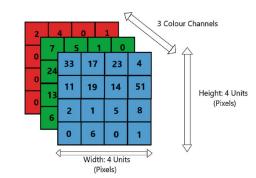
Grayscale image representation



Ruta Desai, Chun-Liang Li

Lecture 2 - 31

Q. If you used HSV to represent grayscale images, is the slider representing hue? Or saturation? Or value?



Ruta Desai, Chun-Liang Li

Lecture 2 - 32

Color image representation

Ruta Desai, Chun-Liang Li

Color image - one channel

R channel

Ruta Desai, Chun-Liang Li

Lecture 2 - 34

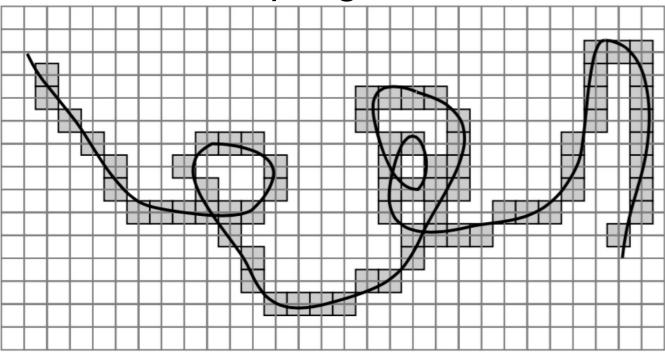
Types of Images

[0, 1] [0, 1, ..., 255] [0, 1, ..., 255]^3

Ruta Desai, Chun-Liang Li

Lecture 2 - 35

Digital Images are sampled


What happens when we zoom into the images we capture?

Ruta Desai, Chun-Liang Li

Lecture 2 - 36

Errors due to Sampling

Q: How to compensate the error?

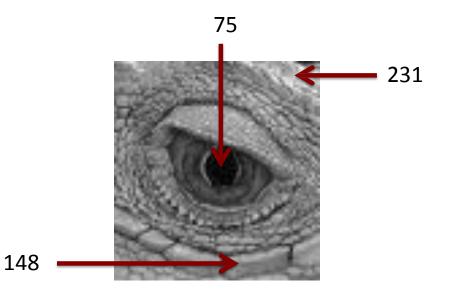
Ruta Desai, Chun-Liang Li

Resolution

is a **sampling** parameter, defined in dots per inch (DPI) or equivalent measures of spatial pixel density

Ruta Desai, Chun-Liang Li

Resolution


Ruta Desai, Chun-Liang Li

Images are Sampled and Quantized

- An image contains discrete number of pixels
 - -Pixel value:
 - •"grayscale"

(or "intensity"): [0,255]

Ruta Desai, Chun-Liang Li

Images are Sampled and Quantized

- An image contains discrete number of pixels
 - -Pixel value:
 - •"grayscale"
 - (or "intensity"): [0,255]
 - •"color"
 - -RGB: [R, G, B]

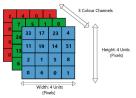
Q: Why [0, 255] but not [0, 1]?

[90, 0, 53] |

[249, 215, 203]

April 02, 2025

[213, 60, 67]


Lecture 2 - 41

Ruta Desai, Chun-Liang Li

With this loss of information (from sampling and quantization),

How many possible 256x256x3 images do we have?

256^{256x256x3} = 2^1572864

April 02, 2025

How many images can a person perceive in the whole life?

1 (img/sec) x 86,400 (sec/day) x 365 (day/year) x 80 (years) ≈ 2,500,000,000

Q: What's the implication?

Ruta Desai, Chun-Liang Li

With this loss of information (from sampling and quantization),

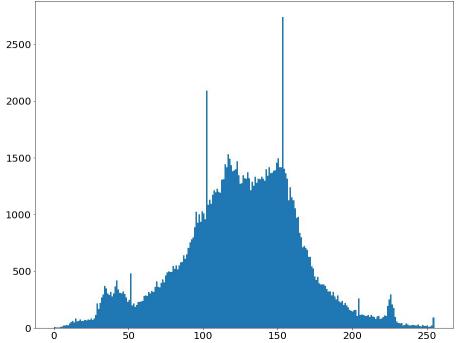
Can we still use images for useful tasks?

Ruta Desai, Chun-Liang Li

Today's agenda

- Color spaces
- Image sampling and quantization
- Image histograms
- Images as functions
- Filters
- Properties of systems

Some background reading: Forsyth and Ponce, Computer Vision, Chapter 7


Ruta Desai, Chun-Liang Li

Starting with grayscale images:

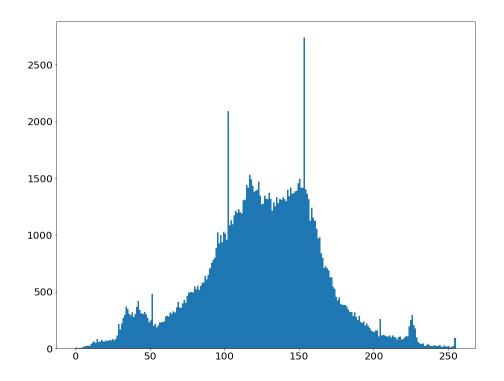
- Histogram captures the distribution of gray levels in the image.
- How frequently each gray level occurs in the image

Ruta Desai, Chun-Liang Li

Lecture 2 - 45

Grayscale histograms in code

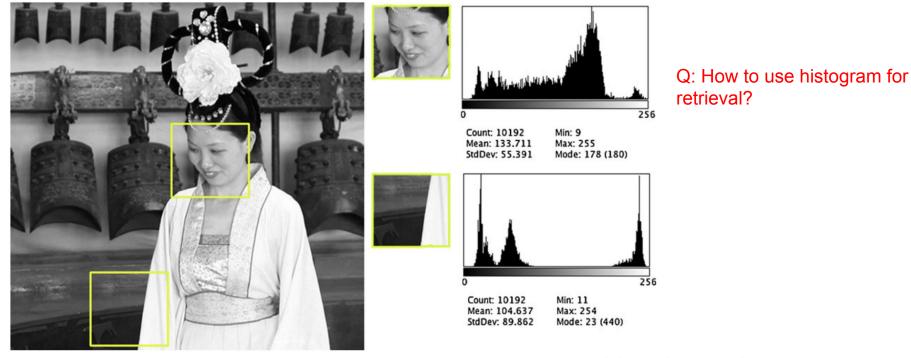
• Histogram of an image provides the frequency of the brightness (intensity) value in the image.


Here is a simple implementation of calculating histograms:

def histogram(im): h = np.zeros(256) for row in im.shape[0]: for col in im.shape[1]: val = im[row, col] h[val] += 1

Ruta Desai, Chun-Liang Li

Lecture 2 - 46

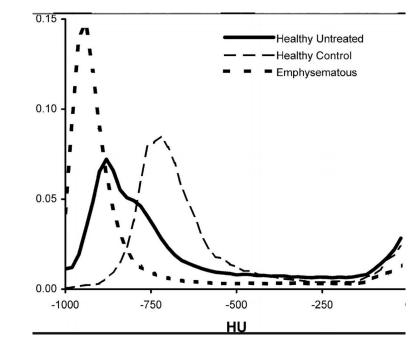

Grayscale histograms in code

Ruta Desai, Chun-Liang Li

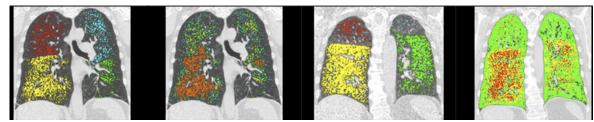
Lecture 2 - 47

Visualizing Histograms for patches

Slide credit: Dr. Mubarak

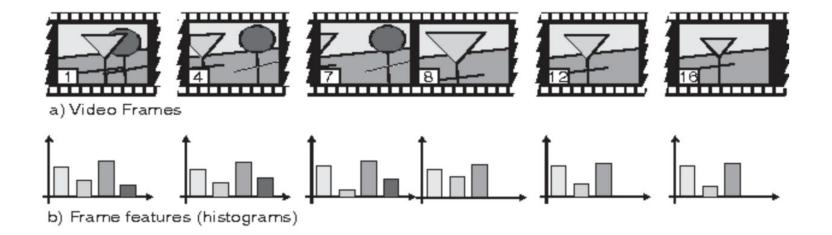

April 02, 2025

Ruta Desai, Chun-Liang Li


Histogram – use case

In emphysema, the inner walls of the lungs' air sacs called alveoli are damaged, causing them to eventually rupture.

