CSE455: Computer Vision

Geometric Primitives & Transformations

Simran Bagaria

Reference: Szeliski 2.1



What is the most popular topic at CVPR?

Publication h5-index h5-median
1- Nature 467 707
2. The New England Journal of Medicine 439 876
3. Science 424 665

IEEE/CVF Conference on Computer Vision and

Pattern Recognition

5. The Lancet 368 688
6. Nature Communications 349 456
T Advanced Materials 326 415
8. Cell 316 503
9. Neural Information Processing Systems 309 503

International Conference on Learning 303 563

19. Representations =

h5-index: largest number h such that h articles published in the last 5 years have at least h citations each. https://scholar.google.com/citations?view op=top venues&hl=en



https://scholar.google.com/citations?view_op=top_venues&hl=en

C V P R 2 O 2 3 by the Numbers Sge;rl . PICK INSTITUTIONS

Award Candidate @
Highlight ull ;

Selecting a category below changes the paper list on the right. Paper
rall by number of authors AUTHORS | PAPERS

1 3D from multi-view and sensors 1,090 246 # AUTHORS # PAPERS

2 Image and video synthesis and generation \ 889 185 1,000

=) Humans: Face, body, pose, gesture, movement 813 | 166

4 Transfer, meta, low-shot, continual, or long-tail learning [ 688 | 153 g

5 Recognition: Categorization, detection, retrieval L 6731 139 600

6 Vision, language, and reasoning 777 631 118 400

7 Low-level vision 5531 126 200

8 Segmentation, grouping and shape analysis 5248 113

9 Deep learning architectures and techniques 485 | 92 8

16 Multl-modatiearning M &9 3D from multi-view and sensors

= 2P ﬁtom smglei |ma.ges . . pl M Award Candidate W Highlight W Paper

12 Medical and biological vision, cell microscopy 420

13 Video: Action and event understanding 83

14 Autonomous driving &9 33 NeuMap:.Neural Coordinate Mapping by Auto-Transdecoder for Camera
1l Self-supervised or unsupervised representation learning 71 tocalization

o Datasets and evaluation 2 Object Pose Estimation with Statistical Guarantees: Conformal Keypoint
it/ Scene analysis and understanding 5 Detection and Geometric Uncertainty Propagation

18 Adversarial attack and defense 61

19 Efficient and scalable vision - NeuralUDF: Learning Unsigned Distance Fields for Multi-view Reconstruction of
20 Computational imaging ' = Surfaces with Arbitrary Topologies

21 Video: Low-level analysis, motion, and tracking 2-

22 Vision applications and systems 1. 143 NEF: Neural Edge Fields for 3D Parametric Curve Reconstruction from
23 Vision + graphics 1' Multi-view Images

24 Robotics |

25 Transparency, fairness, accountability, privacy, ethics in vision 12. 330 Looking Through.the Glass: Neural Surface Reconstruction Against High

. .. Specular Reflections

26 Explainable computer vision 10/

27 Embodied vision: Active agents, simulation 80'

28 Document analysis and understanding 72| 357 Multi-View Azimuth Stereo via Tangent Space Consistency

29 Machine learning (other than deep learning) 65'

30 Physics-based vision and shape-from-X s https://cvpr2023.thecvf.com/Conferences/2023/AcceptedPape



https://cvpr2023.thecvf.com/Conferences/2023/AcceptedPapers
https://cvpr2023.thecvf.com/Conferences/2023/AcceptedPapers

Why do we care about Geometry?

Self-driving cars: navigation, collision avoidance
Robots: navigation, manipulation

Graphics & AR/VR: augment or generate images
Photogrammetry (architecture, surveys)

Pattern Recognition (web, medical imaging, etc)



Geometry is more useful now than ever!
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https://github.com/TRI-ML/packnet-sfm

Overview of Geometric Vision in CSE455

Geometric Image Formation
The Pinhole Camera model + Calibration
Multi-view Geometry

Structure-from-Motion

Reference textbooks: Szeliski, Hartley & Zisserman to go deeper
Slides credits: Fei-Fei Li, JC Niebles, J. Wu, K. Kitani, S. Lazebnik, S. Seitz, D. Fouhey, J.

| Py Py



http://szeliski.org/Book/
https://www.robots.ox.ac.uk/~vgg/hzbook/

What will we learn today?

e \Why Geometric Vision Matters
e Geometric Primitives in 2D & 3D

e 2D & 3D Transformations



General Advice / Observations

e Fundamentals: need to (eventually) feel easy
e [ry to do the math in parallel live in class!
e If not grokking this: practice later, ask on Ed, OH

e Lots of good (hard?) exercises in Szeliski's book



What will we learn today?

