Lecture 10

Geometry and Cameras

Linda Shapiro Oct 28, 2025



Administrative

A3 Is out
- Due Nov 12
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Administrative

Recitation
- Multiview geometry
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So far: SIFT detector algorithm

Gaussian Difference of
Gaussians (DoG)

S(x,y,0) ~ (s — 1)o2V?%S(x,y,0)
[Lowe 2004]
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So far: Extracting SIFT keypoints and scales

e Choose the maxima within 3x3x3 neighborhood.

A

Scale A<FEAEES D kg
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X is selected if it is larger or smaller than all 26 neighbors
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e S0 far, Descriptors and Homographies

e Local descriptors (SIFT)
o Making keypoints rotation invariant
o Designing a descriptor
o Designing a matching function

e Image Homography
e Find projective projections from image A to image B
e Use RANSAC to find the best one
e Find the best set of correspondences and line up the images

e Global descriptors (HOG)
e Use these to find specific fixed objects in images
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Today's agenda

How biological vision understands geometry
Brief history of geometric vision

Geometric transformations

Pinhole camera

The Pinhole camera transformation
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Today's agenda

How biological vision understands geometry
Brief history of geometric vision

Geometric transformations

Pinhole camera

The Pinhole camera transformation
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Our goal: Recover the 3D geometry of the world

J. Vermeer, Music Lesson, 1662

A. Criminisi, M. Kemp, and A. Zisserman,Bringing Pictorial Space to Life: computer techniques for the analysis of paintings, Proc. Computers and the History of Art, 2002

Ranjay Krishna Lecture 12 - 10 February 13, 2025


http://research.microsoft.com/apps/pubs/default.aspx?id=67260

Let's Take a Picture!

Photosensitive Material
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Single-view Ambiguity

X?

\
e
\

A

« Given a camera and an image, we only know the ray corresponding to each
pixel.

« We don’t know how far away the object the ray was reflected from
o We don’t have enough constraints to solve for X (depth)
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Single-view Ambiguity

Actual position of
Ferson A ———W |

Apparent position|| | —®
of person & e \“‘x&a Actual and
: o apparent position
VoL of person B
f: '."'I Ihl.
/P 3\
Shape of room Viewng
P peephole

http://en.wikipedia.org/wiki/Ames room
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http://en.wikipedia.org/wiki/Ames_room

Single-view Ambiguity
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Resolving Single-view Ambiguity

« Shoot light (lasers etc.) out of your eyes!
« Con: not so biologically plausible, dangerous?
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Resolving Single-view Ambiguity

W

—

« Shoot light (lasers etc.) out of your eyes!
« Con: not so biologically plausible, dangerous?
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How do humans estimate depth? Two eyes!

)

e L
\

« Stereo: given 2 calibrated cameras in different views and
correspondences, can solve for X
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Stereo photography and stereo viewers

Take two pictures of the same subject from two slightly different viewpoints
and display so that each eye sees only one of the images.

Image from fisher-price.com
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http://www.well.com/~jimg/stereo/stereo_list.ntml
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http://www.well.com/~jimg/stereo/stereo_list.ntml
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Not all animals see stereo:

Prey animals are Stereoblind
(large field of view to spot predators)

www.MzePhotos.com
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Not all animals see stereo:

Prey animals are Stereoblind
(large field of view to spot predators)

Predator Prey

SEEN BY BOTH EYES

' SEEN BY
RIGHT EYE
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Resolving Single-view Ambiguity

A’/\

One o
If you
corres

\ X
- ®

X
| Rt | g
ption: move the camera, find matching correspondences
Know how you moved in the physical world and have

ponding points in image space, you can solve for X
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How do you estimate how much you moved in the physical
world?

Can estimate using our eyes!
Can estimate using our ears!

Vestibulocochlear
nerve

 QOur inner ears have 3 ducts

« Can estimate movement via signals sent
to muscles

Tympanic duct

Bony labyrinth

- Membranous labyrinth

Cochlea
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But even without moving, we can estimate depth from a
single image. But how?

e You haven't been here before, yet you probably have a fairly good
understanding of this scene.
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We use pictorial cues — such as shading
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We use pictorial cues — such as perspective effects
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We use pictorial cues — such as familiar objects

onitor: probably not
|12 feet wide.