You can take a picture of the lung with special dye to mark the alveoli



April 02, 2025

Ruta Desai, Chun-Liang Li

Histogram – use case

Video Shot Boundary Detection and Condensed Representation : A Review

Ruta Desai, Chun-Liang Li

Lecture 2 - 50

Histograms are a convenient representation to extract information

- Commonly used before deep learning or low-power devices
- A very cheap "representation"
- Still useful even in deep learning era (really?!?!)

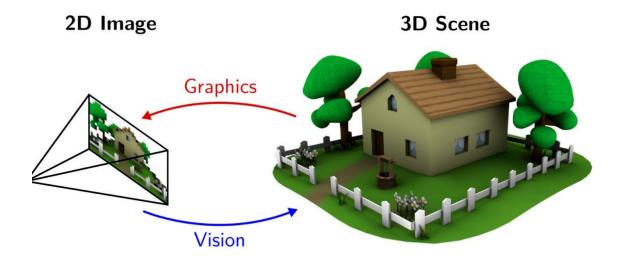
- Q: Is image/histogram an one-to-one mapping transformation?
- Can we develop better transformations than histograms?

Ruta Desai, Chun-Liang Li

Lecture 2 - 51

Today's agenda

- Color spaces
- Image sampling and quantization
- Image histograms
- Images as functions
- Filters
- Properties of systems


Some background reading: Forsyth and Ponce, Computer Vision, Chapter 7

Ruta Desai, Chun-Liang Li

Images are a function!!!

This is a new formalism that will allow us to borrow ideas from signal processing to extract meaningful information.

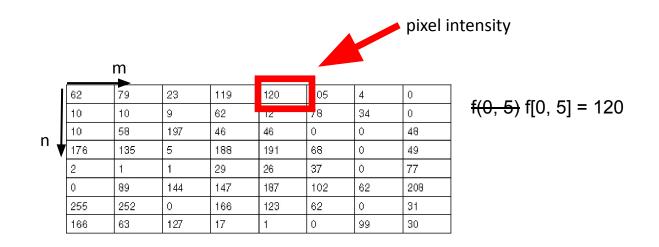
At every pixel location, we get an intensity value for that pixel.

The world captured by the image continues beyond the confines of the image

Ruta Desai, Chun-Liang Li

Lecture 2 - 53

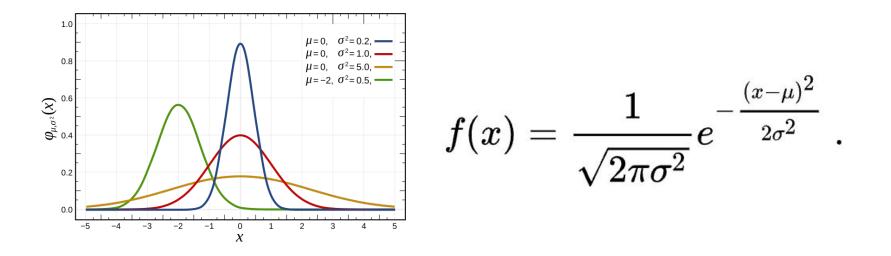
- Also popular in high-dimensional statistics and machine learning
 - function v.s. vector
- Digital images are usually discrete:
 - Sample the 2D space on a regular grid
- Represented as a matrix of integer


62	79	23	119	120	05	4	0
10	10	9	62	12	78	34	0
10	58	197	46	46	0	0	48
176	135	5	188	191	68	0	49
2	1	1	29	26	37	0	77
0	89	144	147	187	102	62	208
255	252	0	166	123	62	0	31
166	63	127	17	1	0	99	30
	62 10 10 176 2 0 255	62 79 10 10 10 58 176 135 2 1 0 89 255 252	62 79 23 10 10 9 10 58 197 176 135 5 2 1 1 0 89 144 255 252 0	62 79 23 119 10 10 9 62 10 58 197 46 176 135 5 188 2 1 1 29 0 89 144 147 255 252 0 166	62 79 23 119 120 10 10 9 62 12 10 58 197 46 46 176 135 5 188 191 2 1 1 29 26 0 89 144 147 187 255 252 0 166 123	62 79 23 119 120 05 10 10 9 62 12 78 10 58 197 46 46 0 176 135 5 188 191 68 2 1 1 29 26 37 0 89 144 147 187 102 255 252 0 166 123 62	62 79 23 119 120 05 4 10 10 9 62 12 78 34 10 58 197 46 46 0 0 176 135 5 188 191 68 0 2 1 1 29 26 37 0 0 89 144 147 187 102 62 255 252 0 166 123 62 0

Ruta Desai, Chun-Liang Li

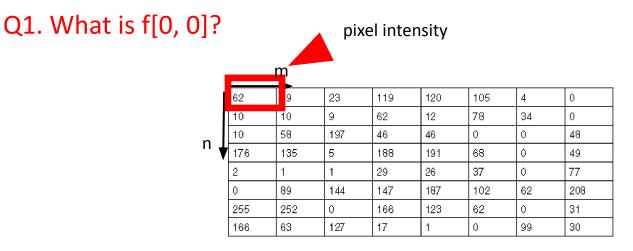
Lecture 2 - 54

pixel intensity


- The input to the image function is a pixel location, [n m]
- The output to the image function is the pixel intensity

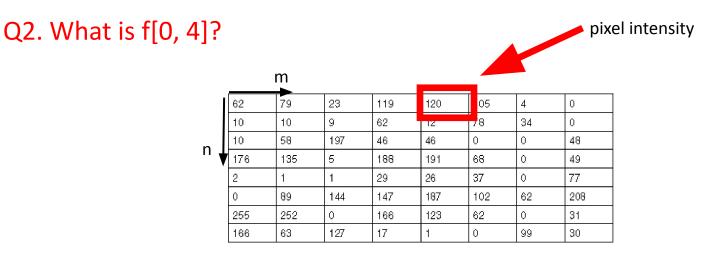
Ruta Desai, Chun-Liang Li

Lecture 2 - 55


- Also popular in high-dimensional statistics and machine learning
 - function v.s. vector

Ruta Desai, Chun-Liang Li

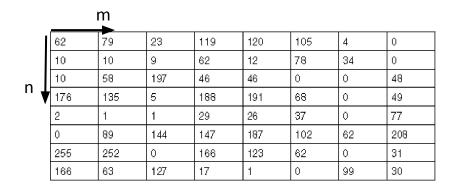
Lecture 2 - 56


- The input to the image function is a pixel location, [n m]
- The output to the image function is the pixel intensity

Ruta Desai, Chun-Liang Li

Lecture 2 - 57

- The input to the image function is a pixel location, [n m]
- The output to the image function is the pixel intensity



Ruta Desai, Chun-Liang Li

Lecture 2 - 58

- The input to the image function is a pixel location, [n m]
- The output to the image function is the pixel intensity

Q2. What is f[0, -8]?

