Recitation 9

Exam preparation

Exam details

- Monday, June 9
- 2:30pm to 4:20pm
- Location: BAG 154

Exam overview

- multiple choice
- true false
- short answer
- ~10 points extra credit

Convolution and Cross-correlation

Convolution is an integral that expresses the amount of overlap of one function as it is shifted over another function

$$(f * h)[m, n] = \sum_{k,l} f[k, l] h[m-k, n-l]$$

Cross-correlation compares the *similarity of two sets of data*

$$(f \star g)[m, n] = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} f[i, j] \cdot g[i-m, j-n]$$

Convolution with Impulse function

$$f[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \,\delta_2[n-k,m-l]$$

Recitation 9-

<u>May 30, 2025</u>

Ayush A.

Properties of systems

Amplitude properties:

• Additivity $S[f_i[n,m] + f_j[n,m]] = S[f_i[n,m]] + S[f_j[n,m]]$

- Homogeneity $S[\alpha f_i[n,m]] = \alpha S[f_i[n,m]]$
- Superposition

 $S[\alpha f_i[n,m] + \beta f_j[n,m]] = \alpha S[f_i[n,m]] + \beta S[f_j[n,m]]$

 \circ Stability $|f[n,m]| \le k \implies |g[n,m]| \le ck$

Invertibility

 $S^{-1}[S[f_i[n,m]]] = f[n,m]$

Ayush A.

Recitation 9-

₩a⁄¥⁹30, 2025

Properties of systems

• Spatial properties

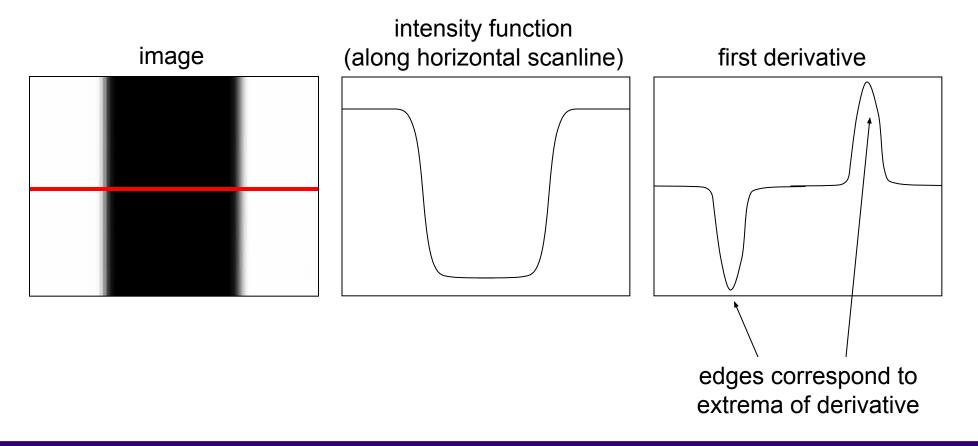
• Causality for $n < n_0, m < m_0$, if $f[n,m] = 0 \implies g[n,m] = 0$

$$\circ$$
 Shift invariance: $f[n - n_0, m - m_0] \xrightarrow{\mathcal{S}} g[n - n_0, m - m_0]$

₩a⁄¥⁹30, 2025

Characterizing edges

• An edge is a place of rapid change in the image intensity function



Ayush A.

Discrete derivative in 2D

f(x,y)**Given function**

Gradient vector

$$\nabla f(x,y) = \begin{bmatrix} \frac{\partial f(x,y)}{\partial x} \\ \frac{\partial f(x,y)}{\partial y} \end{bmatrix} = \begin{bmatrix} f_x \\ f_y \end{bmatrix}$$

8

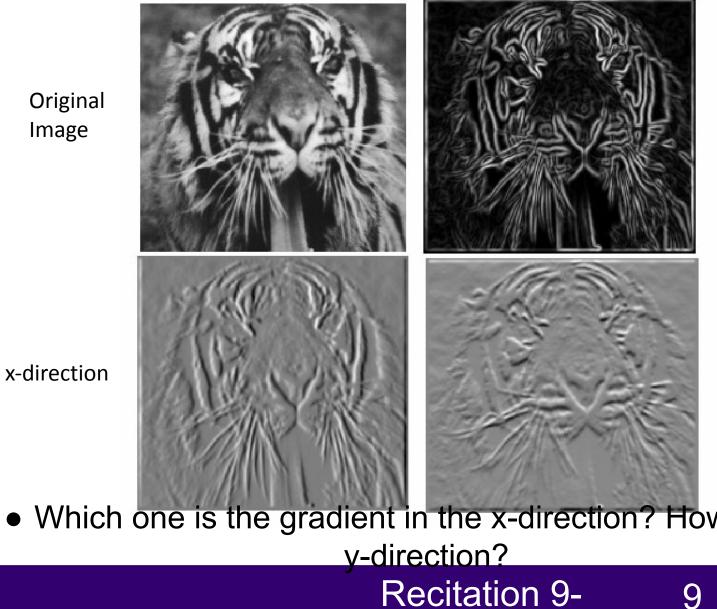
₩a⁄¥⁹30, 2025

 $\left|\nabla f(x,y)\right| = \sqrt{f_x^2 + f_y^2}$ Gradient magnitude θ

Gradient direction

$$\theta = \tan^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)$$

Finite differences: example



Gradient magnitude

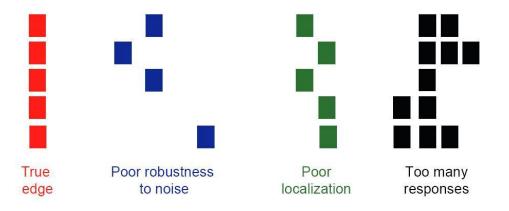
y-direction

• Which one is the gradient in the x-direction? How about

Ayush A.

