Lecture 12

Segmentation

Administrative

A2 is done

- Due Oct 28

A3 is out

- Due Nov 12 because Nov 11 is Veteran's Day

Administrative

Recitation

- Ontologies

Today's agenda

- Introduction to segmentation and clustering
- Gestalt theory for perceptual grouping
- Graph-based oversegmentation
- Agglomerative clustering

Reading: Szeliski, 2nd edition, Chapter 7.5

Today's agenda

- Introduction to segmentation and clustering
- Gestalt theory for perceptual grouping
- Graph-based oversegmentation
- Agglomerative clustering

Reading:

Szeliski, 2nd edition, Chapter 7.5

Q. What do you see?

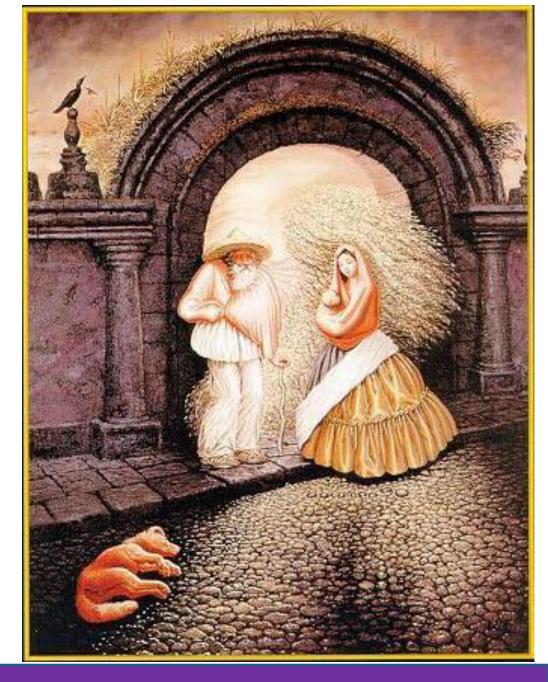
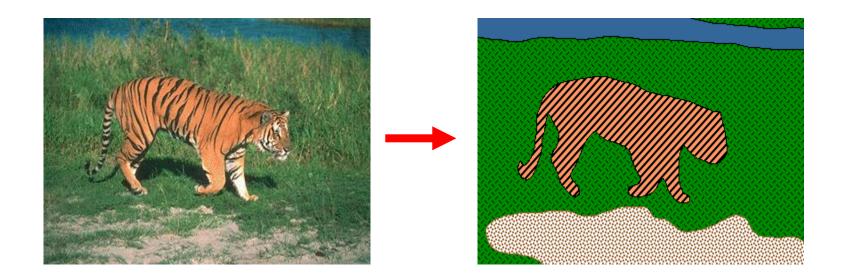


Image Segmentation

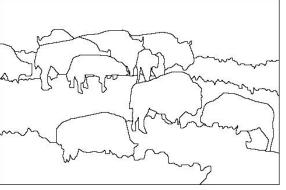
• Goal: identify groups of pixels that go together

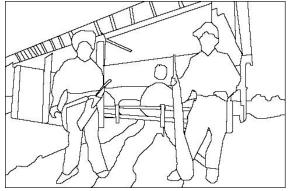


The Goals of Segmentation

Separate image into coherent "objects"

Human segmentation

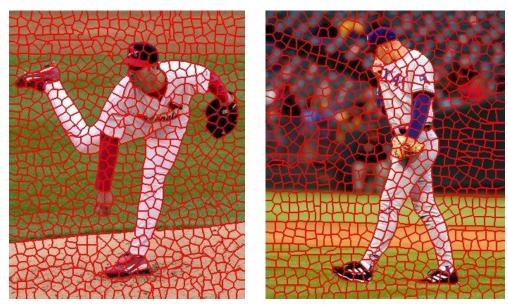




The Goals of Segmentation

- Separate image into coherent "objects"
- Group together similar-looking pixels for efficiency of further processing

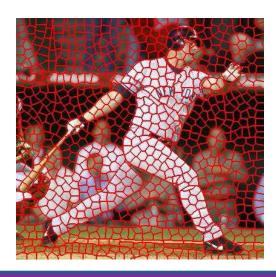
"superpixels"



X. Ren and J. Malik. Learning a classification model for segmentation. ICCV 2003.

Segmentation for efficiency

[Felzenszwalb and Huttenlocher 2004]



[Hoiem et al. 2005, Mori 2005] [Shi and Malik 2001]