Why Geometric Vision Matters



Images are

2D projections of
the 3D world



Simplified Image Formation

light {}

sSource

Figure: R. Szeliski



Perspective Projection

As the word perspective implies, the resultant 2D image
depends on the viewpoint of the camera

S — \

Figure: https://www.youtube.com/@huseyin_ozde...


https://www.youtube.com/@huseyin_ozdemir?sub_confirmation=1

Can we understand
the 3D world
from 2D images?






CV is an ill-posed inverse problem

2D Image 3D Scene

Graphics

Pixel Matrix Objects Material

217 191 252 255 239
102 80 200 146 138

135 04 91 121 138 Shape/Geometry  Motion
179 106 136 85 41
115 129 83 112 67

94 114 105 111 89 Semantics 3D Pose

Slide credit: Andreas Geiger



Brief History of Geometric Vision

® 2020-: geometry + learning

® 2010s: deep learning

® 2000s: local features, birth of benchmarks

® 1990s: digital camera, 3D reconstruction

® 1980s: epipolar geometry (stereo) [Longuet-Higgins]



Brief History of Geometric Vision
® 1860s: first Computer Vision startup? [Willéeme]

16 E, Morin and E. Rovins, pantographic studio (from Le

Monde iliustré, December 17, 1864) SOU rce. P StU rm




Brief History of Geometric Vision

® 1860s: first Computer Vision startup? [Willéme]
® 1850s: birth of photogrammetry [Laussedat]
® 1840s: panoramic photography

T ¥

' Ve

‘, ~
Ay

Puchberger

Source: P. Sturm

Cylindrograph
Moéssard
4001

“Cloud camera”,
10N



Brief History of Geometric Vision

® 1860s: first Computer Vision startup? [Willéeme]

® 1850s: birth of photogrammetry [Laussedat]

® 1840s: panoramic photography

® 1822-39: birth of photography [Niépce, Daguerre]

® 1/773: general 3-point pose estimation [Lagrange]

® 1715: basic intrinsic calibration (pre-photography!) [Taylor]

® 1700’s: topogéaphlc ma }é)plng from perspective drawings
[Beautemps-Beaupré, Kappeler]

Niépce, “La Table Servie”, 1822

Source: P. Sturm



Brief History of Geometric Vision

® 15" century: start of mathematical treatment of 3D, first AR app?

Augmented reality invented by Filippo Brunelleschi (1377-1446)?

Tavoletta prospettica di Brunelleschi

Source: P. Sturm


https://www.youtube.com/watch?v=G2BCdA23Kpg

Brief History of Geometric Vision

® 5" century BC: principles of pinhole camera, a.k.a. camera obscura

China: 5th century BC

Greece: 4th century BC

Egypt: 11th century

o O O O

Throughout Europe: from 11th century onwards

First mention ... First camera?

Solis deligniym Ao Christy1544
Die 24 g'wmmr_ij ouanij » ’
4

<9
e R

Chinese philosopher Mozi Greek philosopher Aristotle

(470 to 390 BC) (384 to 322 BC)
Source: P. Sturm



Abelardomorell.com




What will we learn today?

Geometric Primitives in 2D & 3D



Points in Cartesian and Homogeneous Coordinates

2D points: x = (z,y) € R* or column vectx =

y

3D points: x = (z,y,2) € R?® (often noted X or P)

Homogeneous coordinates: append a 1
)_(:($,y,1) i:(aj,y,z,l)
Why?



Homogeneous coordinates in 2D

2D Projective Space: P? = R> — (0,0,0) (same story in 3D with P?)