Designing an edge detector

- Criteria for an "optimal" edge detector:
 - Good detection: the optimal detector must minimize the probability of false positives (detecting spurious edges caused by noise), as well as that of false negatives (missing real edges)
 - Good localization: the edges detected must be as close as possible to the true edges
 - Single response: the detector must return one point only for each true edge point; that is, minimize the number of local maxima around the true edge



Recitation 9-

10

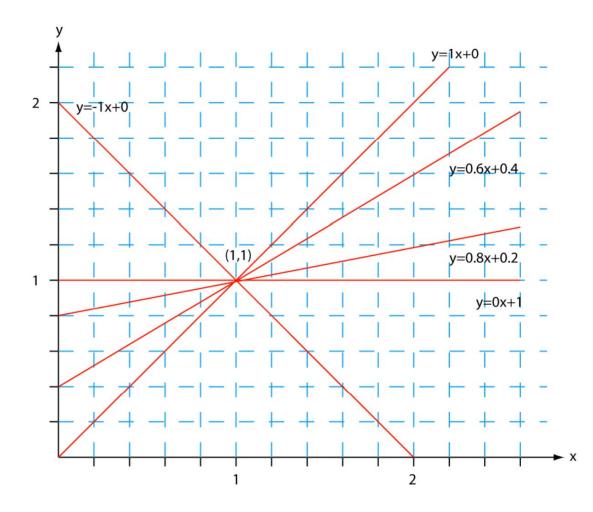
Canny edge detector

- Suppress Noise
- Compute gradient magnitude and direction
- Apply Non-Maximum Suppression
 - \circ Assures minimal response
- Use hysteresis and connectivity analysis to detect edges

Recitation 9-

₩a\/⁹30, 2025

Detecting lines using Hough transform



Recitation 9-

12

May 30, 2025

RANSAC: Pros and Cons

• <u>Pros</u>:

General method suited for a wide range of model fitting problems
 Easy to implement and easy to calculate its failure rate

• <u>Cons</u>:

- Only handles a moderate percentage of outliers without cost blowing up
- Many real problems have high rate of outliers (but sometimes selective choice of random subsets can help)
- A voting strategy, The Hough transform, can handle high percentage of outliers

Recitation 9-

13

₩av^y930, 2025

Ayush A.

Requirements for keypoint localization

- Region extraction needs to be repeatable and accurate

 Invariant to translation, rotation, scale changes
 Robust or covariant to out-of-plane (≈affine) transformations
 Robust to lighting variations, noise, blur, quantization
- Locality: Features are local, therefore robust to occlusion and clutter.
- Quantity: We need a sufficient number of regions to cover the object.

Recitation 9-

Slide credit: Bastian Leibe

14

₩a⁄¥⁹30, 2025

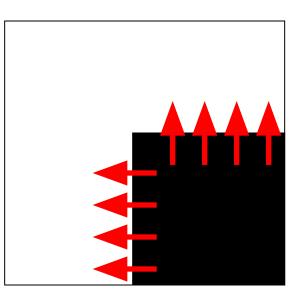
- Distinctivenes : The regions should contain "interesting" structure.
- Efficiency: Close to real-time performance.

Ayush A.

Harris corner detector and second moment matrix

• First, let's consider an axis-aligned corner:

$$M = \begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$



Recitation 9-

Slide credit: David Jacobs

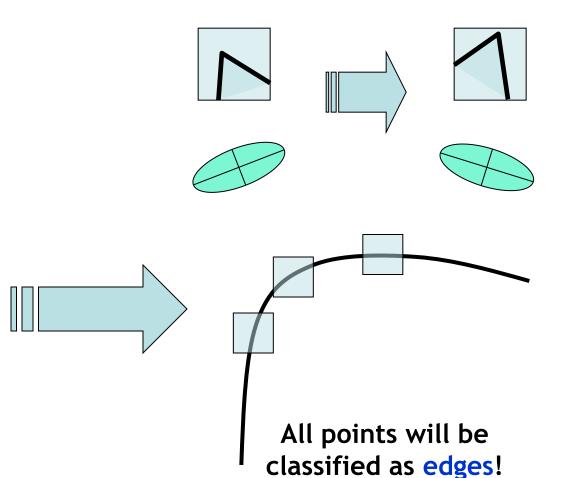
15

₩a⁄¥⁹30, 2025

Harris Detector: Properties

Corner

- Translation invariance
- Rotation invariance
- Scale invariance?