Ruta Desai, Chun-Liang Li

Lecture 2 - 59

Images as coordinates

We can represent this function as f. f[n, m] represents the pixel intensity at that value.

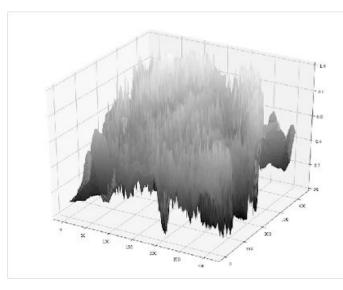
$$f[n,m] = \begin{bmatrix} \ddots & \vdots & & \\ & f[-1,-1] & f[-1,0] & f[-1,1] \\ & & f[0,-1] & \underline{f[0,0]} & f[0,1] & \dots \\ & & f[1,-1] & f[1,0] & f[1,1] \\ & & & \vdots & \ddots \end{bmatrix}$$
 Even negative!!

Ru

Lecture 2 - 60

April 02, 2025

negative!!

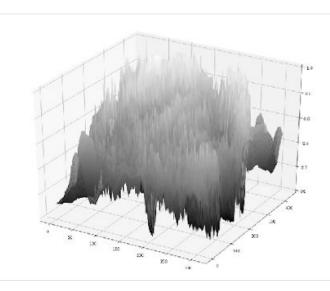

We don't have the intensity values for negative indices

$$f[n,m] = \begin{bmatrix} \ddots & \vdots & & \\ f[-1,-1] & f[-1,0] & f[-1,1] & \\ & & f[0,-1] & \frac{f[0,0]}{f[1,0]} & f[0,1] & & \\ & & f[1,-1] & \frac{f[0,0]}{f[1,0]} & f[1,1] & \\ & & & \ddots \end{bmatrix}$$
 Even negative!!

Ruta Desai, Chun-Liang Li

Lecture 2 - 61

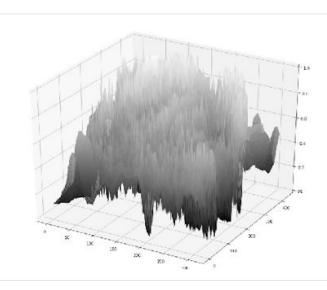
- An Image as a function *f* from R² to R^C:
 - if grayscale, C=1,
 - if color, C=3



Ruta Desai, Chun-Liang Li

- **An Image** as a function *f* from R² to R^C:
 - if grayscale, C=1,
 - if color, C=3
 - f [n, m] gives the intensity at position [n, m]
 - Has values over a rectangle, with a finite range:

Domain support range


Ruta Desai, Chun-Liang Li

Lecture 2 - 63

- An Image as a function *f* from R² to R^C:
 - if grayscale, C=1,
 - if color, C=3
 - f [n, m] gives the intensity at position [n, m]
 - Has values over a rectangle, with a finite range:

Domain support range

- Doesn't have values outside of the image rectangle
 f: [-*inf*,*inf*] x [-*inf*,*inf*] → [0,255]
- we assume that f[n, m] = 0 outside of the image rectangle

Ruta Desai, Chun-Liang Li

Lecture 2 - 64

- An Image as a function f from \mathbb{R}^2 to $\mathbb{R}^{\mathbb{C}}$:
 - f [n, m] gives the intensity at position [n, m]
 - Defined over a rectangle, with a finite range:
 - $f: [a,b] \times [c,d] \rightarrow [0,255]$

Domain support range

Ruta Desai, Chun-Liang Li

During my PhD Defense

Philips asked me a question about image as a function, and I didn't get it

Prof. Philips Isola (MIT)

Ruta Desai, Chun-Liang Li

. . . .

Lecture 2 - 66

A year later

"NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis", ECCV 2020

- Image as a function + neural network
- One of the most important paper in the recent CV development
- >10,000 citations in 5 years

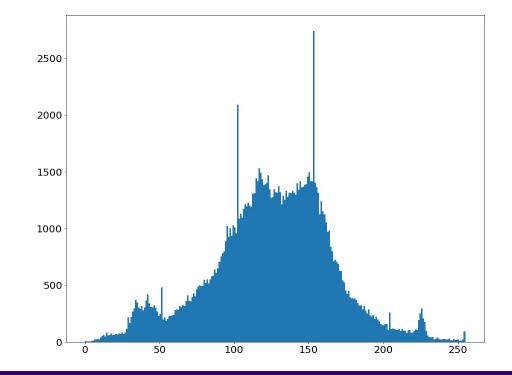
2020] Neural
3 Aug	Ben Mil Jona
[cs.CV]	Abstract for synthe lying cont views. Ou
:Xiv:2003.08934v2	convolution dinate (sp output is that spatial along carm the output is naturall sentation i effectively views of su strate resu synthesis. readers to
aı	Keyword ing, volum

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

Ben Mildenhall^{1*} Pratul P. Srinivasan^{1*} Matthew Tancik^{1*} Jonathan T. Barron² Ravi Ramamoorthi³ Ren Ng¹

¹UC Berkeley ²Google Research ³UC San Diego

t. We present a method that achieves state-of-the-art results esizing novel views of complex scenes by optimizing an undertinuous volumetric scene function using a sparse set of input ir algorithm represents a scene using a fully-connected (nononal) deep network, whose input is a single continuous 5D coorpatial location (x, y, z) and viewing direction (θ, ϕ) and whose the volume density and view-dependent emitted radiance at ial location. We synthesize views by querving 5D coordinates hera rays and use classic volume rendering techniques to project t colors and densities into an image. Because volume rendering ly differentiable, the only input required to optimize our repreis a set of images with known camera poses. We describe how to optimize neural radiance fields to render photorealistic novel cenes with complicated geometry and appearance, and demonults that outperform prior work on neural rendering and view View synthesis results are best viewed as videos, so we urge view our supplementary video for convincing comparisons.


Keywords: scene representation, view synthesis, image-based rendering, volume rendering, 3D deep learning

Ruta Desai, Chun-Liang Li

Lecture 2 - 67

Histograms are also a type of function

Ruta Desai, Chun-Liang Li

Lecture 2 - 68

Today's agenda

- Color spaces
- Image sampling and quantization
- Image histograms
- Images as functions
- Filters
- Properties of systems

Some background reading: Forsyth and Ponce, Computer Vision, Chapter 7

Ruta Desai, Chun-Liang Li

Lecture 2 - 69

Systems and Filters

Filtering:

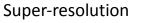
 Forming a new image whose pixel values are transformed from original pixel values

Goals of filters:

- Goal is to extract useful information from images, or transform images into another domain where we can modify/enhance image properties
 - Features (edges, corners, blobs...)
 - super-resolution; in-painting; de-noising