Segmentation is used in Adobe photoshop to remove background

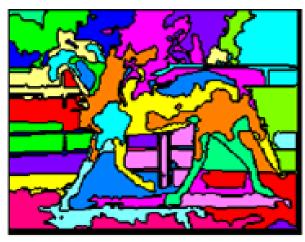


Rother et al. 2004

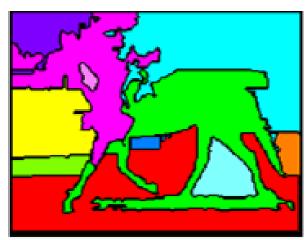
Segment Anything [2023]

From Meta

Levels of segmentations



Over-segmentation



Under-segmentation

One way to think about "segmentation" is clustering

Clustering: group together similar data points and represent them with a single token

Key Challenges:

- 1) What makes two points/images/patches similar?
- 2) How do we compute an overall grouping from pairwise similarities?

Why do we cluster?

Summarizing data

- Look at large amounts of data
- Find clusters of pixels
- Represent each cluster of pixels with a HoG feature

Counting

Histograms of texture, color, SIFT vectors

• Foreground-background separation

Separate the image into different regions

Prediction

Images in the same cluster may have the same labels

How do we cluster?

Agglomerative clustering

 Start with each point as its own cluster and iteratively merge the closest clusters

K-means

 Iteratively re-assign points to the nearest cluster center

Mean-shift clustering

Estimate modes of pdf (probability density function)

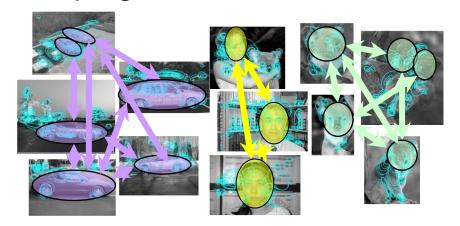
General ideas

- Tokens
 - Things that can be grouped together
 - (e.g. pixels, points, surface elements, etc., etc.)
- Bottom up clustering
 - tokens belong together because they are locally coherent
- Top down clustering
 - tokens belong together because they lie on the same visual entity (object, scene...)
- > These two are not mutually exclusive

Examples of Grouping in Vision

Determining image regions

Grouping video frames into shots



Object-level grouping

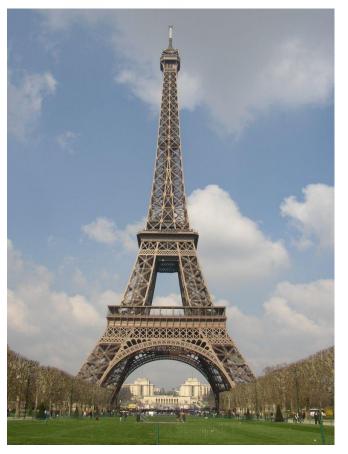
Figure-ground

Similarity

What things should be grouped?

What cues indicate groups?

Symmetry



Common Fate

Image credit: Arthus-Bertrand (via F. Durand)

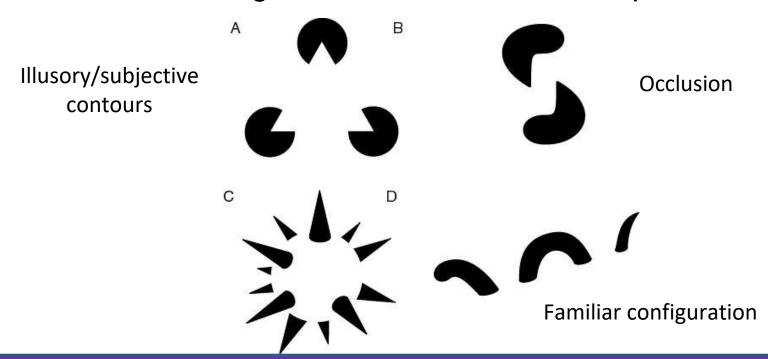
Proximity

What will we learn today?

- Introduction to segmentation and clustering
- Gestalt theory for perceptual grouping
- Graph-based oversegmentation
- Agglomerative clustering

The Gestalt School

- Grouping is key to visual perception
- Elements in a collection can have properties that result from different relationships (space, affordance, etc.)
 - o "The whole is greater than the sum of its parts"

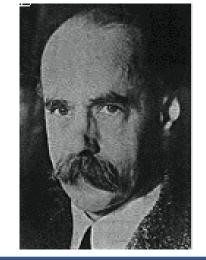


Gestalt Theory

- Gestalt: whole or group
 - Whole is greater than sum of its parts
 - Relationships among parts can yield new properties/features
- Psychologists identified series of factors that predispose set of elements to be grouped (by human visual system)

"I stand at the window and see a house, trees, sky. Theoretically I might say there were 327 brightnesses and nuances of colour. Do I have "327"? No. I have sky, house, and trees."