Desk surface:
probably flat
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Reality of 3D Perception

® 3D perception is absurdly complex and involves integration of many cues:
oLearned cues for 3D
o Stereo between eyes
o Stereo via motion

o Integration of known motion signals to muscles (efferent copy),
acceleration sensed via ears

o Past experience of touching objects

® All connect: learned cues from 3D probably come from stereo/motion cues
In large part

Really fantastic article on cues for 3D from Cutting and Vishton, 1995: https://pmvish.people.wm.edu/cutting%26vishton1995.pdf
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https://pmvish.people.wm.edu/cutting%26vishton1995.pdf

Regardless, illusions can still fool this complex system

Ames illusion persists (in a weaker form) even if you have stereo
vision —guessing the texture is rectilinear is usually incredibly
reliable

Apparent positien /—Q ________
of person A A Actual and
: o apparent position
R of person B
Apparent 3\
Wiewrg
shape of room cephole

Gehringer and Engel, Journal of Experimental Psychology: Human Perception and Performance, 1986
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Today's agenda

e Brief history of geometric vision
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Simplified Image Formation

light {}

SOurce
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Geometric vision is an ill-posed inverse problem

2D Image 3D Scene

Graphics

~N

Vision
Pixel Matrix Objects Material
217 191 252 255 239
155 o4 91 121 130 Shape/Geometry ~ Motion
179 106 136 85 41
115 129 83 112 67 <
% 114 105 11 s Semantics 3D Pose
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Brief History of Geometric Vision

¢2020-: geometry + learning

¢2010s: deep learning

¢2000s: local detectors and descriptors

¢ 1990s: digital camera, 3D geometry estimation
¢ 1980s: epipolar geometry (stereo)
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Brief History of Geometric Vision

¢ 1860s: Willeme invented photo-sculptures

g oo ety

10 E, Morin and E. Rovins, partographic studio (from Le
Monde illustré, December 17, 1864)
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\a

Brief History of Geometric Vision N

A
,_;4,.,},’ T

Puchberger 1843

¢ 1860s: Willeme invented photo-scultures
¢ 1850s: birth of photogrammetry [Laussedat]
e 1840s: panoramic photography

Cylindrograph
Moéssard 1884
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Brief History of Geometric Vision

¢ 1860s: Willeme invented photo-scultures

e 1850s: birth of photogrammetry [Laussedat]

¢ 1840s: panoramic photography

e 1822-39: birth of photography [Niépce, Daguerre]
e 1773: general 3-point pose estimation [Lagrange]
e 1715: basic intrinsic calibration (pre-photography!) [Taylor]

¢ 1700’s: topographic mapping from perspective drawings
[Beautemps-Beaupre, Kappeler]

Niépce, “La Table Servie”, 1822
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Brief History of Geometric Vision

e 15t century: start of mathematical treatment of 3D, first AR app?

Augmented reality invented by Filippo Brunelleschi (1377-1446)7?
Tavoletta prospettica di Brunelleschi

Linda Shapiro Oct 28, 2025


https://www.youtube.com/watch?v=G2BCdA23Kpg

Brief History of Geometric Vision

e 5t century BC: principles of pinhole camera, a.k.a. camera obscura

China: 5th century BC
Greece: 4th century BC
Egypt: 11th century

O O O O

Throughout Europe: from 11th century onwards

J
First mention ... First camera? A

Ao Chrisfyis42.