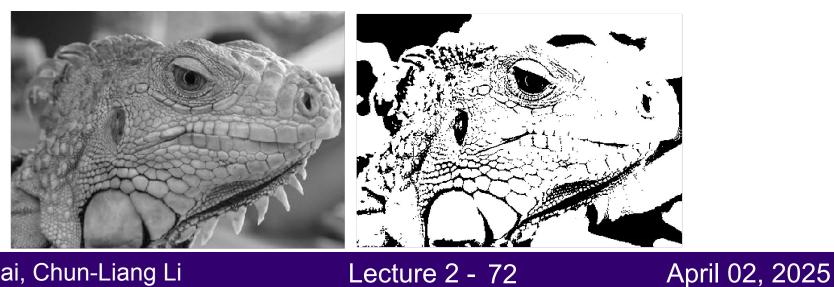
Lecture 2 - 70

Applications of filters


De-noising

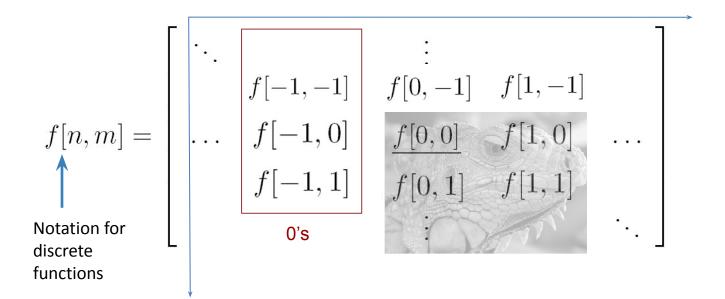
Salt and pepper noise

In-painting



Ruta Desai, Chun-Liang Li

Lecture 2 - 71


Intuition behind systems

• We will view systems as a sequence of filters applied to an image • function v.s. functions of functions

Ruta Desai, Chun-Liang Li

Repea: Images produce a 2D matrix with pixel intensities at every location

Ruta Desai, Chun-Liang Li

Lecture 2 - 73

Systems use Filters

- we define a system as a unit that converts an input function f[n,m] into an output (or response) function g[n,m]
 - \circ where (n,m) index into the function
 - In the case for images, (n,m) represents the spatial position in the image.

$$f[n,m] \to \texttt{System } \mathcal{S} \to g[n,m]$$

Ruta Desai, Chun-Liang Li

Lecture 2 - 74

2D discrete system (system is a sequence of filters) S is the system operator, defined as a mapping or assignment of possible inputs f[n,m] to some possible outputs g[n,m].

$$f[n,m] \to \texttt{System } \mathcal{S} \to g[n,m]$$

Other notations:

$$g = \mathcal{S}[f], \quad g[n,m] = \mathcal{S}\{f[n,m]\}$$
$$f[n,m] \xrightarrow{\mathcal{S}} g[n,m]$$

Ruta Desai, Chun-Liang Li

Lecture 2 - 75

Filter example #1: Moving Average

Original image

Q. What do you think will happen to the photo if we use a moving average filter?

Assume that the moving average replaces each pixel with an average value of itself and all its neighboring pixels.

Ruta Desai, Chun-Liang Li

Lecture 2 - 76

Filter example #1: Moving Average

Original image

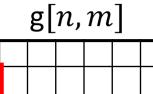
Smoothed image

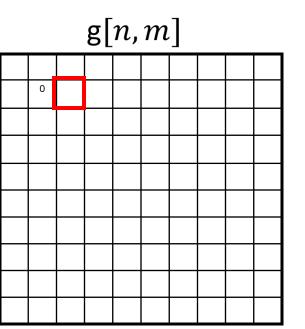
Ruta Desai, Chun-Liang Li

The red box is the **h** matrix

			י רי	ι,	· · · ·	J					
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	0	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	0	0	0	0	0	0	0		
0 0 90 0 0 0 0 0 0 0											
0	0	0	0	0	0	0	0	0	0		

f[n,m]



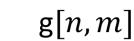

 Image: state stat

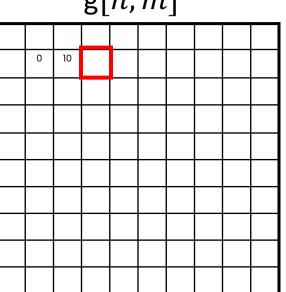
Courtesy of S. Seitz

April 02, 2025

Ruta Desai, Chun-Liang Li

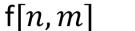
.[]												
0	0	0	0	0	0	0	0	0	0			
0	0	0	0	0	0	0	0	0	0			
0	0	0	90	90	90	90	90	0	0			
0	0	0	90	90	90	90	90	0	0			
0	0	0	90	90	90	90	90	0	0			
0	0 0 0 90 0 90 90 0											
0	0	0	90	90	90	90	90	0	0			
0	0	0	0	0	0	0	0	0	0			
0 0 90 0 0 0 0 0 0 0												
0	0	0	0	0	0	0	0	0	0			

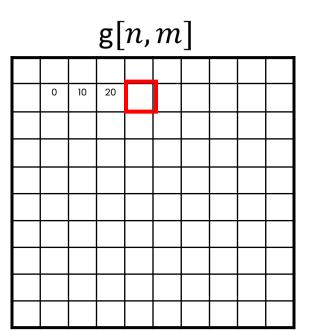

f[*n*,*m*]


Ruta Desai, Chun-Liang Li

.[]													
0	0	0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0	0	0				
0	0	0	90	90	90	90	90	0	0				
0	0	0	90	90	90	90	90	0	0				
0	0	0	90	90	90	90	90	0	0				
0	0	0	90	0	90	90	90	0	0				
0	0	0	90	90	90	90	90	0	0				
0	0	0	0	0	0	0	0	0	0				
0	0	90	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0	0	0				

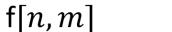
f[n,m]

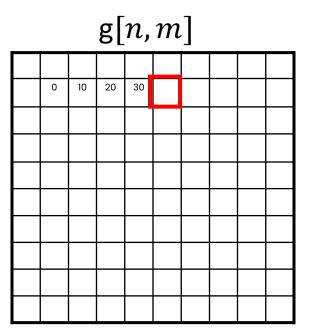




Ruta Desai, Chun-Liang Li

.[,]													
0	0	0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0	0	0				
0	0	0	90	90	90	90	90	0	0				
0	0	0	90	90	90	90	90	0	0				
0	0	0	90	90	90	90	90	0	0				
0	0	0	90	0	90	90	90	0	0				
0	0	0	90	90	90	90	90	0	0				
0	0	0	0	0	0	0	0	0	0				
0 0 90 0 0 0 0 0 0 0													
0	0	0	0	0	0	0	0	0	0				





Ruta Desai, Chun-Liang Li

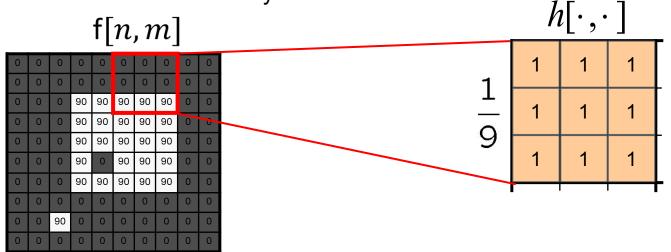
.[,]												
0	0	0	0	0	0	0	0	0	0			
0	0	0	0	0	0	0	0	0	0			
0	0	0	90	90	90	90	90	0	0			
0	0	0	90	90	90	90	90	0	0			
0	0	0	90	90	90	90	90	0	0			
0	0	0	90	0	90	90	90	0	0			
0	0	0	90	90	90	90	90	0	0			
0	0	0	0	0	0	0	0	0	0			
0	0	90	0	0	0	0	0	0	0			
0 0 0 0 0 0 0 0 0 0												

Ruta Desai, Chun-Liang Li

			L		-				
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

g[n,m]

					-			
0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	


Ruta Desai, Chun-Liang Li

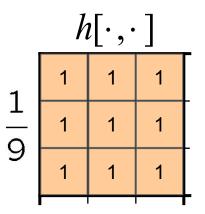
Lecture 2 - 83

Visual interpretation of moving average

A moving average over a 3×3 neighborhood window

h is a 3x3 matrix with values 1/9 everywhere.