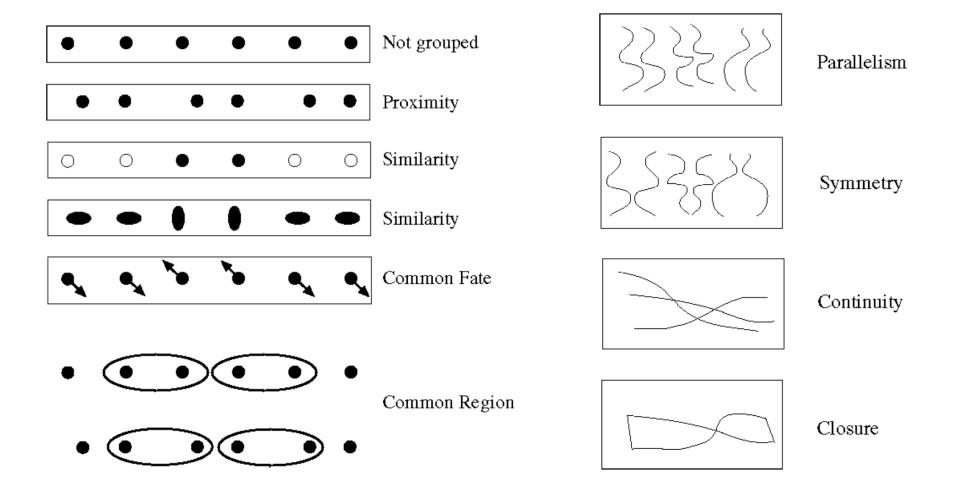
Max Wertheimer (1880-1943)



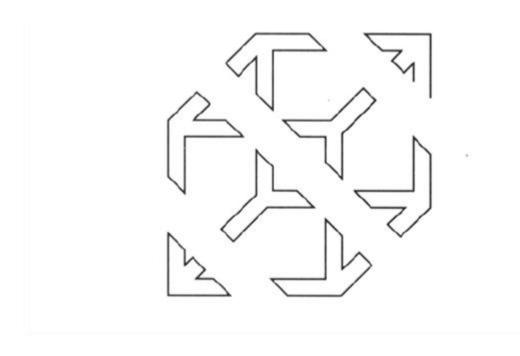
Untersuchungen zur Lehre von der Gestalt, Psychologische Forschung, Vol. 4, pp. 301-350, 1923 http://psy.ed.asu.edu/~classics/Wertheimer/Forms/forms.htm

Gestalt Factors

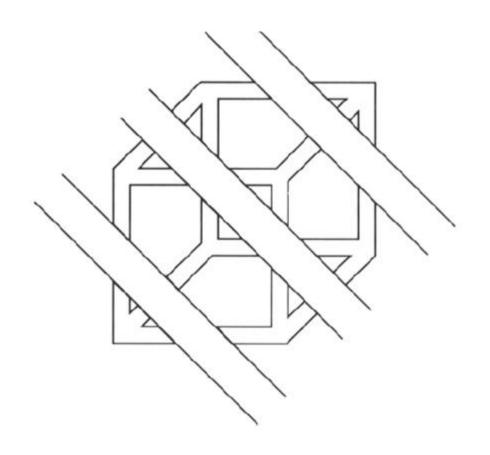
These factors make intuitive sense, but are very difficult to translate into algorithms.