,(gt{ﬂ.ﬂy -

Chinese philosopher Mozi
(470 to 390 BC) (384 to 322 BC)

Linda Shapiro Oct 28, 2025

Greek philosopher Aristotle



Today's agenda

e Geometric transformations

Linda Shapiro Oct 28, 2025



Points

2D points: X = (z,y) € R? or column vectX =
Y
3D points: x = (z,y,2) € R? (often noted X or P)
Homogeneous coordinates: append a 1
why? X = (x,y, 1) X =(r,y,z,1)
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Everything is easier in Projective Space

2D Lines:
Representation: | = (a, b, ¢)
Equation: ax+by +c =0
In homogeneous coordinates: xT'l=0

General idea: homogenous coordinates
unlock the full power of linear algebra!
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Homogeneous coordinates in 2D

2D Projective Spactp2 _ 3 _ (0,0, 0) (same story in 3D with P3 )

X

T
* heterogeneous - homogeneous [ y ] = | Y
1

T
* homogeneous - heterogeneous y | = [ iﬁuu ]
w

* points differing only by scale are equivalent: (x,y,w)~ A (x,y,w)

X = (537 :&7 QD) — Qb(xﬂ y? 1) — QI))_(
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The camera as a coordinate transformation

A camera is a mapping
3D object .
3D to 2D transform

from: the 3D world
\ (camera)

to: a 2D image

2D
Image

B — 20

image
i g
2D to 2D transform

(image filters)
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Cameras and objects can move!

p=XYZ]1)

(xl,)’l, 1,d1)

= (X(),y(), 1, d())
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2D Transformations In pixel locations
(not pixel values)

A s
y snnllarlty projective
translation

—
—7 ~_
|

X

Euchdean aﬁ“me

\
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Scaling

S, 0 o |Z| =[S
_0 Sy ¥ Syl
A P p’

op
A W/
—

p
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Rotation

y ' =z cosh —ysinh
A y"zajsin(‘i‘—l—yCOSff*l
or in matrix form:
/
! xIr
x = {y" ] z' | | cosf —sind T
o y | | sinf cos6 Y
a
rotation : .
; around the Rotation matrix: T T
origin * Inverse is transpose R-R"=R"-R=1
: x
. \ Lo = { . ]  Orthonormal det(R) =1
... 9 “““_‘..
oz
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2D Translation

N x' = x+t,

L . Tt I __

A4 V=YL
<% As a matrix?
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2D Translation with homogeneous coordinates

— x -x-
____________________________ o P = y]_’ %
t ]
A P
e .
y ;= tx]_) tx
=, ,
X ¢ ’ Y L1 -
p =Tp
x+t, ] 1 0 t,| [z I ¢
pr— |y+t,| = [0 1 2| |y| = ]p=TP
1| oo 1]|1] 'O 1
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Euclidean transformations: rotation + translation

Euclidean (rigid): _ -
rotation + translation cosf -sinf tx
SE(2): Special Euclidean group sinf cosd Ly
Important in robotics: 0 0 1
describes poses on plane B

How many degrees of freedom?
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Similarity = Euclidean + scaling equally in x and y

Similarity: a — b t T
Scaling
+ rotation b a t
+ translation Y
0 0 1
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Affine transformation = similarity + no restrictions on scaling

Properties of affine transformations: X'l [a b c][x]
 arbitrary 6 Degrees Of Freedom V=14 e S|y
» lines map to lines w00 v
* parallel lines map to parallel lines
* ratios are preserved

—_—
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Projective transformation (homography)

Properties of projective transformations: x| [a b cllx
' —
* 8 degrees of freedom y' =|d e f Y
| _ w g h i||lw
* lines map to lines - 4t 4L
* parallel lines do not necessarily map to parallel lines
* ratios are not necessarily preserved
—
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Composing Transformations

Transformations = Matrices => Composition by Multiplication!
P’ = RyR,Sp
In the example above, the result Is equivalent to
p' = Ry(R1(Sp))
Equivalent to multiply the matrices into single transformation matrix:
p' = (RyR.S)p

Order Matters! Transformations from right to left.
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Scaling & Translating != Translating & Scaling

®
p" =TSp =
pr — STp

OO

cﬁl
=

o O

o = O

“ o

o

o~ o+
=

1Is

—o S

0
0

OO

X

0
Sy
0

o = O

0
0
1.

o~ o+
R ]

X
v
1

Sx

0
0

ml

o o

0
Sy
0

0
S

1.