Ruta Desai, Chun-Liang Li

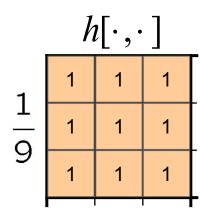

Lecture 2 - 84

Visual interpretation of moving average

A moving average over a 3×3 neighborhood window

h is a 3x3 matrix with values 1/9 everywhere.

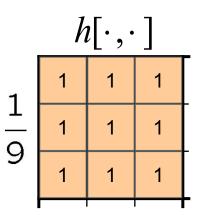
Q. Why are the values 1/9?


Ruta Desai, Chun-Liang Li

Filter example #1: Moving Average

In summary:

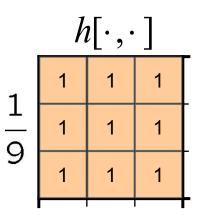
- This filter "Replaces" each pixel with an average of its neighborhood.
- Achieve smoothing effect (remove sharp features)


Ruta Desai, Chun-Liang Li

Mathematical interpretation of moving average

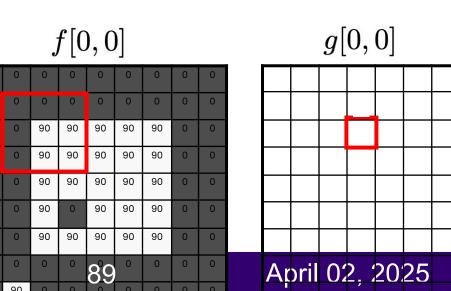
How do we represent applying this filter mathematically?

$$f[n,m] \to$$
System $\mathcal{S} \to g[n,m]$


Ruta Desai, Chun-Liang Li

Mathematical interpretation of moving average

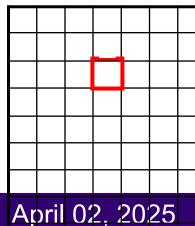
How do we represent applying this filter mathematically?


$$f[n,m] \to$$
System $\mathcal{S} \to g[n,m]$

Ruta Desai, Chun-Liang Li

$$f[n,m] \rightarrow [\text{System } S] \rightarrow g[n,m]$$
 formulation of moving average

$f[n,m] \rightarrow \boxed{\text{System } \mathcal{S}} \rightarrow g[n,m] \text{ formulation of moving} average}$


$$g[0,0] = f[-1,-1] + f[-1,0] + f[-1,1]$$

+ ...

					, (']			
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	90	0	0	0	0

f[0, 0]

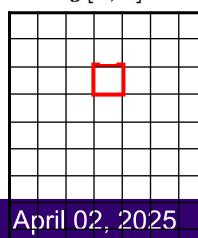
g[0,0]

$f[n,m] \rightarrow \boxed{\text{System } \mathcal{S}} \rightarrow g[n,m] \text{ formulation of moving} \\ average$

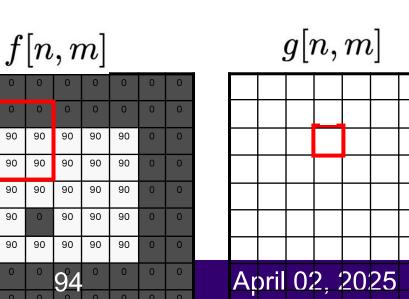
$$\begin{split} g[0,0] &= f[-1,-1] + f[-1,0] + f[-1,1] \\ &+ f[0,-1] + f[0,0] + f[0,1] \end{split}$$

	-	-	J	f[0]), ()]	-	-				g[0,	0]	
0	0	0	0	0	0	0	0	0	0						
0	0	0	0	0	0	0	0	0	0						
0	0	0	90	90	90	90	90	0	0						
0	0	0	90	90	90	90	90	0	0						
0	0	0	90	90	90	90	90	0	0						
0	0	0	90	0	90	90	90	0	0						
0	0	0	90	90	90	90	90	0	0						
0	0	0	0	0	91	0	0	0	0	A	oril	02	2	20	25
-			-			-	-						, ,		

$f[n,m] \rightarrow \boxed{\text{System } \mathcal{S}} \rightarrow g[n,m] \text{ formulation of moving} average}$

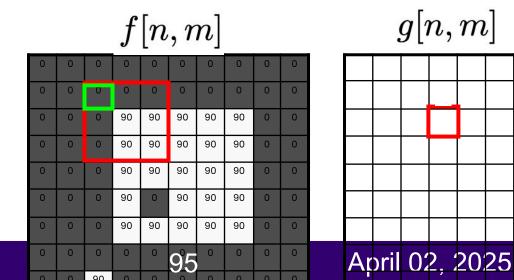

 0 0

April 02, 2025


Lastly, divide by 1/9

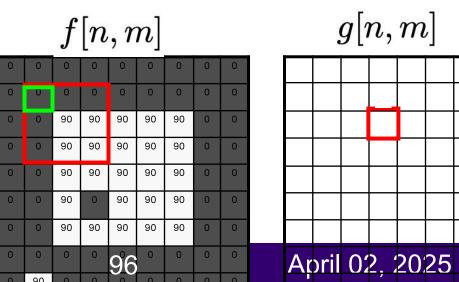
$$\begin{split} g[0,0] &= \frac{1}{9}[f[-1,-1] + f[-1,0] + f[-1,1] \\ &\quad + f[0,-1] + f[0,0] + f[0,1] \\ &\quad + f[1,-1] + f[1,0] + f[1,1]] \\ &\qquad f[0,0] \end{split} \qquad g[0,0] \end{split}$$

				10056					
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	93	0	0	0	0
-							0	-	0



Now, instead of [0, 0], let's do [n, m]

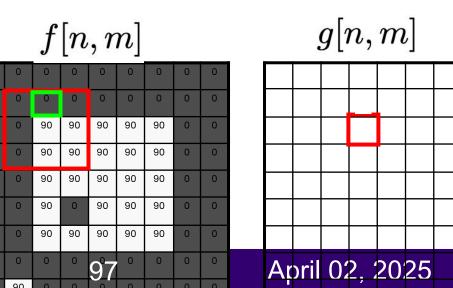
Now, instead of [0, 0], let's do [n, m]


 $g[n,m] = \dots$

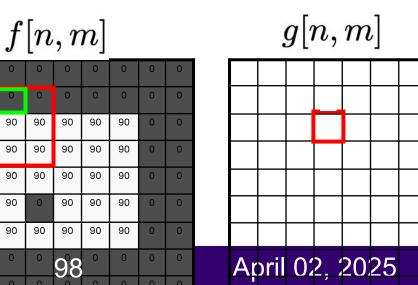
Now, instead of [0, 0], let's do [n, m]

0

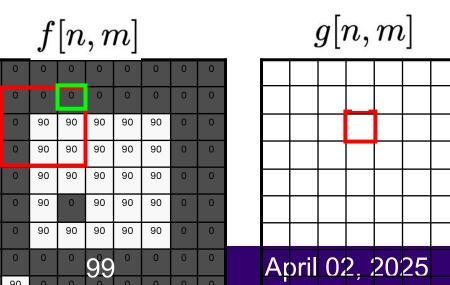
 $g[n,m] = f[n-1,m-1] + \dots$


Now, instead of [0, 0], let's do [n, m] g[n,m] = f[n-1,m-1] + ...