Continuity through Occlusion Cues

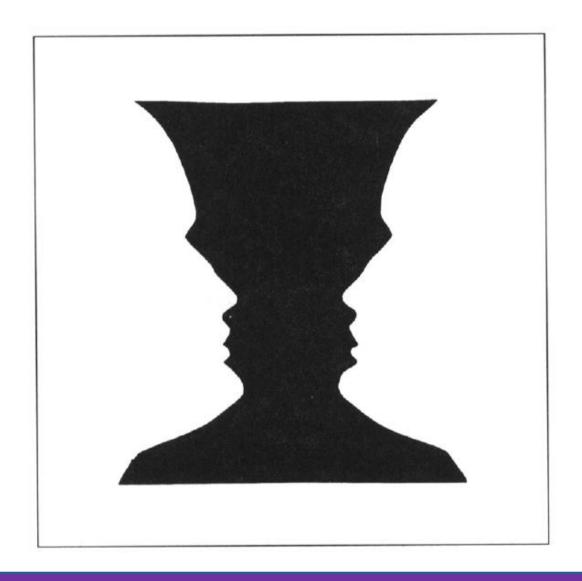


Continuity through Occlusion Cues



Continuity, explanation by occlusion

Figure-Ground Discrimination



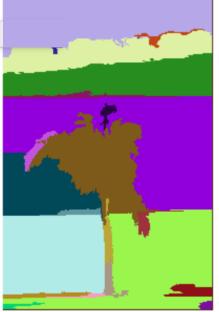
The Ultimate Gestalt?

What will we learn today?

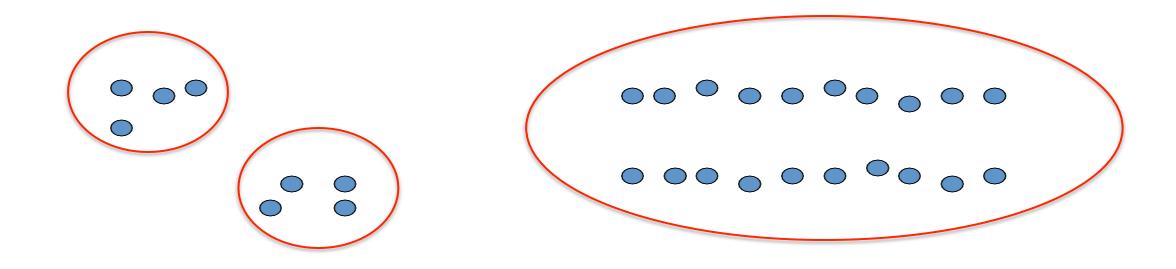
- Introduction to segmentation and clustering
- Gestalt theory for perceptual grouping
- Graph-based oversegmentation
- Agglomerative clustering

Over-segmenting images

- Graph-based clustering for Image Segmentation
 - Introduced by Felzenszwalb and Huttenlocher in the paper titled Efficient Graph-Based Image Segmentation.



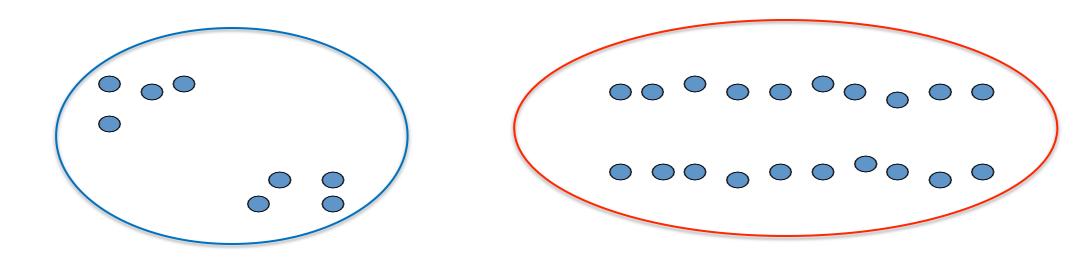
Imagine you have a set of pixels, how should you clustering them?



Basic idea: group together similar instances

- Q. how do you measure similarity?
- Q. do you need to measure similarity between every two pixels?

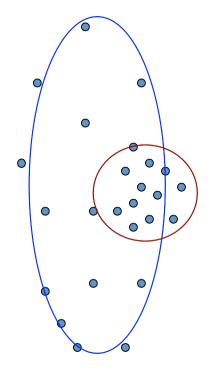
Imagine you have a set of pixels, how should you clustering them?



Basic idea: group together similar instances

- Q. how do you measure similarity?
- Q. do you need to measure similarity between every two pixels?

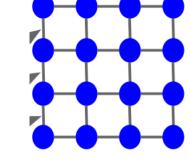
Distances calculated using only (x,y) location of each pixel can be a bad idea



- Clusters may overlap
- Some clusters may be "wider" than others
- Distances can be deceiving!

Image as a Graph - Features and weights

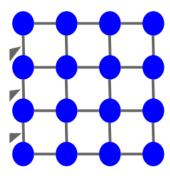
- Every pixel is connected to its 8 neighboring pixels
- The edges between neighbors have weights that are determined by the distance between them.
- Edge weights between pixels are determined using dist(x, x') distance in feature space.
 - where x and x' are two neighboring pixels



Q. What is a good feature space?

What are good pixel features?