Slide credit: Kristen Grauman

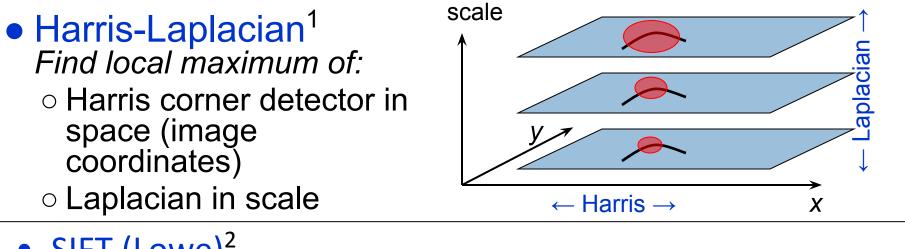
₩a\/⁹30, 2025

Not invariant to image scale!

Recitation 9-

16

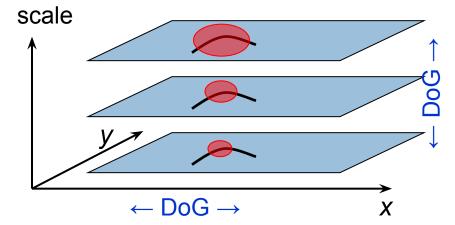
Scale Invariant Detectors



• SIFT (Lowe)²

Find local maximum of:

 Difference of Gaussians in space and scale



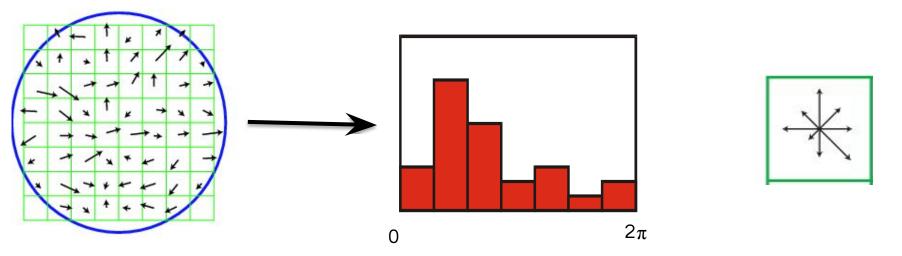
17

¹ K.Mikolajczyk, C.Schmid. "Indexing Based on Scale Invariant Interest Points". ICCV 2001

² D.Lowe. "Distinctive Image Features from Scale-Invariant Keypoints". IJCV 2004

Ayush A.

SIFT descriptor formation



- Using precise gradient locations is fragile. We'd like to allow some "slop" in the image, and still produce a very similar descriptor
- Create array of orientation histograms (a 4x4 array is shown)
- Put the rotated gradients into their local orientation histograms
 - A gradients's contribution is divided among the nearby histograms based on distance. If it's halfway between two histogram locations, it gives a half contribution to both.
 - $\circ~$ Also, scale down gradient contributions for gradients far from the center
- The SIFT authors found that best results were with 8 orientation bins per histogram.

Ayush A.

Recitation 9-

₩/a/¥⁹30, 2025

Difference between HoG and SIFT

- HoG is usually used to describe entire images. SIFT is used for key point matching
- SIFT histrograms are oriented towards the dominant gradient. HoG is not.

Recitation 9-

19

₩av^y930, 2025

- HoG gradients are normalized using neighborhood bins.
- SIFT descriptors use varying scales to compute multiple descriptors.

Seam Carving

- Assume $m \ge n \ge m \ge n'$, n' < n (summarization)
- Basic Idea: remove unimportant pixels from the image
 Onimportant = pixels with less "energy"

$$E_1(\mathbf{I}) = \left|\frac{\partial}{\partial x}\mathbf{I}\right| + \left|\frac{\partial}{\partial y}\mathbf{I}\right|.$$

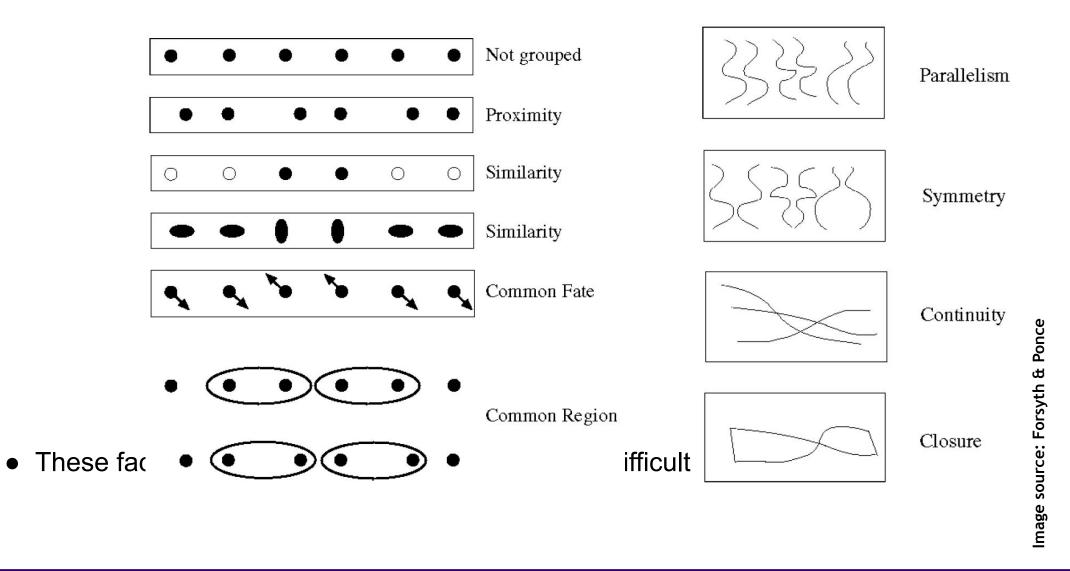
- Intuition for gradient-based energy:
 - \circ Preserve strong contours
 - Human vision more sensitive to edges so try remove content from smoother areas
 - Simple enough for producing some nice results

Ayush A.