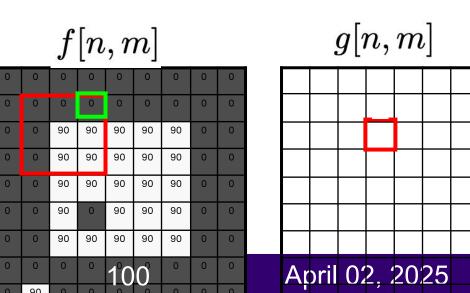
0


0

0


0

Now, instead of [0, 0], let's do [n, m] $g[n,m] = f[n-1,m-1] + f[n-1,m] + \dots$


Now, instead of [0, 0], let's do [n, m] $g[n,m] = f[n-1,m-1] + f[n-1,m] + \dots$

Now, instead of [0, 0], let's do [n, m] g[n,m] = f[n-1,m-1] + f[n-1,m] + f[n-1,m+1]

0

0

Now, instead of [0, 0], let's do [n, m] g[n,m] = f[n-1,m-1] + f[n-1,m] + f[n-1,m+1]+ f[n,m-1] + f[n,m] + f[n,m+1]

	-	-	f	[n	, r	n]						g[a	n,	m	ן ו
0	0	0	0	0	0	0	0	0	0						
0	0	0	0	0	0	0	0	0	0						
0	0	0	90	90	90	90	90	0	0						Γ
0	0	0	90	90	90	90	90	0	0						Γ
0	0	0	90	90	90	90	90	0	0					<u> </u>	ſ
0	0	0	90	0	90	90	90	0	0						Γ
0	0	0	90	90	90	90	90	0	0						Ĺ
0	0	0	0	0	1°0	1	0	0	0	Ar	oril	02	2	20	2
0	0	۹n	0	0			0	0	0				,		

າ25

Now, instead of [0, 0], let's do [n, m]

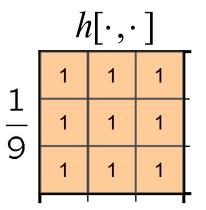
$$g[n,m] = f[n-1,m-1] + f[n-1,m] + f[n-1,m+1]$$

 $+ f[n,m-1] + f[n,m] + f[n,m+1]$
 $+ f[n+1,m-1] + f[n+1,m] + f[n+1,m+1]$

		f	[n	, r	n]		-	-			g[n,	m	ן
0	0	0	0	0	0	0	0	0						
0	0	0	0	0	0	0	0	0						
0	0	90	90	90	90	90	0	0						
0	0	90	90	90	90	90	0	0						
0	0	90	90	90	90	90	0	0						
0	0	90	0	90	90	90	0	0						
0	0	90	90	90	90	90	0	0						
0	0	0	0	1°0	2	0	0	0	Ar	oril	02	2	20	25
0	00	0	0			0	0	0				,		

Lastly, divide by 1/9

$$\begin{split} g[n,m] &= \frac{1}{9} [f[n-1,m-1] + f[n-1,m] + f[n-1,m+1] \\ &\quad + f[n,m-1] + f[n,m] + f[n,m+1] \\ &\quad + f[n+1,m-1] + f[n+1,m] + f[n+1,m+1]] \end{split}$$

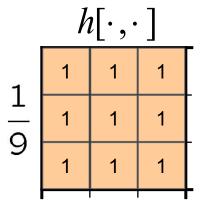

f[n,m]										
	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	0	90	90	90	90	90	0	0
	0	0	0	90	90	90	90	90	0	0
	0	0	0	90	90	90	90	90	0	0
	0	0	0	90	0	90	90	90	0	0
	0	0	0	90	90	90	90	90	0	0
	0	0	0	0	0	1°0	3	0	0	0
	0	0	00	0	0			0	0	0

April 02, 2025

g[n,m]

We can re-write the equation using summations

$$g[n,m] = \frac{1}{9} \sum_{k=??}^{??} \sum_{l=??}^{??} f[k,l]$$

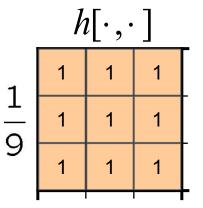

April 02, 2025

Q. What values will k take?

Ruta Desai, Chun-Liang Li

How do we represent applying this filter mathematically?

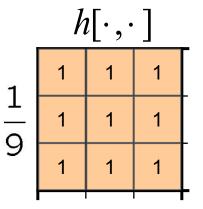
$$g[n,m] = \frac{1}{9} \sum_{k=n-1}^{n+1} \sum_{l=??}^{??} f[k,l]$$


k goes from n-1 to n+1

Ruta Desai, Chun-Liang Li

How do we represent applying this filter mathematically?

$$g[n,m] = \frac{1}{9} \sum_{k=n-1}^{n+1} \sum_{l=??}^{??} f[k,l]$$


April 02, 2025

Q. What values will I take?

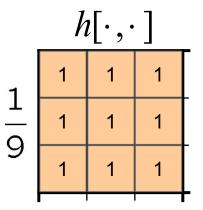
Ruta Desai, Chun-Liang Li

How do we represent applying this filter mathematically?

$$g[n,m] = \frac{1}{9} \sum_{k=n-1}^{n+1} \sum_{l=m-1}^{m+1} f[k,l]$$

I goes from m-1 to m+1

Ruta Desai, Chun-Liang Li

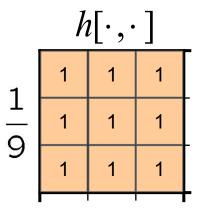


Math formula for the moving average filter

A moving average over a 3×3 neighborhood window

We can write this operation mathematically:

$$g[n,m] = \frac{1}{9} \sum_{k=n-1}^{n+1} \sum_{l=m-1}^{m+1} f[k,l]$$



April 02, 2025

Ruta Desai, Chun-Liang Li

We are almost done. Let's rewrite this formula a little bit Let k' = n - k

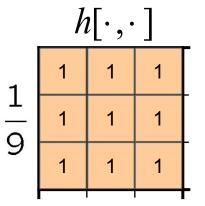
$$g[n,m] = \frac{1}{9} \sum_{k=n-1}^{n+1} \sum_{l=m-1}^{m+1} f[k,l]$$

Ruta Desai, Chun-Liang Li

Lecture 2 - 109

We are almost done. Let's rewrite this formula a little bit Let k' = n - k therefore, k = n - k'

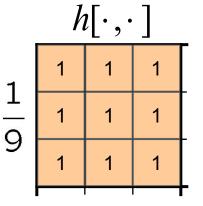
$$g[n,m] = \frac{1}{9} \sum_{k=n-1}^{n+1} \sum_{l=m-1}^{m+1} f[k,l]$$


Now we can replace k in the equation above

Ruta Desai, Chun-Liang Li

We are almost done. Let's rewrite this formula a little bit Let k' = n - k therefore, k = n - k'

$$g[n,m] = \frac{1}{9} \sum_{k=n-1}^{n+1} \sum_{l=m-1}^{m+1} f[k,l]$$


$$g[n,m] = \frac{1}{9} \sum_{n-k'=n-1}^{n-k'=n+1} \sum_{l=m-1}^{m+1} f[n-k',l]$$

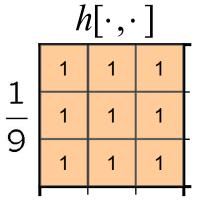
Ruta Desai, Chun-Liang Li

Lecture 2 - 111

So now we have this:

$$g[n,m] = \frac{1}{9} \sum_{n-k'=n-1}^{n-k'=n+1} \sum_{l=m-1}^{m+1} f[n-k',l]$$

Ruta Desai, Chun-Liang Li

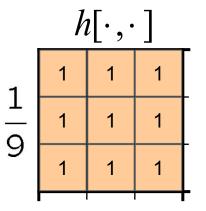

Lecture 2 - 112

So now we have this:

$$g[n,m] = \frac{1}{9} \sum_{n-k'=n-1}^{n-k'=n+1} \sum_{l=m-1}^{m+1} f[n-k',l]$$

We can simplify the equations in red:

$$g[n,m] = \frac{1}{9} \sum_{k'=1}^{k'=-1} \sum_{l=m-1}^{m+1} f[n-k',l]$$


Ruta Desai, Chun-Liang Li

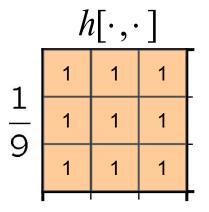
Lecture 2 - 113

So now we have this:

$$g[n,m] = \frac{1}{9} \sum_{k'=1}^{k'=-1} \sum_{l=m-1}^{m+1} f[n-k',l]$$

Remember that summations are just for-loops!!