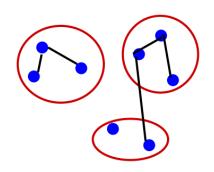
- Use RGB values?
 - \circ v = [r, g, b]
 - It is 3-dimensional
- Use location?
 - \circ V = [X, y]
 - 2-dim
- Use RGB + location?
 - \circ v = [x, y, r, g, b]
 - o 5-dim
- Use gradient magnitude?
 - \circ v = [df/dx, df/dy]
 - 2-d



Problem Formulation

- Graph G = (V, E)
- V is set of nodes (i.e. pixels)
- E is a set of undirected edges between pairs of pixels
- dist(v_i, v_i) is the weight/distance of the edge between nodes v_i and v_i.

- That is, we keep all vertices, but select a subset E' from all initial edges E.
- S divides G into G' such that it contains distinct clusters C.



Weights of edges: distance measure

Clustering is an unsupervised learning method. Given items $v_1, v_2, \dots, v_n \in \mathbb{R}^D$, the goal is to group them into clusters.

We need a pairwise distance/similarity function between items, and sometimes the desired number of clusters.

When data (e.g. images, objects, documents) are represented by feature vectors, commonly used measures are:

- Euclidean distance.
- Cosine similarity.

Defining Distance Measures

Let x and x' be two objects from the universe of possible objects. The distance (or similarity) between x and x' is a real number:

ullet The Euclidean distance is defined as $dist(v_1,v_2)=\sqrt{\sum_i (v_{1i}-v_{2i})^2}$

In contrast, the cosine similarity measure would be

$$dist(v_1, v_2) = 1 - cos(v_1, v_2)$$
$$= 1 - \frac{v_1^T v_2}{||v_1|| \cdot ||v_2||}$$

The algorithm

The input is a graph G = (V, E), with n vertices and m edges. The output is a segmentation of V into components $S = (C_1, \ldots, C_r)$.

- 0. Sort E into $\pi = (o_1, \ldots, o_m)$, by non-decreasing edge weight.
- 1. Start with a segmentation S^0 , where each vertex v_i is in its own component.
- 2. Repeat step 3 for $q = 1, \ldots, m$.
- 3. Construct S^q given S^{q-1} as follows. Let v_i and v_j denote the vertices connected by the q-th edge in the ordering, i.e., $o_q = (v_i, v_j)$. If v_i and v_j are in disjoint components of S^{q-1} and $w(o_q)$ is small compared to the internal difference of both those components, then merge the two components otherwise do nothing. More formally, let C_i^{q-1} be the component of S^{q-1} containing v_i and C_j^{q-1} the component containing v_j . If $C_i^{q-1} \neq C_j^{q-1}$ and $w(o_q) \leq MInt(C_i^{q-1}, C_j^{q-1})$ then S^q is obtained from S^{q-1} by merging C_i^{q-1} and C_j^{q-1} . Otherwise $S^q = S^{q-1}$.
- 4. Return $S = S^m$.

Some results

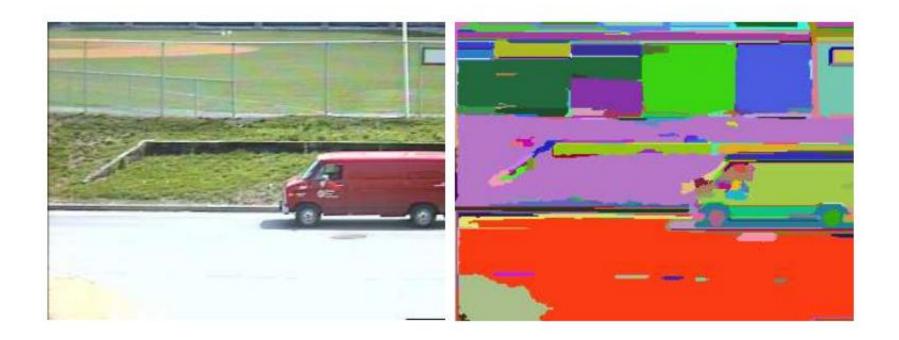


Figure 2: A street scene (320 × 240 color image), and the segmentation results produced by our algorithm ($\sigma = 0.8, k = 300$).