Recitation 9-

₩av^y⁹30, 2025

Gestalt Factors



Recitation 9-

₩a⁄₽⁹30, 2025

21

Conclusions: Agglomerative Clustering

Good

- Simple to implement, widespread application.
- Clusters have adaptive shapes.
- Provides a hierarchy of clusters.
- No need to specify number of clusters in advance.

Bad

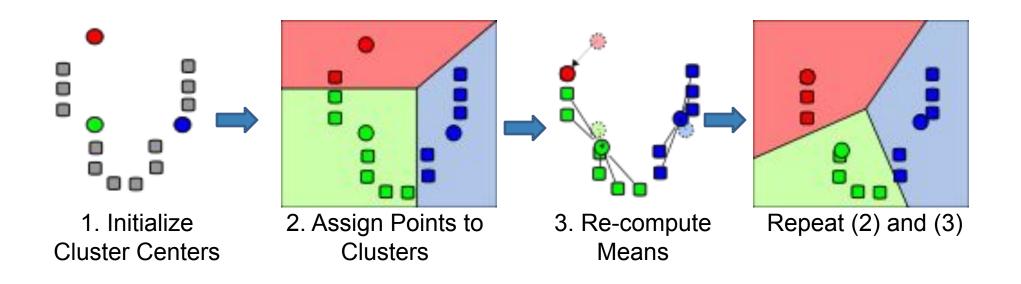
- May have imbalanced clusters.
 Still have to choose number of clusters or threshold.
- Does not scale well. Runtime of $O(n^3)$.
- Can get stuck at a local optima.

Ayush A.

Recitation 9-

M/a⁄4930, 2025

K-means clustering



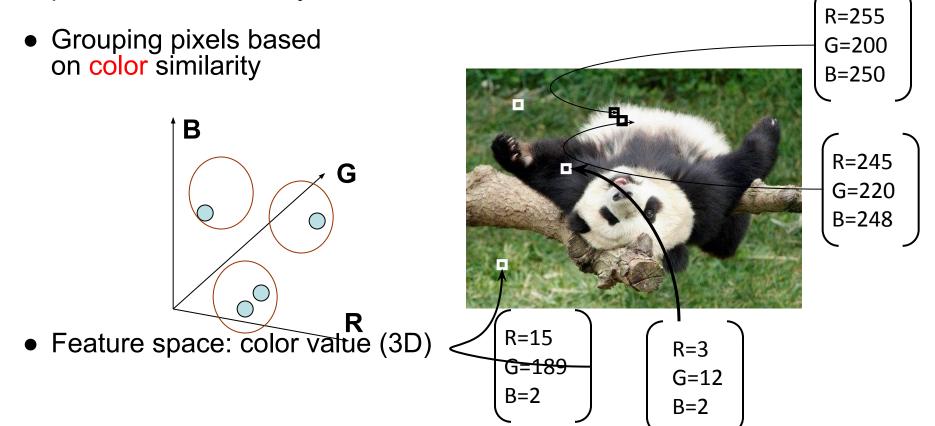
• Java demo:

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html

Ayush A.

Feature Space

• Depending on what we choose as the *feature space*, we can group pixels in different ways.



Slide credit: Kristen Grauman

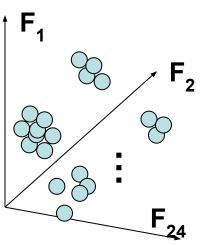
Ayush A.

Recitation 9-

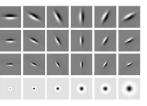
₩a⁄¥⁹30, 2025

Feature Space

- Depending on what we choose as the *feature space*, we can group pixels in different ways.
- Grouping pixels based on texture similarity



Recitation 9-



Filter bank of 24 filters

25

₩a⁄¥⁹30, 2025

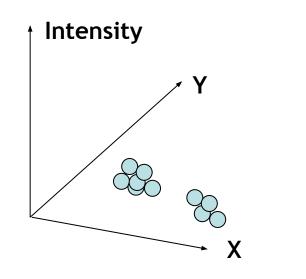
• Feature space: filter bank responses (e.g., 24D)

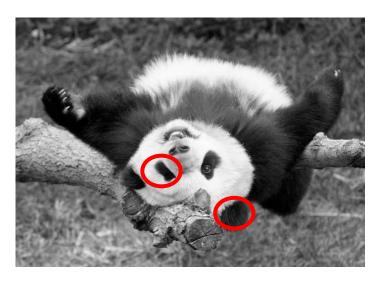
Slide credit: Kristen Grauman

Ayush A.

Segmentation as Clustering

- Depending on what we choose as the *feature space*, we can group pixels in different ways.
- Grouping pixels based on intensity+position similarity





 \Rightarrow Way to encode both *similarity* and *proximity*.