Ruta Desai, Chun-Liang Li

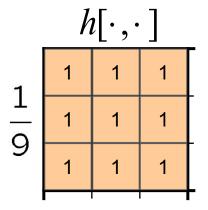


So now we have this:

$$g[n,m] = \frac{1}{9} \sum_{k'=1}^{k'=-1} \sum_{l=m-1}^{m+1} f[n-k',l]$$

Remember that summations are just for-loops!!

$$g[n,m] = \frac{1}{9} \sum_{k'=-1}^{1} \sum_{l=m-1}^{m+1} f[n-k',l]$$



Ruta Desai, Chun-Liang Li

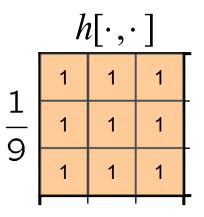
Lecture 2 - 115

One last change: since there are no more k and only k', let's just write k' as k

$$g[n,m] = \frac{1}{9} \sum_{k'=-1}^{1} \sum_{l=m-1}^{m+1} f[n-k',l]$$

April 02, 2025

$$g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=m-1}^{m+1} f[n-k,l]$$


Ruta Desai, Chun-Liang Li

Mathematical interpretation of moving average

Let's repeat for I, just like we did for k

$$g[n,m] = \frac{1}{9} \sum_{k=n-1}^{n+1} \sum_{l=m-1}^{m+1} f[k,l]$$

$$=\frac{1}{9}\sum_{k=-1}^{1}\sum_{l=-1}^{1}f[n-k,m-l]$$

April 02, 2025

Ruta Desai, Chun-Liang Li

Mathematical interpretation of moving average

Let's repeat for I, just like we did for k

Ruta Desai, Chun-Liang Li

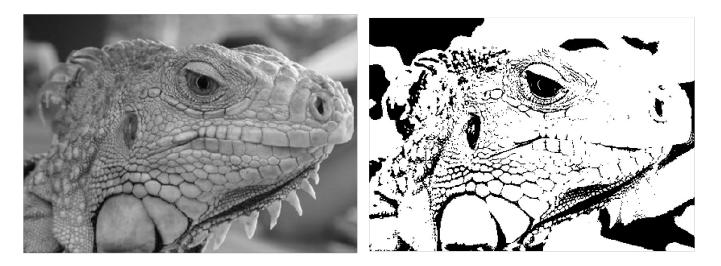
Lecture 2 - 118

 $h[\cdot,\cdot]$

Filter example #1: Moving Average

Original image

Smoothed image

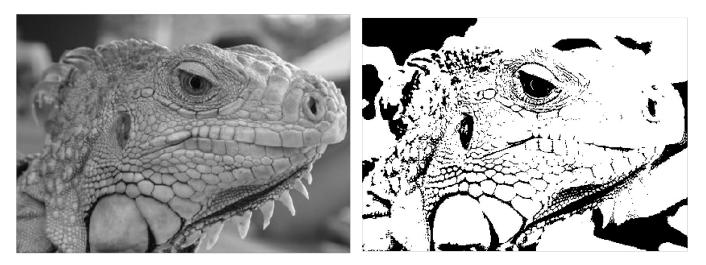


Ruta Desai, Chun-Liang Li

Filter example #2: Image Segmentation

Q. How would you use pixel values to design a filter to segment an image so that you only keep around the edges?

Ruta Desai, Chun-Liang Li



Filter example #2: Image Segmentation

• Use a simple pixel threshold: $g[n,m] = \begin{cases} 255, f[n,m] > 100\\ 0, & \text{otherwise.} \end{cases}$

Exercise: Is this linear or non-linear operation?

April 02, 2025

Ruta Desai, Chun-Liang Li

Summary so far

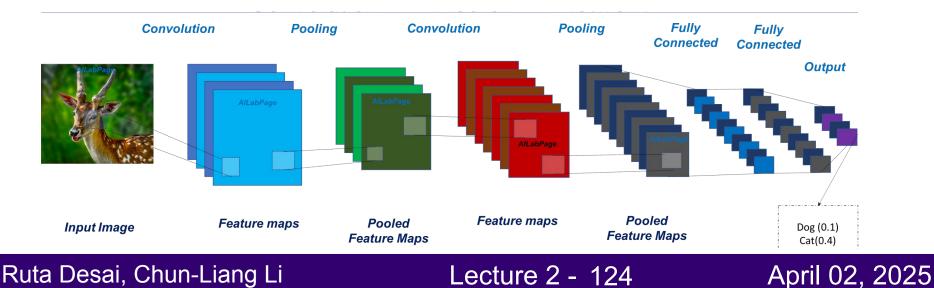
- Beyond examples we have seen today, there are A HUGE number of possible filters we can design.
- Discrete systems, with filters, convert input discrete signals and convert them into something more meaningful.
- What are ways we can category the space of possible systems?

From a signal processing view

Filter \rightarrow Filter \rightarrow Filter \rightarrow Filter

 \rightarrow Output

System


Input Image

Ruta Desai, Chun-Liang Li

In ML langauge

- Neural networks and specifically **convolutional** neural networks are a sequence of filters (except they are a non-linear system) that contains multiple individual linear sub-systems.
- filter as layer & system as model

Today's agenda

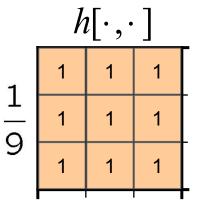
- Color spaces
- Image sampling and quantization
- Image histograms
- Images as functions
- Filters
- Properties of systems

Ruta Desai, Chun-Liang Li

Lecture 2 - 125

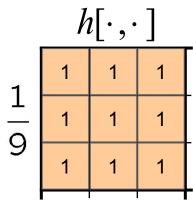
Properties of systems

- Amplitude properties:
 - \circ Additivity


$$\mathcal{S}[f_i[n,m] + f_j[n,m]] = \mathcal{S}[f_i[n,m]] + \mathcal{S}[f_j[n,m]]$$

Q. Is the moving average filter additive?

$$\mathcal{S}[f_i[n,m] + f_j[n,m]] = \mathcal{S}[f_i[n,m]] + \mathcal{S}[f_j[n,m]]$$

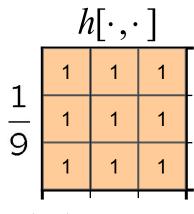

April 02, 2025

How would you prove it?

$$g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$$

Ruta Desai, Chun-Liang Li

$$\begin{split} \mathcal{S}[f_i[n,m] + f_j[n,m]] &= \mathcal{S}[f_i[n,m]] + \mathcal{S}[f_j[n,m]] \\ \text{Let } f'[n,m] &= f_i[n,m] + f_j[n,m] \end{split}$$

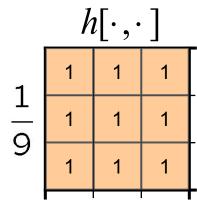



 $g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$

Ruta Desai, Chun-Liang Li

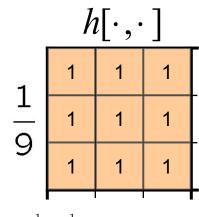
$$\mathcal{S}[f_i[n,m] + f_j[n,m]] = \mathcal{S}[f_i[n,m]] + \mathcal{S}[f_j[n,m]]$$