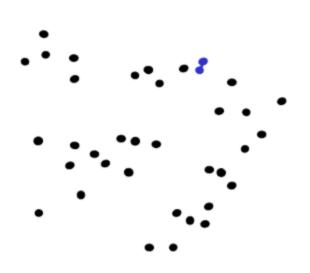
More

Figure 4: An indoor scene (image 320×240 , color), and the segmentation results produced by our algorithm ($\sigma = 0.8$, k = 300).

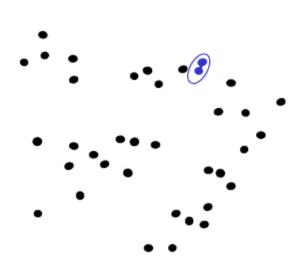
What will we learn today?

- Introduction to segmentation and clustering
- Gestalt theory for perceptual grouping
- Graph-based oversegmentation
- Agglomerative clustering

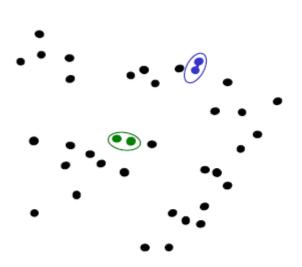
1. Say "Every point is its own cluster"



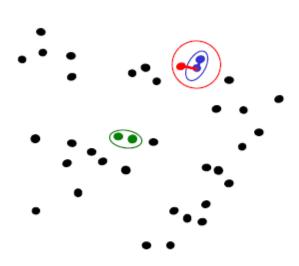
- 1. Say "Every point is its own cluster"
- Find "most similar" pair of clusters



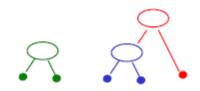
- 1. Say "Every point is its own cluster"
- Find "most similar" pair of clusters
- 3. Merge it into a parent cluster



- 1. Say "Every point is its own cluster"
- Find "most similar" pair of clusters
- 3. Merge it into a parent cluster
- 4. Repeat

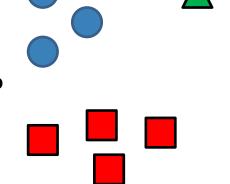


- 1. Say "Every point is its own cluster"
- Find "most similar" pair of clusters
- 3. Merge it into a parent cluster
- 4. Repeat



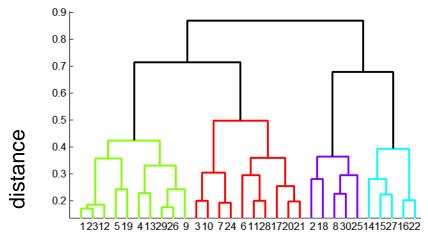
How to define cluster similarity?

- Average distance between all pixels between the two cluster?
- Maximum distance?
- Minimum distance?
- Distance between means?



How many clusters?

- Clustering creates a dendrogram (a tree)
- Threshold based on max number of clusters or based on distance between merges

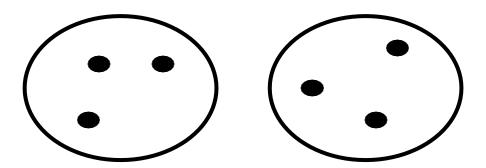


Agglomerative Hierarchical Clustering - Algorithm

Inputs:

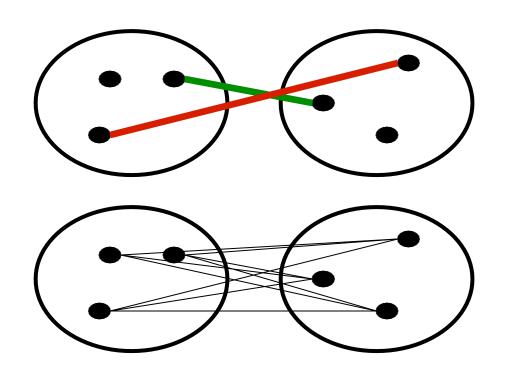
- An input image
- Feature representation for each pixel
- Distance metric dist(-,-)
- \succ Initially, each pixel $v_1, ..., v_n$ is its own cluster $C_1, ..., C_n$
- ➤ While True:
 - Find two nearest clusters according to dist(C_i, C_j)
 - \circ Merge C = (C_i, C_j)
 - If only 1 cluster is left:
 - break

How should we define "closest" for clusters with multiple pixels already in it?



How should we define "closest" for clusters with multiple pixels already in it?