Slide credit: Kristen Grauman

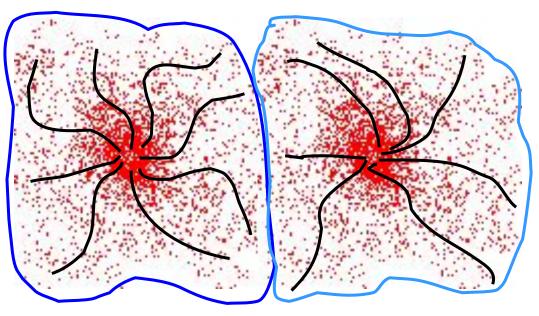
Ayush A.

Recitation 9-

₩a∿⁹30, 2025

Mean-Shift Clustering

- Cluster: all data points in the attraction basin of a mode
- Attraction basin: the region for which all trajectories lead to the same mode



Slide by Y. Ukrainitz & B. Sarel

Ayush A.

27

Summary Mean-Shift

• Pros

- General, application-independent tool
- Model-free, does not assume any prior shape (spherical, elliptical, etc.) on data clusters
- Just a single parameter (window size h)
 - h has a physical meaning (unlike k-means)
- Finds variable number of modes
- Robust to outliers

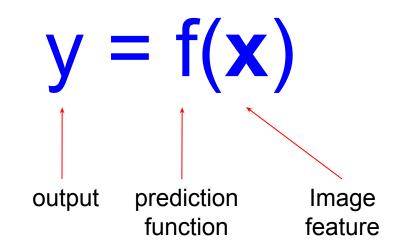
• Cons

- $\circ\,$ Output depends on window size
- Window size (bandwidth) selection is not trivial
- Computationally (relatively) expensive (~2s/image)
- $\circ\,$ Does not scale well with dimension of feature space

M∕a⁄t⁹30, 2025

Ayush A.

The machine learning framework

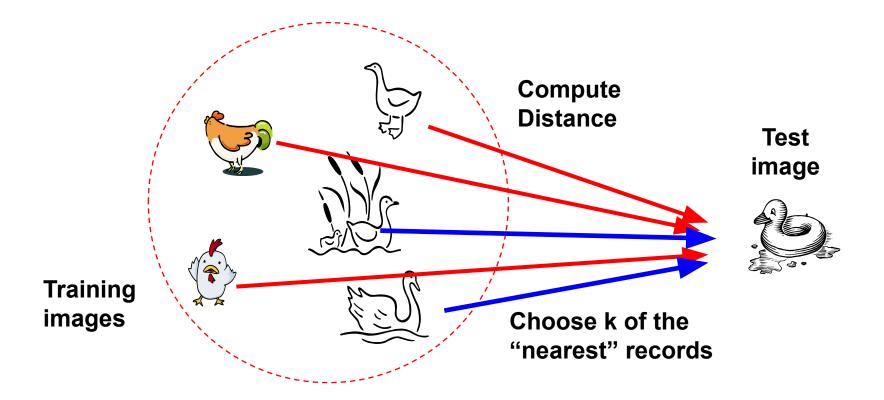


- Training: given a *training set* of labeled examples {(x₁,y₁), ..., (x_N,y_N)}, estimate the prediction function f by minimizing the prediction error on the training set
- Testing: apply f to a never before seen test example x and output the predicted value y = f(x)

Ayush A.

Nearest Neighbor Classifier

 Assign label of nearest training data point to each test data point

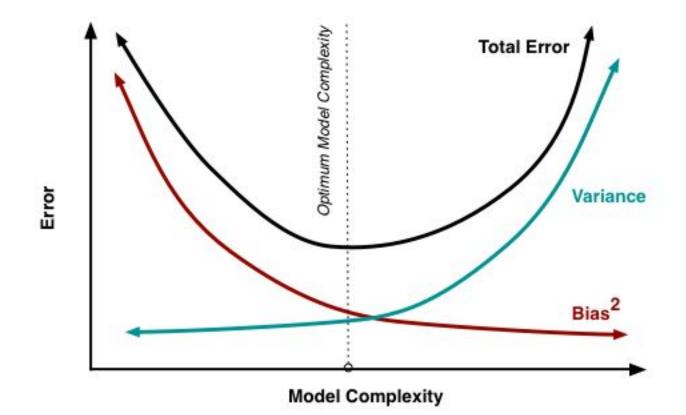


Source: N. Goyal

30

Ayush A.

Bias versus variance trade off

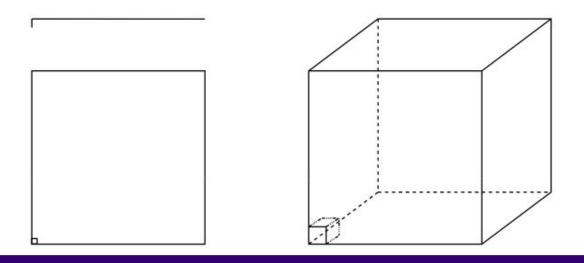


Recitation 9-

₩a⁄y⁹30, 2025

Curse of dimensionality

- Assume 5000 points uniformly distributed in the unit hypercube and we want to apply 5-NN. Suppose our query point is at the origin.
 - In 1-dimension, we must go a distance of 5/5000=0.001 on the average to capture 5 nearest neighbors.
 - $\circ\,$ In 2 dimensions, we must go $\sqrt{0.001}\,$ to get a square that contains 0.001 of the volume.
 - \circ In d dimensions, we must $go(0.001)^{1/d}$