. T
* heterogeneous - homogeneous [ y } = | Y
1
g /
* homogeneous - heterogeneous y | = [ ; /5 ]

w
 points differing only by scale are equivalent: (x,y,w)~ A (x,y,w)



Homogeneous coordinates in 2D

/

.,/

))

V><

In homogeneous coordinates, a point and
its scaled versions are same

X X WX
yi=Ewly|[=|wy w#(
| | W

Figure: https://www.youtube.com/@huseyin_ozde...


https://www.youtube.com/@huseyin_ozdemir?sub_confirmation=1

Everything is easier in Projective Space

2D Lines:
Representation: [ = (a, b, ¢)
Equation: ax +by+c =0
In homogeneous coordinates: %!l =0

General idea: homogenous coordinates
unlock the full power of linear algebral



Everything is easier in Projective Space

2D Lines:
%'1=0,vX = (x,y,w) € P2
1 = (g, Ry, d) = (A, d) with ||&] = 1

3D planes: samel!

'm=0,VX = (x,y,z,w) € P3

m = (fig, iy, 1z, d) = (8, d) with [|fi]| = 1

yl

z A




Lines in 3D

Two-point parametrization: 24/
/ K/ /
r=(1-A)p+2Aq r = up+ Aq /r—(l -Mptig

Two-plane parametrization: //M

coordinates (xg,yo) & (x1,y1) of intersection

with planes at z = 0,1 (or other planes)



Cross-product quick reminder

a x b = [lal| |b] sin(6) n

axb=|alib

A

axb




Benefits of Homogeneous Coordinates

Line — Point duality:

~

* line between two 2D points: l X1 X X9
—1; x

* intersection of two 2D lines: 15

Representation of Infinity:
* points at infinity: (x,y,0); line at infinity: (0,0,1)

Parallel & vertical lines are easy (take-home: intersect //)

Makes 2D & 3D transformations linear!



Questions?



What will we learn today?

2D & 3D Transformations



The camera as a coordinate transformation

A camera is @ mapping
3D object -
from: 3D to 2D transform
(camera)

the 3D world

. 2D image

to:

a 2D image

Source: K.
it~



The camera as a coordinate transformation

A camera is @ mapping
3D object -
from: 3D to 2D transform
\ (camera)
the 3D world
R

o 2D image . . 2D image

. I

a2D Image 2D to 2D transform

(image warping)

Source: K.
it~



Cameras and objects can move!

p=KXYZ1)

(a) (b)

Figure 2.12 A point is projected into two images: (a) relationship between the 3D point co-
ordinate (X,Y, Z, 1) and the 2D projected point (x,y, 1,d); (b) planar homography induced

by points all lying on a common plane fig - p + ¢ = 0.

Figure: R. Szeliski



2D Transformations Zoo

P 4

yA /
translation

Euchdean

51m11ar1ty

afﬁne

proj ectlve

Figure: R.

Conlicl



Transformation = Matrix Multiplication

Scale Flip across y
Sz 0 | -1 0
-5 o M|
Rotate Flip across origin
cosf —sinf -1 0
_[siné? cos 6 } M_[ 0 —1}
Shear Identity
1 s, 11 0
Lo T M=o 7]




Scaling

Sy 0 o |Z| — |87
0 Sy | Y SyY |
A p p’
4 p’
A I i\i 2

Slide: JC. Niebles



Rotation

A x' =xcosf —ysinb
y' = zsinf 4+ ycosb
/ [ z’ } . .
T = o/ or in matrix form:
z/ | | cos® —sinb x
rotation around y’ - sin 6 cos 6 Yy

the origin

Slide: K. Kitani



Translation

x'=x+t,
P’ y=y+1:y

| E— — L As a matrix?