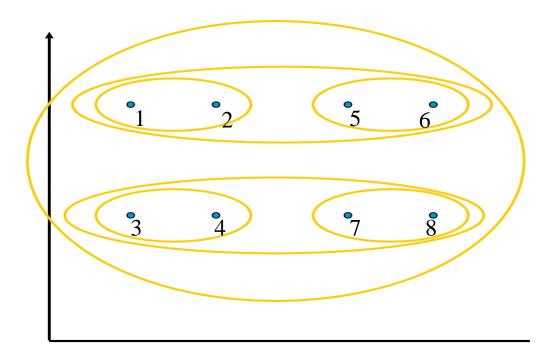
- Closest pair(single-link clustering)
- Farthest pair (complete-link clustering)
 - Average of all pairs



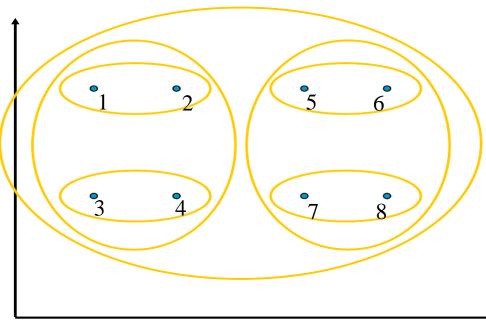
Different choices create different clustering behaviors

How should we define "closest" for clusters with multiple pixels already in it?

Closest pair (single-link clustering)



Farthest pair (complete-link clustering)

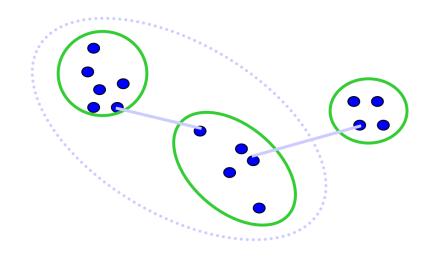


[Pictures from Thorsten Joachims]

Single Linkage distance measure

$$dist(C_i, C_j) = \min_{v_i \in C_i, v_j \in C_j, (C_i, C_j) \in E} dist(v_i, v_j)$$

Connects the clusters based on the distance of their closest pixels It produces "long" clusters.

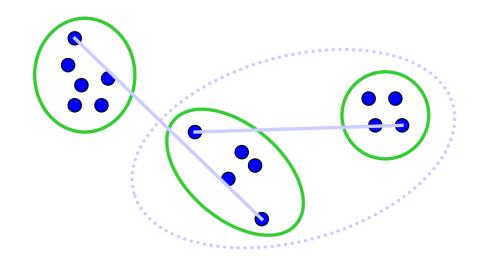


Long, skinny clusters

Complete Link distance measure

$$dist(C_i, C_j) = \max_{v_i \in C_i, v_j \in C_j, (C_i, C_j) \in E} dist(v_i, v_j)$$

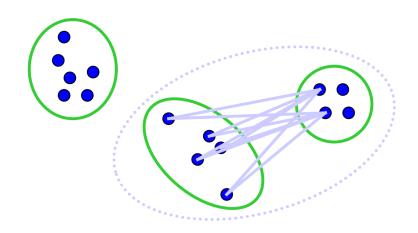
Produces compact clusters that are similar in diameter



Tight clusters

Average Link distance measures

$$dist(C_i, C_j) = \frac{\sum_{v_i \in C_i, v_j \in C_j, (C_i, C_j) \in E} dist(v_i, v_j)}{|C_i||C_j|}$$



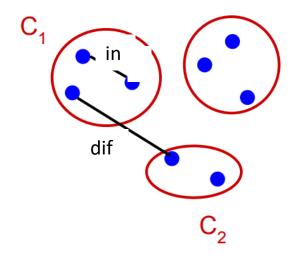
Robust against noise.

Inlier-outlier linkage distance measure

$$Merge(C_1, C_2) = \begin{cases} True & if dif(C_1, C_2) < in(C_1, C_2) \\ False & otherwise \end{cases}$$

Where

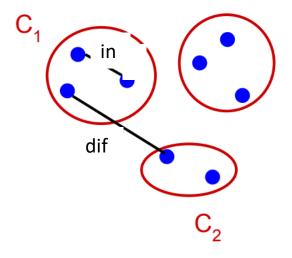
- dif(C1, C2) is the difference between two clusters.
- in(C1, C2) is the internal difference in the clusters C1 and C2



Inlier-outlier linkage distance measure

Where

- dif(C1, C2) is the difference between two clusters.
- in(C1, C2) is the internal difference in the clusters C1 and C2