Sxtx-
Syty

t] (%
b

(S, X + Ty
S,y + iy

1

(S, X T+ S, L,
S,y + 5,
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Scaling + Rotation + Translation

=(TRS)p
1 0 t,][cos@ —sin@ Of[s, 0 O]rx
p' =TRSp = [0 1 tHsinB cos 6 0”0 Sy 0“37]
0O 0 1 0 11Lo0 0 11t1
cos@ —siné 0 0
= |sin @ c059
0
a1 [rs o[
1] Y _’0 ]y
1 1 This is tlhe form of the
general-purpose
\transformatlon matrix

Linda Shapiro Oct 28, 2025



Today's agenda

e Pinhole camera

Reference: Szeliski 2.1, 2.2.3,7.4
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Reminder: Camera Obscura

e 5t century BC: principles of pinhole camera, a.k.a. camera obscura

China: 5th century BC
Greece: 4th century BC
Egypt: 11th century

o O O O

Throughout Europe: from 11th century onwards

First mention ... First camera?

Ao C@ris 1615 44

Oquy -

Chinese philosopher Mozi Greek philosopher Aristotle
(470 to 390 BC) (384 to 322 B(C)
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Pinhole imaging

_ barrier (diaphragm)
image plane
pinhole
n (aperture)
digital sensor [ L real-world
(CCDor ¢ object
CMOS) ~
0 camera center
- (center of
- projection)
< >

focal length f
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Pinhole imaging

digital sensor i real-world
(CCD or object
CMOS)
What does the
image on the Each scene point contributes to only one sensor pixel

sensor look like?
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Pinhole imaging

real-world
object

copy of real-world object
(inverted and scaled)
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Bare-sensor imaging (without a pinhole camera)

‘\ / '
\ g
.. i ’ ‘ , % 3
digital sensor ” - real-world
(CCDor "‘0 object
CMOS) = <
i "
I l
What does the ’
image on the All scene points contribute to all sensor pixels

sensor look like?
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Bare-sensor imaging (without a pinhole camera)

All scene points contribute to all sensor pixels
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Cameras & Lenses

e [ocal length determines the
maghnification of the image projected
onto the image plane.

e Aperture determines the light intensity of

that image pixels.
Source wikipedia
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there

S going on
ldings look distorted

and bending towards each

other

What'’
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Beyond Pinholes: Radial Distortion

@ Common in wide-angle lenses or for
special applications (e.g., automotive)

® Creates a projective transformation

e Usually handled through solving for non-
linear terms and then correcting image

§% §% .
E 5 H :

No Distortion Barrel Distortion Pincushion Distortion

Linda Shapiro Oct 28, 2025
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Cameras & Lenses

I mm

Decreasing
aperture
Size
LUZ
OPTICA
What happens with a smaller rorennar

0.15 mm 0.07 mm

aperture?

» Less light passes through
« Less diffraction effect and clearer image

Pinhole is the miniscule aperture, resulting in the
least amount of light and clearest image
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Today's agenda

e The Pinhole camera transformation

Reference: Szeliski 2.1, 2.2.3,7.4

Linda Shapiro Oct 28, 2025



Describing both lens and pinhole cameras

For this course, we focus on
the pinhole model.

e Similar to thin lens model in

Physics: central rays are not

deviated.

e Assumes lens camera in focus.
e Useful approximation but ignores

Important lens distortions.
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The pinhole camera

image plane

real-world
object

< > camera
center

focal length f
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The (rearranged) pinhole camera

virtual image plane

real-world
object

camera < >
center focal length f
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The (rearranged) pinhole camera

C image
plane

X

camera
center

principal axis
~ principal
yC point

What is the transformation x = PX?
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Pinhole Camera Matrix

Because all transformations  ¢¢_, _ » X
are done using x =PX . ?//
homogeneous coordinate ~ | v P - ——
system, all transformations AX — PX . =
are correct up to some scale
lambda _ -
X - - X
pP1 P2 P3 P4 %
Y|~ | P5 Pe Pr D8 7
A P9 P10 P11 P12 | 1
coordinates camera matrix  world (ca?nera) coordinates
3x1 3x4 4x1

