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Let’s say that we this hypothetical 
2-dimensional feature space.

Q. Which direction will is the first 
principle component?

Here I am showing each image in 
this feature space. Red and Blue 
are the two classes.
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PCA can project the data such that it will become 
harder to separate the two classes

PCA 
projection
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The ideal projection should make it easy to 
differentiate between images from two classes

The ideal 
projection

PCA 
projection
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The ideal 
projection

PCA 
projection

Fischer’s Linear Discriminant Analysis (LDA)

● Goal: find the best separation between two classes
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Difference between PCA and LDA

● PCA preserves maximum variance
○ PCA maximizes our ability to reconstruct each image
○ Doesn’t help us find the best projection for classification

● LDA preserves discrimination (difference between categories)
○ Find projection that maximizes scatter between classes and minimizes 

scatter within classes
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How LDA reduces dimentionality

        Poor Projection

x1

x2

x1

x2

• Using two classes as example:

Good
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Basic intuition: PCA vs. LDA
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PCA

LDA
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First, let’s calculate the per category statistics

• We want to learn a dimension reduction projection W such that the 
projection converts all image features x to a lower dimensional space:

• First, let’s calculate the per class means be:

• And the per class covariance matrices are:
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The ideal 
projection

PCA 
projection

Using the per class means and covariance, we want to 
minimize the following objective:

Between class scatter

Within class scatter

We want a projection that maximizes:
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What does J(w) look like when we only have 2 
classes
The following objective function:

Can be written as
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LDA with 2 variables

● Numerator: We can write the between class scatter as:

● Each part of Denominator: Also, the within class scatter becomes:
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denom: write out each Z as the reduction of x 
using w, and we have the square as it’s the 
variance equation
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LDA with 2 variables

● We can plug in these scatter values to our objective function:
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LDA with 2 variables

● We can plug in these scatter values to our objective function:

Between class scatter

Within class scatter
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x
1

x
2 Within class scatter

Between class scatter

Visualizing S
w

 and S
B
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● Maximizing the ratio

● Is equivalent to maximizing the numerator while keeping the denominator 
constant, i.e. 

● And can be accomplished using Lagrange multipliers, where we define the 
Lagrangian as

● And maximize with respect to both w and λ

Linear Discriminant Analysis (LDA)
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Linear Discriminant Analysis (LDA)

● Setting the gradient of                                                     to 0

● Taking the derivative respect to w to find the maximum:
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Linear Discriminant Analysis (LDA)

● Setting the gradient of                                                     to 0

● Taking the derivative respect to w to find the maximum:

● This is maximized when 
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Linear Discriminant Analysis (LDA)

● Setting the gradient of                                                     to 0

● Taking the derivative respect to w to find the maximum:

● This is maximized when 

● The solution is easy when Sw has an inverse:
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Linear Discriminant Analysis (LDA)

If an inverse for SW exists:

We want to find the optimal w. 
Q. What does this look like?
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If an inverse for SW exists:

The solution is the eigenvector of            corresponding to the 
largest eigenvalue

Linear Discriminant Analysis (LDA)
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LDA with C classes

Same as when C=2. Except SW and SB now include all classes.
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PCA vs. LDA

• PCA exploits the max scatter of the training images in face space
• LDA attempt to maximise the between class scatter, while 

minimising the within class scatter.
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