Let $f'[n,m] = f_i[n,m] + f_j[n,m]$
 $\mathcal{S}[f_i[n,m] + f_j[n,m]] = \mathcal{S}[f'[n,m]]$



Ruta Desai, Chun-Liang Li

$$\begin{split} \mathcal{S}[f_i[n,m] + f_j[n,m]] &= \mathcal{S}[f_i[n,m]] + \mathcal{S}[f_j[n,m]] \\ \text{Let } f'[n,m] &= f_i[n,m] + f_j[n,m] \\ \mathcal{S}[f_i[n,m] + f_j[n,m]] &= \mathcal{S}[f'[n,m]] \\ &= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f'[n-k,m-l] \end{split}$$


 $g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$

Ruta Desai, Chun-Liang Li

Lecture 2 - 130

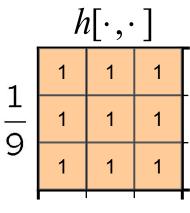
$$\mathcal{S}[f_i[n,m] + f_j[n,m]] = \mathcal{S}[f_i[n,m]] + \mathcal{S}[f_j[n,m]]$$

Let $f'[n,m] = f_i[n,m] + f_j[n,m]$
 $\mathcal{S}[f_i[n,m] + f_j[n,m]] = \mathcal{S}[f'[n,m]]$

$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f'[n-k,m-l]$$

$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} [f_i[n-k,m-l] + f_j[n-k,m-l]]$$

$$g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$$


Ruta Desai, Chun-Liang Li

Lecture 2 - 131

 $|\mathcal{S}|f_i|n,m| + f_i|n,m|| = \mathcal{S}|f'|n,m||$

$$\mathcal{S}[f_i[n,m] + f_j[n,m]] = \mathcal{S}[f_i[n,m]] + \mathcal{S}[f_j[n,m]]$$

Let $f'[n,m] = f_i[n,m] + f_j[n,m]$

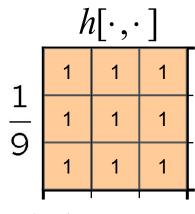
 $\begin{aligned} &= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f'[n-k,m-l] \\ &= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} [f_i[n-k,m-l] + f_j[n-k,m-l]] \\ &= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} [f_i[n-k,m-l] + \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f_j[n-k,m-l]] \end{aligned}$

 $g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$

Ruta Desai, Chun-Liang Li

Lecture 2 - 132

$$\begin{split} \mathcal{S}[f_i[n,m] + f_j[n,m]] &= \mathcal{S}[f_i[n,m]] + \mathcal{S}[f_j[n,m]] \\ \text{Let } f'[n,m] &= f_i[n,m] + f_j[n,m] \end{split}$$


 $\mathcal{S}[f_i[n,m] + f_j[n,m]] = \mathcal{S}[f'[n,m]]$

$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f'[n-k,m-l]$$

$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} [f_i[n-k,m-l] + f_j[n-k,m-l]]$$

$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f_i[n-k,m-l] + \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f_j[n-k,m-l]$$

$$= S[f_i[n,m]] + S[f_j[n,m]]$$

 $g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$

l]]

Ruta Desai, Chun-Liang Li

Lecture 2 - 133

Properties of systems

- Amplitude properties:
 - \circ Additivity

$$\mathcal{S}[f_i[n,m] + f_j[n,m]] = \mathcal{S}[f_i[n,m]] + \mathcal{S}[f_j[n,m]]$$

Ruta Desai, Chun-Liang Li

Properties of systems

• Amplitude properties:

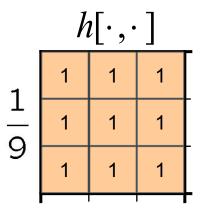
 \circ Additivity

$$\mathcal{S}[f_i[n,m] + f_j[n,m]] = \mathcal{S}[f_i[n,m]] + \mathcal{S}[f_j[n,m]]$$

 \circ Homogeneity

$$\mathcal{S}[\alpha f[n,m]] = \alpha \mathcal{S}[f[n,m]]$$

Ruta Desai, Chun-Liang Li


Another question:

Q. Is the moving average filter homogeneous?

 $\mathcal{S}[\alpha f[n,m]] = \alpha \mathcal{S}[f[n,m]]$

Practice proving it at home using:

$$g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$$

April 02, 2025

Ruta Desai, Chun-Liang Li

What we covered today

- Color spaces
- Image sampling and quantization
- Image histograms
- Images as functions
- Filters
- Properties of systems

Ruta Desai, Chun-Liang Li

Lecture 2 - 137

Classic v.s. Deep Learning ?!

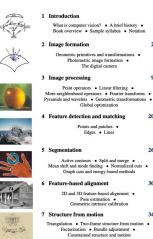
Should I take CSE455? Or should I go ahead to take the deep learning class?

Ruta Desai, Chun-Liang Li

History

- Recent neural networks is invented before 2000's _
- But here is the popular agenda in 2000's -

1


29

205

267

309

343

Recognition databases and test sets

Ruta Desai, Chun-Liang Li

Lecture 2 - 139

577

Deep Learning

- is a powerful **tool**
- immediately useful (for your problem, and maybe for job hunting)
- it's not the problem (at least not CV problem)

Why basics?

- Learning the problem (CSE455)
- and knowing the tool (any other deep learning classes)

Recall the groundbreaking NeRF paper

"NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis", ECCV 2020

- Image as a function + neural network
- One of the most important paper in the recent CV development
- >10,000 citations in 5 years

3 Aug 2020	Ne B
[cs.CV]	Al for lyi vie
08934v2	con dir ou tha alc the
iv:2003.(is i ser eff vie str syr rea
arX	Ke

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

Ben Mildenhall^{1*} Pratul P. Srinivasan^{1*} Matthew Tancik^{1*} Jonathan T. Barron² Ravi Ramamoorthi³ Ren Ng¹

¹UC Berkeley ²Google Research ³UC San Diego

bstract. We present a method that achieves state-of-the-art results synthesizing novel views of complex scenes by optimizing an undering continuous volumetric scene function using a sparse set of input ews. Our algorithm represents a scene using a fully-connected (nonnvolutional) deep network, whose input is a single continuous 5D coornate (spatial location (x, y, z) and viewing direction (θ, ϕ)) and whose tput is the volume density and view-dependent emitted radiance at at spatial location. We synthesize views by querving 5D coordinates ong camera rays and use classic volume rendering techniques to project e output colors and densities into an image. Because volume rendering naturally differentiable, the only input required to optimize our reprentation is a set of images with known camera poses. We describe how to fectively optimize neural radiance fields to render photorealistic novel ews of scenes with complicated geometry and appearance, and demonrate results that outperform prior work on neural rendering and view nthesis. View synthesis results are best viewed as videos, so we urge aders to view our supplementary video for convincing comparisons.

Keywords: scene representation, view synthesis, image-based rendering, volume rendering, 3D deep learning

Ruta Desai, Chun-Liang Li

Lecture 2 - 142

Why basics?

- Learning the problem (CSE455)
 - and knowing the tool (any other deep learning classes)
- Our goal in CSE455:
 - learning foundation, ideas, and basics
 - build your taste and intuition to computer vision
 - Classic approaches are still useful nowadays
 - especially in scale (cheap!!)

Ruta Desai, Chun-Liang Li

Next time:

Linear systems and convolutions

Ruta Desai, Chun-Liang Li