Slide: JC. Niebles



Translation with homogeneous coordinates

x X
___________________ o b= [)’] - }1,
v =[5~
— y
X t ' ty 1
p=Tp
X+ tx 1 0 ¢, I t
p' - |ly+ty|=]0 1 t, [)’]—[0 1]p=Tp
1 0 0 1111

Slide: JC. Niebles



2D Transformations with homogeneous coordinates

No change Translate Scale about origin

1 0|0 1 0|X WO O

0 1]0 0O 1Y OHO

[0 01 0 01 0 0 1

PR L)
(0,0) (1,0) P wo

0 1 X 1 x

. i
Rotate about origin Shear in x direction Shear in y direction

siqe co§9 O

{ cos® -sin® 0 }
0) U |

1 tand 0 1 00
g & © ang 1 0

1
o, "'i”)/ |

Figure:
\AiLiaaA A



Questions?



2D Transformations Zoo

P 4

yA /
translation

Euchdean

51m11ar1ty

afﬁne

proj ectlve

Figure: R.

Conlicl



Euclidean / Rigid Transformation

cosf -sinf lz
Euclidean (rigid): rotation + translation sinf cos6 ty

0O 0 1

B4 Kml’um O PT O]e(.tl\ e
translation
/y
——, 4
Euclidean f,ﬁme

How many degrees of freedom?

i




Similarity Transformation

a
Similarity: Scaling + rotation + translation |

How many degrees of freedom? - -
A
J similarity Pt O]eLm ©
translation
/y
Euclidean f,ﬁme
s X




Similarity Transformation

a —b t, acosd —asinf b,
Similarity: Scaling + rotation + translatiof ) ty = |asind  acosd b,
0 0 1 0 U
How many degrees of freedom? - -

A
Y similarity pt O]ecm ¢
translation
/y

Euclidean

'1ﬁ111e

i X




Affine Transformation

Affine transformations are combinations of

* Arbitrary (4-DOF) linear transformations + translations

x':Aoo Ay, X+bo
D, - 1T

/

Y Ay ALY y
X 00
b ' ] o
' y y i | |
y y i 0
Cartesian
coordinates Homogeneous
coordinates

SN

01

11

by || x
by ||y
1L1]

Source: K.
it~



Affine Transformation

Affine transformations are combinations of

* Arbitrary (4-DOF) linear transformations + translations —_—
!x' 4o Ao || x + b,
!
v 4, A4,|lv] |5 —_ -
10 11 1 xr AOO AOI bO X
, 5] 3] —> YV I=[4w An by
NN v | 1l [0 o 1]
Y ¥ 1 1 -
Cartesian o - How many degrees of freedom?
coordinates Homogeneous
coordinates

Source: K.
it~



Affine Transformation

This matrix is a linear transformation
z matrix in 3D

\ 4
v

Figure: https://www.youtube.com/@huseyin_ozde...


https://www.youtube.com/@huseyin_ozdemir?sub_confirmation=1

Affine Transformation

o
\ 4 —_
17><

b and b, moves tip of the third
basis vector on z=1 plane

This matrix is a linear transformation
matrix in 3D

x' Ay Ay |bofl| x
Y'=[410 Ay |uifl|y
1 0 0 |11

Then this column is the third basis vector
of transformed vector space

And what by and b, do is to change the
orientation of that basis vector

Figure: https://www.youtube.com/@huseyin_ozde...


https://www.youtube.com/@huseyin_ozdemir?sub_confirmation=1

Affine Transformation

Figure: https://www.youtube.com/@huseyin_ozde...


https://www.youtube.com/@huseyin_ozdemir?sub_confirmation=1

Affine Transformation

Figure: https://www.youtube.com/@huseyin_ozde...


https://www.youtube.com/@huseyin_ozdemir?sub_confirmation=1

Affine Transformation

Figure: https://www.youtube.com/@huseyin_ozde...


https://www.youtube.com/@huseyin_ozdemir?sub_confirmation=1

Affine Transformation

Figure: https://www.youtube.com/@huseyin_ozde...


https://www.youtube.com/@huseyin_ozdemir?sub_confirmation=1

Affine Transformation

Affine transformations are combinations of

* Arbitrary (4-DOF) linear transformations + translations

Properties of affine transformations:

 origin does not necessarily map to origin x'
* lines map to lines =
 parallel lines map to parallel lines 1

* ratios are preserved

AN

00

AN

10

-

SN

01

11

bo Il %]
b ||y
1|1

Source: K.
it~




Projective Transformation (homography)

Projective transformations are combinations of X d Ar. Ao B, x.
« Affine transformations + projective warps wiy'|=| 4, Ay by ||y
- l - ho hl 1 = 1-

How many degrees of freedom?