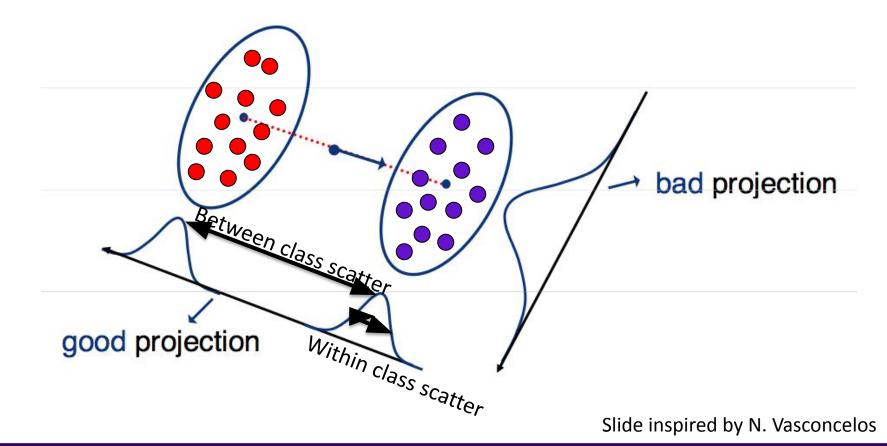


Recitation 9-

32

M∕a⁄y⁹30, 2025

Fischer's Linear Discriminant Analysis



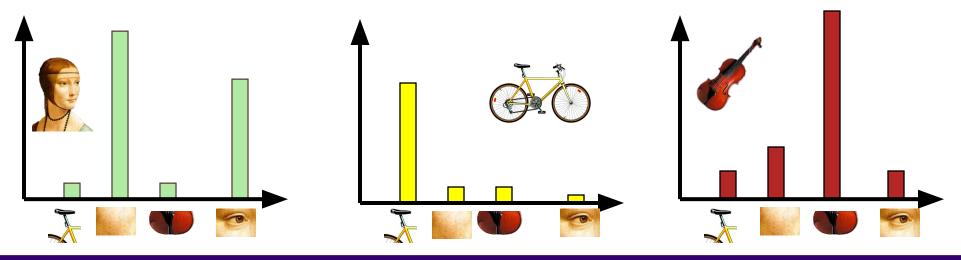
Ayush A.

Recitation 9-

33

Bag of features: outline

- 1. Extract features
- 2. Learn "visual vocabulary"
- 3. Quantize features using visual vocabulary
- 4. Represent images by frequencies of "visual words"



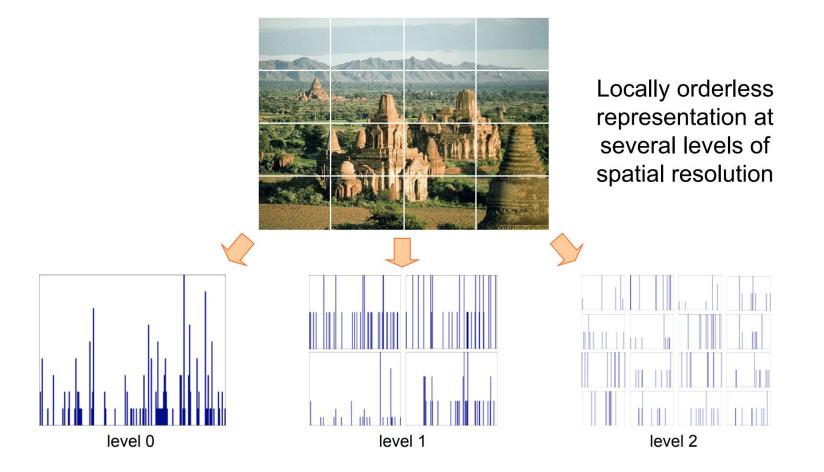
Ayush A.

Recitation 9-

34

May 30, 2025

Bag of words + pyramids



Ayush A.

Recitation 9-

35 May 30, 2025

Naïve Bayes

Classify image using histograms of occurrences on visual words:

$$\mathbf{x} = \mathbf{x}_{i}$$

- if only present/absence or a word is taken into account:
- Naïve Bayes classifier assumes that visual words are conditionally independent given object class $x_i \in \{0,1\}$