Linda Shapiro Oct 28, 2025



2D view of the (rearranged) pinhole camera __, Q
C 4 /c —_

image
plane Similar
Triangles:
iC
____________________________________________________________________________________ x f
;i X Z
X
i ,C

Linda Shapiro Oct 28, 2025



Pinhole Camera Matrix

Transformation from camera coordinates to image coordinates:
X Y 2T = (fX/Z §Y/Z)7

General camera model in homogeneous coordinates:

X - - -~ X
Pr P2 P3 P4 v
Y|~ | ps Pe Pr D8 7
L 7 - | P9 P10 P11 P12 _ 1
Pinhole camera has a much simpler proj_ectior; matrix (assume only scaling):

i 0 0 0 X

. f f fX/Z Reminder: conversion from

P = 0 f 04 fY - fY/Z homogeneous coordinates
0 0 1 0 7

Linda Shapiro Oct 28, 2025



Generalizing the camera matrix

In general, the camera and image have different coordinate systems.

+C image
lane ~
A P C
_--® x
3D point
in camera
~| [P .
X 7 coordinates
".—“— . . . .
2D point in image coordinates
e > 7C
Oca.mera.
Oima.ge

Linda Shapiro Oct 28, 2025



Generalizing the camera matrix
In particular, the camera origin and image origin may be different:

image
plane

_ _ A p .-~ camera coordinate system
image coordinate

system

yie

o

Q. How does the camera matrix change?
0
0

Linda Shapiro Oct 28, 2025

P —

0 0 0°
f 0 0
0 1 0




Generalizing the camera matrix
In particular, the camera origin and image origin may be different:

image
plane

_ _ ) p .-~ camera coordinate system
image coordinate

system

yie

[

Q. How does the camera matrix change?
f 0 Doy Translate the

0 -
P — 0 f py 0 camera origin to
0

_ 0 0 1 image origin

Linda Shapiro Oct 28, 2025




Camera matrix decomposition

We can decompose the camera matrix like this:

f 0 p, ][1 0 0:0

P = Ofpy 01050

00 1 |[0 0 1:0
f 0 pp O
P=|0 f p, O
0 0 1 0

Linda Shapiro Oct 28, 2025



Camera matrix decomposition

We can decompose the camera matrix like this:

f 0 p, 1 0 0:0
P=|0 f Py 0O 1 0 0
00 1 |[0 0 1:0
(homogeneous) transformation (homogeneous) perspective projection
from 2D to 2D, accounting for from 3D to 2D, assuming image plane at
focal length f and origin translation z =1 and shared camera/image origin

Linda Shapiro Oct 28, 2025



Camera matrix decomposition

We can decompose the camera matrix like this:

f 0 p, 1 0 0:0
P=|0 f p, 0O 1 O 0
0 0 1 110 01 0 )
(homogeneous) transformation (homogeneous) perspective projection
from 2D to 2D, accounting for from 3D to 2D, assuming image plane at
focal length f and origin translation z =1 and shared camera/image origin
f 0 pg
Also written as: P = K|I|0] whereK = | 0 f p, |Kiscalledthe
0 0 1 camera intrinsics

Linda Shapiro Oct 28, 2025



Generalizing the camera matrix

In general, there are 3 different coordinate systems (camera moves in the world).

w

X A
A image b it
R plane TW ° poin -
. in world coordinates
1 Oworld
% & >
. o . zW
2D pointin coordinates
& » zC
Oca.mera. I

Oima.ge

Linda Shapiro Oct 28, 2025



World-to-camera coordinate transformation

Let's assume camera is at location C" in world coordinate system
Q. What is X"V in camera coordinate system? xW

C
X Image Plane

Camera

coordinate °

t

SYSIEM JeZ o R 7 C

c.. G | -

y // ............
. ’ W
Coordinate of the World Z
camera center in the W coordinate

world coordinate y system

frame

Note: heterogeneous coordinates for now
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World-to-camera coordinate transformation

Why aren’t the
. . »®
points allgned?"_,_,-»" LW
. ,"‘, b
- - ’ﬂ
Camera
coordinate xW
system | <7
yC / .........................
w