Source: K.
it~



Projective Transformation (homography)

This matrix is a linear transformation
z matrix in 3D

/') S ,
1 5 1 X
h Then these two columns are
5 ’ the first and the second basis vectors
1 of transformed vector space
v/ '/ h moves tip of the second basis

And what A and A, do is to change the

vector parallel to z axis ) ' .
orientation of those basis vectors

Figure: https://www.youtube.com/@huseyin_ozde...


https://www.youtube.com/@huseyin_ozdemir?sub_confirmation=1

Projective Transformation (homography)

_______________________

As an example let
hy>0, h,<0 and |h,|>|h,|

Figure: https://www.youtube.com/@huseyin_ozde...


https://www.youtube.com/@huseyin_ozdemir?sub_confirmation=1

Projective Transformation (homography)

_______________________

As an example let As an example let

hy>0, h,<0 and |h,|>|h,| hy>0, h;<0 and |hy|>|h,|

Figure: https://www.youtube.com/@huseyin_ozde...


https://www.youtube.com/@huseyin_ozdemir?sub_confirmation=1

Projective Transformation (homography)

z'=d hy+1>1

\// /\

1 Corner 3 |
“wz'=d hy+d h+1>1

( orner 1

v

...................................

As an example let As an example let
hy>0, h,<0 and |hy|>|h,|

_______________________

As an example let
hy>0, h,<0 and |h,|>|h,| hy>0, h;<0 and |hy|>|h,|

Figure: https://www.youtube.com/@huseyin_ozde...


https://www.youtube.com/@huseyin_ozdemir?sub_confirmation=1

Projective Transformation (homography)

When going back to
Cartesian coordinates

z

('()I'iMZ':dOhO+I>l

: x coordinate of corner 1
is mapped to a smaller value
because z '>1

d h+1<1

» coordinate of cornef 3 ’

is mapped to a greater lue Corner
because z'<1

xL

/, \Z'=d0h0+dlhl+l>l

x and y coordinates of
corner 2 are mapped to smaller
values, because z'>1

Corner 3'

_______________

As an example let
hy>0, h,;<0 and |h|>|Ah,|

Figure: https://www.youtube.com/@huseyin_ozde...


https://www.youtube.com/@huseyin_ozdemir?sub_confirmation=1

Projective Transformation (homography)

Original Image

=
-0 O

N
— ¥

' 1 0
y'I=10 1
"| Ay h

hy>0, h,<0 and |h,|>|A|

Warped Image

Figure: https://www.youtube.com/@huseyin_ozde...


https://www.youtube.com/@huseyin_ozdemir?sub_confirmation=1

Projective Transformation (homography)

Projective transformations are combinations of x| [4 TR T [ x]
« Affine transformations + projective warps wly'|=|4,, 4, b,||y
LT [ By A 1L

How many degrees of freedom?
Properties of projective transformations:

 origin does not necessarily map to origin
* lines map to lines —_—
» parallel lines do not necessarily map to parallel lines

* ratios are not necessarily preserved

Source: K.
it~



Questions?



Composing Transformations

Transformations = Matrices => Composition by Multiplication!
p' = Ry;R.Sp
In the example above, the result is equivalent to
p' = Ry(R,(Sp))
Equivalent to multiply the matrices into single transformation matrix:
p' = (R2R1S)p

Order Matters! Transformations from right to left.