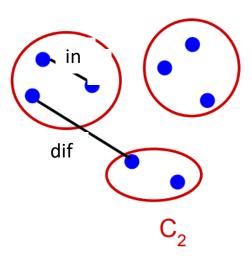
Inlier-outlier linkage distance measure

Max weight edge in one cluster

$$in(C_i, C_j) = \min_{C \in \{C_i, C_j\}} [\max_{v_i, v_j \in C} [dist(v_i, v_j) + \frac{k}{|C|}]]$$

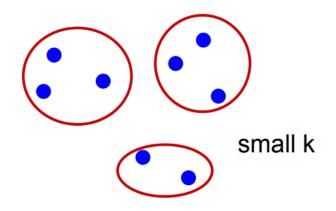
Where

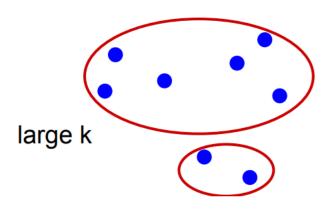
- dif(C1, C2) is the difference between two clusters.
- in(C1, C2) is the internal difference in the clusters C1 and C2



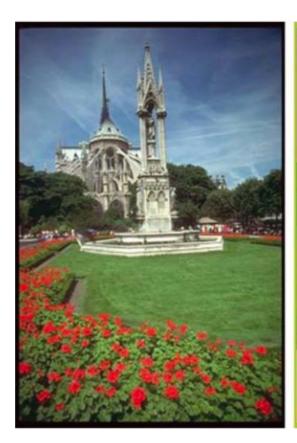
inlier-outlier linkage for Segmentation

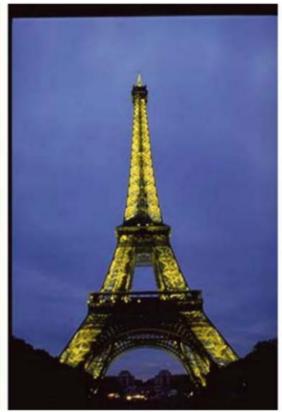
- k/|C| sets the threshold by which the clusters need to be different from the internal pixels in a cluster.
- Effect of k:
 - o If k is large, it causes a preference for larger objects.

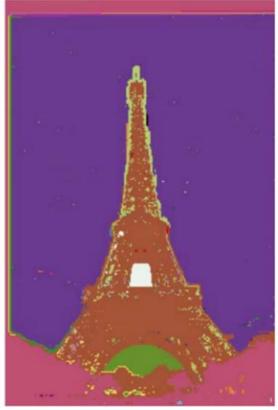




Results

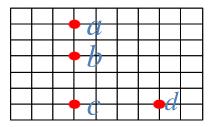






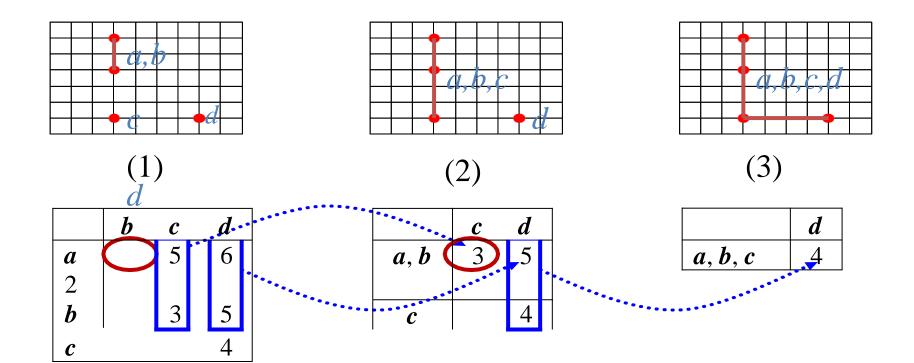
How to implement single-linkage efficiently

Euclidean Distance



	b	c	d
a	2	5	6
b		3	5
c			4

Distance Matrix



Conclusions: Agglomerative Clustering

Pros:

- Simple to implement, widespread application.
- Clusters have adaptive shapes.
- Provides a hierarchy of clusters.
- No need to specify number of clusters in advance.

Cons:

- May have imbalanced clusters.
- Still have to choose number of clusters eventually for an application
- Does not scale well. Runtime of O(n³).
- Can get stuck at a local optima.

Today's agenda

- Introduction to segmentation and clustering
- Gestalt theory for perceptual grouping
- Graph-based oversegmentation
- Agglomerative clustering

Next time

K-means and mean shift