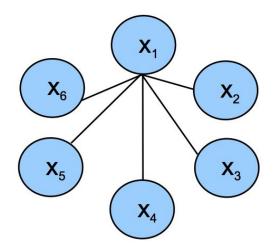
Csurka Bray, Dance & Fan, 2004

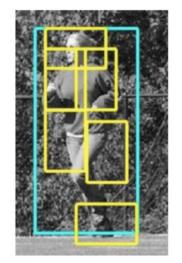
36

May 30, 2025

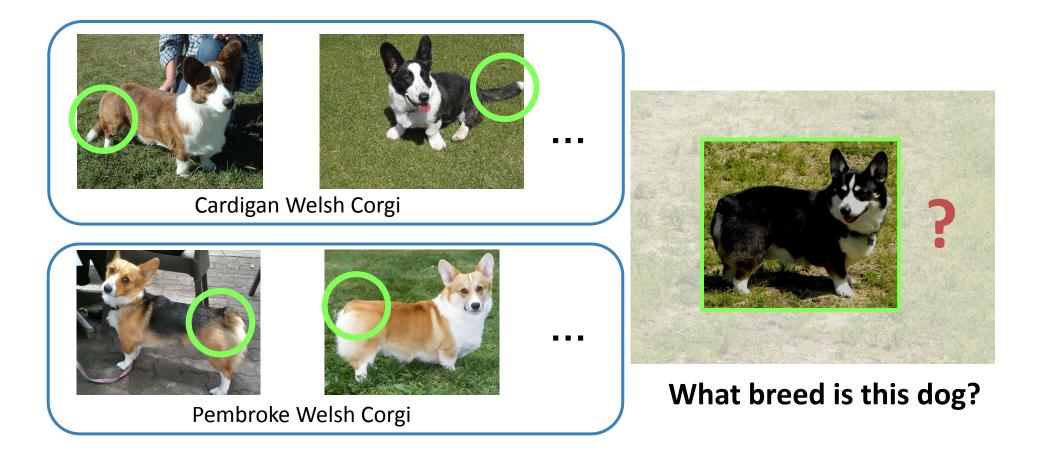
Detecting a person with their parts

- For example, a person can be modelled as having a head, left arm, right arm, etc.
- All parts can be modelled relative to the global person detector





Fine-Grained Recognition



Key: Find the right features.

Recitation 9-

38

₩a⁄¥⁹30, 2025

Points

2D points:
$$\mathbf{x} = (x,y) \in \mathcal{R}^2$$
 or column vector $\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$

3D points: $\mathbf{x} = (x, y, z) \in \mathcal{R}^3$ (often noted X or P)

Homogeneous coordinates: append a 1

Why?
$$\mathbf{ar{x}} = (x,y,1)$$
 $\mathbf{ar{x}} = (x,y,z,1)$

Ayush A.

Recitation 9-

Homogeneous coordinates in 2D

2D Projective Space $\mathcal{P}^2 = \mathcal{R}^3 - (0, 0, 0)$ (same story in 3D with \mathcal{P}^3)

• heterogeneous \rightarrow homogeneous

$$\left[\begin{array}{c} x\\ y\end{array}\right] \Rightarrow \left[\begin{array}{c} x\\ y\\ 1\end{array}\right]$$

- homogeneous \rightarrow heterogeneous

$$\left[\begin{array}{c} x\\ y\\ w\end{array}\right] \Rightarrow \left[\begin{array}{c} x/w\\ y/w\end{array}\right]$$

• points differing only by scale are *equivalent*: $(x, y, w) \sim \lambda(x, y, w)$

$$\tilde{\mathbf{x}} = (\tilde{x}, \tilde{y}, \tilde{w}) = \tilde{w}(x, y, 1) = \tilde{w}\bar{\mathbf{x}}_{1}$$

Ayush A.

Recitation 9-40

Camera matrix decomposition

Ayush A.

We can decompose the camera matrix like this:

$$\mathbf{P} = \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
(homogeneous) transformation
from 2D to 2D, accounting for
focal length f and origin translation
Also written as: $\mathbf{P} = \mathbf{K}[\mathbf{I}|\mathbf{0}]$ where $\mathbf{K} = \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix}$ K is called the
camera intrinsics

Recitation 9-41

Putting it all together

We can write everything into a single projection: $\mathbf{x}^{\mathbf{I}} \sim \mathbf{K}[\mathbf{I}|\mathbf{0}] \begin{bmatrix} \mathbf{R} & -\mathbf{R}\mathbf{C} \\ \mathbf{0} & 1 \end{bmatrix} \mathbf{X}^{\mathbf{W}} = \mathbf{P}\mathbf{X}^{\mathbf{W}}$

The camera matrix now looks like:

$$\mathbf{P} = \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I} & | & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{R} & -\mathbf{RC} \\ \mathbf{0} & 1 \end{bmatrix}$$

intrinsic parameters (3 x 3):
correspond to camera
internals (image-to-image
transformation) transformation) transformation) transformation transformatis transformatis transformation transfo

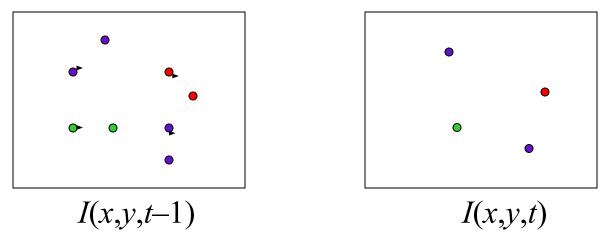
Recitation 9-

General pinhole camera matrix $\mathbf{P} = \mathbf{K}[\mathbf{R}|\mathbf{t}]$ where $\mathbf{t} = -\mathbf{R}\mathbf{C}$ $\mathbf{P} = \left| \begin{array}{cccc} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{array} \right| \left| \begin{array}{cccc} r_1 & r_2 & r_3 & t_1 \\ r_4 & r_5 & r_6 & t_2 \\ r_7 & r_8 & r_0 & t_2 \end{array} \right|$ intrinsic extrinsic parameters parameters $\mathbf{R} = \begin{vmatrix} r_1 & r_2 & r_3 \\ r_4 & r_5 & r_6 \\ r_7 & r_9 & r_9 \end{vmatrix} \quad \mathbf{t} = \begin{vmatrix} t_1 \\ t_2 \\ t_3 \end{vmatrix}$ **3D** translation 3D rotation

Ayush A.