Scaling & Translating '= Translating & Scaling

1 0 ¢t][s, O O]px s, O S, X+ t,
p" =TSp [O 1 tyHO s, 0 [}’ 0 s, y)’+t
0 0 1l1l0 o0 1it1 0 O
s, O O X S,X + s,t
0 O 0 O 1 1 1




Similarity: Translation + Rotation + Scaling

p'=(TRS)p
1 0 t,][cos@ —sin@ O][s, O O]rx
p'=TRSp =10 1 ty[[sin6 cos@ O0]|0 s, O H
0 0 1 0 0 1110 0 1111
cos@ —sin@ ¢t,|[s, 0 O]rx
= |[sin@ cos® t,||0 s, O H
0 0 1/1to o0 1141
R t1is o1l _[rs &l
=lo 1llo 1”31']=[0 1 31']

‘\This is the form of the

general-purpose
transformation matrix



2D Transforms = Matrix Multiplication

Transformation Matrix #DoF Preserves Icon
translation [I t] 2 orientation
2x3
rigid (Buclidean)  [R. ] 3 lengths Q
2x3
similarity [SR t] 4 angles @
2x3
affine [A] 6 parallelism D
2x3
projective [ﬁ] 8 straight lines G
3x3

Table 2.1 Hierarchy of 2D coordinate transformations, listing the transformation name, its

matrix form, the number of degrees of freedom, what geometric properties it preserves, and

a mnemonic icon. Each transformation also preserves the properties listed in the rows below

it, i.e., similarity preserves not only angles but also parallelism and straight lines. The 2 X

3 matrices are extended with a third [07 1] row to form a full 3 x 3 matrix for homogeneous

coordinate transformations.

Figure: R.

Conlicl



3D Transforms = Matrix Multiplication

Transformation Matrix # DoF Preserves Icon
translation [I t] 3 orientation
3x4
rigid (Euclidean) [R t] 6 lengths Q
3x4
similarity [sR t] 7 angles O
3x4
affine [A] 12 parallelism E
3x4
projective [ﬂ] 15 straight lines Q
4x4

Table 2.2  Hierarchy of 3D coordinate transformations. Each transformation also pre-

serves the properties listed in the rows below it, i.e., similarity preserves not only angles but

also parallelism and straight lines. The 3 x 4 matrices are extended with a fourth [0T 1]

row to form a full 4 x 4 matrix for homogeneous coordinate transformations. The mnemonic

icons are drawn in 2D but are meant to suggest transformations occurring in a full 3D cube.

Figure: R.

Conlicl



What did we learn today?

e Geometry is essential to Computer Vision!
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e Geometry is essential to Computer Vision!

e Geometric Primitives in 2D & 3D

o Homogeneous coordinates, points, lines, and planes in 2D & 3D



What did we learn today?

e Geometry is essential to Computer Vision!

e Geometric Primitives in 2D & 3D
o Homogeneous coordinates, points, lines, and planes in 2D & 3D
e 2D & 3D Transformations

o scaling, translation, rotation, rigid, similarity, affine, homography



Questions?



Appendix



3D Rotations: SO(3) representations

Figure: Wikipedia

Euler Angles. yaw, pitch, roll (a,B,y)
- compose R(y)R(B)R(a) (order, axes!)

Axis-angle: (n,0) or w = 0n
—> matrix via Rodrigues formula (simple for small 8)
R(f,0) = I +sinf[i]y + (1 —cos6)[A)% ~ I+ [9h],

VvV
—t—

: : .0 0
Unit Quaternions. q = (x,y,z,w) = (sm; 1, cos ;), gl =1
—> continuous, nice algebraic properties, matrix via Rodrigues
[1—2(y2+z2) 2(zy — zw) 2(xz + yw) -‘
R(q) = { 2(xy +2w)  1-2(x%2+2%) 2(yz—zw) J

=] ;
lall=148,
\ i

2(zz — yw) 2(yz +xw) 1 —2(x? +y?)
See Szeliski 2.1.3 for more



Intersecting Parallel Lines



Intersecting Parallel Lines




2D planar transformations

rotation around
the origin

Polar coordinates...
X =1 cos ()

y =1 sin (¢)

X =rcos (¢ +0)

y' =rsin (¢ +6)

Trigonometric Identity...

X =1 cos(p) cos(0) - r sin(o)
sin(0)

y' =r sin() cos(0) + r cos(o)
sin(0)

Substitute...
X' =x cos(0) -y sin(Q)

y’ =xsin(0) + y cos(0) T