World

coordinate
yW system
XW —c%W
translate
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World-to-camera coordinate transformation

xW
c e T ]
xS T _
Image Plane % ___--77 / points now

Camera ” w coincide
coordinate X /

system
C / ..........

y-© Pyt e
ZW

World
coordinate
yW system

R(X"—-c")

rotate translate
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Coordinate system transformation

In heterogeneous coordinates, we have:

X¢ =RX"-C")

Q. How do we write this transformation in homogeneous coordinates?

Linda Shapiro Oct 28, 2025



Coordinate system transformation

In heterogeneous coordinates, we have:

X¢ =RX"-C")

Q. How do we write this transformation in homogeneous coordinates?

X, X

o[B8 Re]l ko= [R -RC"|gv
= X" = X

Zlc |:O 1 Zl’w > 0 1
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Let’'s update our camera transformation

The previous camera transformation we calculated is for homogeneous 3D coordinates in
camera coordinate system:

(omitting ~ for simplicity: everything in homogeneous coordinates)

x'~ K[1]0]X"“

————
______
————

We also just derived:

-
,,,,

Camera
coordinate )
system | T

X¢ = [l(} _lfc] X" N

World
coordinate
yW system
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Putting it all together

We can write everything into a single projection: X' ~K[I]|0] [l; —i{C] XV =pxWw

The camera matrix now looks like:

f 0 pg _
P=|0 f p | | 0] [:} ?C]
0 0 1 ’
intrinsic parameters (3 x 3): / perspective projection (3 x 4): \ extrinsic parameters (4 x 4):
correspond to camera maps 3D to 2D points correspond to camera
internals (image-to-image (camera-to-image externals (world-to-camera
transformation) transformation) transformation)
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Putting it all together

We can write everything into a single projection: xI~PXW

The camera matrix now looks like:

t
f o p. ] |
P=|0 f p, ||R -RC]
0 0 1 | '
intrinsic parameters (3 x 3): / \ extrinsic parameters (3 x 4):
correspond to camera internals correspond to camera externals
(sensor not at f = 1 and origin shift) (world-to-image transformation)
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General pinhole camera matrix

P = K[R‘t where t=—-RC

Linda Shapiro Oct 28, 2025



General pinhole camera matrix

P — K[R‘t where = —RC

f 0 pg rL T2 T3l
P=|0 f py T4 Ts Te i to
i 0 O 1 1 L 7 T8 Tqg : t3 )
intrinsic extrinsic
parameters parameters
ry Ty T3 [t
R = T Ty Tg t = t2
re Ts Tg t3
i 3D ] S
. 3D translation
rotation
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More general camera matrices

Non-square pixels, sensor may be skewed
(causing focal length to be different along x and y).

oy S Pz ) :
P=| 0 o p, [R —RC]
0 0 1 | |

Q. How many degrees of freedom?

Linda Shapiro Oct 28, 2025



How | usually teach it

» Useful to decompose into a series of operations o _
identity matrix

(— fs. 0 X111 0 0 O]
\ R R | _ I'I‘fi 1 T
— [] - j:s‘}' h% . U ] {) U' 3x3 a4 Jx3 A e— [t)(, ty, tZ]
0 0 1110 0 1 0 0.5 1 0,5 :
intrinsics projection rotation translation

* The definitions of these parameters are not completely standardized
— especially intrinsics—varies from one book to another

Ranjay Krishna Lecture 12 - February 13, 2025



Camera Models: Still an Active Area

Is everybody only using a 2400 years old model?

e More complex cameras: pinhole + distortion, fisheye

catadioptric, dashcams, underwater...

e The Double Sphere Camera Model, Usenko et al ECCV 2018

(commonly used in robotics, like in our ICRA'22 paper)

eLearning Camera Models =~ & = b
Neural Ray Surfaces, | :
Vasiljevic et al, 3DV 202C .o ocusmmcomen
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https://arxiv.org/abs/1807.08957
https://sites.google.com/ttic.edu/self-sup-self-calib
https://arxiv.org/abs/2008.06630

Next time

Camera calibration

Linda Shapiro Oct 28, 2025