Recitation 9-

Estimating optical flow



- Given two subsequent frames, estimate the apparent motion field u(x,y), v(x,y) between them
- Key assumptions
 - **Brightness constancy:** projection of the same point looks the same in every frame
 - Small motion: points do not move very far
 - **Spatial coherence:** points move like their neighbors

Ayush A.

Recitation 9-

Lucas Kande optical flow

• Optimal (u, v) satisfies Lucas-Kanade equation

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$
$$A^T A \qquad A^T b$$

When is This Solvable?

- **A^TA** should be invertible
- **A^TA** should not be too small due to noise
 - eigenvalues λ_1 and λ_2 of **A^TA** should not be too small
- **A^TA** should be well-conditioned
 - $-\lambda_1/\lambda_2$ should not be too large (λ_1 = larger eigenvalue)

Recitation 9-

Does this remind anything to you?

Ayush A.

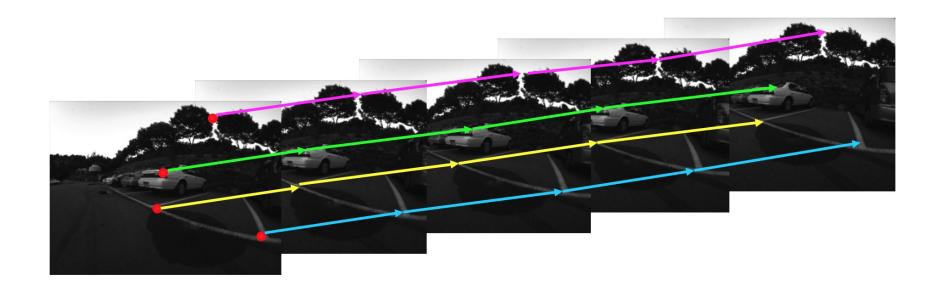
Source: Silvio Savarese

45

₩a⁄¥⁹30, 2025

Tracking

Feature point tracking



Slide credit: Yonsei Univ.

₩a¥930, 2025

Recitation 9-

What should you take away from this class?

- A broad understanding of computer vision as a field.
- Learning to use common software packages: jupyter, numpy, scipy.
- Converting ideas into mathematical equations.
- Converting mathematical equations into code.

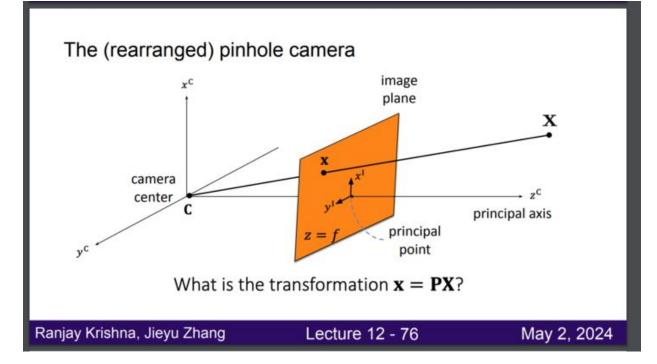
Ayush A.

• Learning to communicate ideas and algorithms in formal writing.

Recitation 9-

Exam

• Pay attention to formulation and definition eg, what is principal point and principal axis?



Ayush A.

Recitation 9-

Exam

• Pay attention to calculation

say what's eigenvectors and eigenvalues of the matrix A

$$A = egin{bmatrix} 2 & 1 \ 1 & 2 \end{bmatrix}.$$

PCA by SVD

$$C = \frac{1}{n} U \Sigma^2 U^T$$

- Note that U is (d x d) and orthonormal, and Σ² is diagonal.
 This is just the eigenvalue decomposition of C
- This means that we can calculate the eigenvectors of C using the eigenvectors of X_c
- It follows that
 - $\circ\,$ The eigenvectors of C are the columns of U
 - $\circ\,$ The eigenvalues of C are the diagonal entries of $\Sigma^2:\,\lambda_i^2$

Ranjay Krishna, Jieyu Zhang	Lecture 15 - 24	May 14, 2024

Ayush A.

Recitation 9-

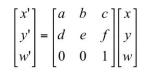
Exam

- Pay attention to property and property comparison between methods
- Pay attention to why and when we use or not use a method
- Pay attention to assumptions, when they hold or not hold

Affine transformation = similarity + no restrictions on scaling

Properties of affine transformations:

- arbitrary 6 Degrees Of Freedom
- lines map to lines
- parallel lines map to parallel lines
- ratios are preserved



Ranjay Krishna, Jieyu Zhang	Lecture 12 -	55	May 2, 2024	
Projective transformation (homography)				
 Properties of projective transformation 8 degrees of freedom lines map to lines parallel lines do not necessarily map ratios are not necessarily preserved 	o to parallel lines	$\begin{bmatrix} x'\\ y'\\ w' \end{bmatrix} = \begin{bmatrix} a & b \\ d & a \\ g & b \end{bmatrix}$	$ \begin{array}{c} b & c \\ e & f \\ h & i \end{array} \begin{bmatrix} x \\ y \\ w \end{bmatrix} $	
		-	→	

Ranjay Krishna, Jieyu Zhang

Recitation 9-

Lecture 12 - 56 May 2, 2024 May 30, 2025

Good Luck

